Primární zpracování radarového signálu dopplerovská filtrace
|
|
- Richard Dušan Fišer
- před 6 lety
- Počet zobrazení:
Transkript
1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/ Datum zadání Datum odevzdání Klasifikace Číslo úlohy 1 Primární zpracování radarového signálu dopplerovská filtrace
2 1. Úvod Dopplerovská filtrace navazuje ve zpracování radarového signálu na přizpůsobenou filtraci - kompresi pulsu. Radar s dopplerovským zpracováním signálu může rozdělit přijímaný signál do několika kanálů dle radiálních rychlostí cílů (MTD Moving Target Detection), případně jen potlačit nežádoucí signály odrazů od terénu (MTI Moving Target Indicator), čehož bude využito v této práci. Obr. 1 Přizpůsobená filtrace, dopplerovská filtrace Úmístění samotného MTI filtru v blokovém schématu je znázorněno na obrázku 2. Jedná se o pásmouvou zádrž v okolí nulové frekvence, která je realizována FIR filtrem, zádržné pásmo se periodicky opakuje na násobcích opakovací frekvence f op. Obr. 2 Zařazení MTI filtru v blokovém schématu
3 2. Úkoly 1. Vykreslete amplitudovou charakteristiku filtru MTI dvojité potlačení s koeficienty h=[1-2 1]/4, na vodorovné ose vyneste radiální rychlost cíle (pro radar s parametry dle hodnot v souboru s modelem signálu). V amplitudové charakteristice vyznačte první slepou rychlost radaru s tímto MTI filtrem. 2. Proveďte přizpůsobenou filtraci a dopplerovskou filtraci přijímaného signálu. Použijte MTI filtr dvojité potlačení. Zobrazte amplitudy: přijímaného signálu, signálu po průchodu přizpůsobeným filtrem, signálu za MTI filtrem. Na příslušných osách vyneste vzdálenost od radaru a úhel natočení antény. 3. Určete vzdálenosti a azimuty cílů (při prvním odběhu je anténa natočena směrem k severu). 3. Postup řešení Zadaný datový soubor obsahuje komplexní obálku modelující přijímaný signál z několika odběhů. Model obsahuje tři cíle s různou radiální rychlostí, rušení AWGN a jednoduchý model odrazu od terénu. Matice v proměnné s obsahuje ve sloupcích přijímané signály z jednotlivých odběhů, první vzorek je přijímaný ze vzdálenosti Rmin od radaru. Při realizaci přizpůsobené filtrace v programu Matlab využijeme toho, že funkce filter zpracovává signál paralelně ve všech sloupcích. Pro dopplerovskou filtraci lze po transpozici použít opět funkci filter. Vliv jednotlivých operací bude výhodné sledovat pomocí vykreslení absolutních hodnot prvků matice (amplitudy signálu) funkcí image nebo surf. a. Řešení úkolu 1 Amplitudovou charakteristiku filtru získáme Fourierovou transformací v Matlabu použita funkce freqz - ze známé impulsové odezvy (viz obr. 3) Obr. 3 Amplitudová charakteristika MTI filtru
4 b. Řešení úkolu 2 Na obrázku č. 4 je zobrazen přijatý signál, který dosud nebyl zpracován a není z něj možné určit přesné parametry cílů jako je azimut či vzdálenost, pouze vidíme, že vzorky komplexní obálky přijatého signálu jsou v matici o šířce 2,12 (horizontální osa) a délce 104,9 km (vertikální osa). Obr. 4 Amplituda přijímaného signálu Dle blokového schématu z obrázku 2 projde signál kompresorem pulsu, který představuje přizpůsobený filtr v Matlabu použita funkce filter, jíž byly jako parametry zadány vzorky komplexní obálky přijatého signálu a komplexně sdružené a záporné vzorky repliky vyslaného pulsu, které ještě byly váhovány hammingovým oknem. Takto zpracovaný signál je na obrázku č. 5. Obr. 5 Signál po průchodu přizpůsobeným filtrem
5 Signál dále projde MTI filtrem v Matlabu opět použita funkce filter, které byly jako parametry dány impulsová odezva a v předchozím kroku zpracovaný a transponovaný signál. Potřeba transpozice je patrná z obrázku č. 1, kde Dopplerovská filtrace probíhá napříč odběhy oproti přizpůsobené filtraci, která se provádí v rámci jednotlivých odběhů. Výsledně získaný signál je na obrázku 6. První tři odběhy, počet je dán počtem členů impulsové odezvy, jsou téměř shodné s odběhy v předchozím kroku (viz obr. 5). Obr. 6 Signál za MTI filtrem c. Řešení úkolu 3 Vzdálenosti a azimuty jednotlivých cílů byly odečteny z obrázku č. 7, v němž nejsou zobrazeny první tři odběhy. Hodnoty jsou následující: R1=31km =1,36 R2=54km =1,95 R3=87km =0,26 Výsledky korespondují se skutečnosti, že signál byl přijat ve vzdálenosti 10 km od radaru, která odpovídá slepé zóně, a nebylo tak nutné odečítat vzdálenost (9,045 km), kterou urazí puls během vyslání. 4. Závěr V rámci semestrální práce byl zpracován přijatý signál, pomocí něhož se daly určit základní parametry cílů jako vzdálenost a azimut (viz bod 3.c.). Ke zpracování byl využit výpočetní software Matlab, v němž byl vytvořen skript (viz příloha) simulující část blokového schématu z obrázku 2. Tvorba této práce přispěla k lepšímu pochopení dané problematiky.
6 Obr. 7 Dopplerovská filtrace - 3D zobrazení
7 Příloha skript z Matlabu % % % % Semestralka c. 1 - V. Dajcar % % % % % % % % % % % % %A2M37RSY% % % % % % % % % % clear all close all clear; load 'Cv05_Srec_Doppler' % % pv je pocet vzorku % % po je pocet odbehu [pv po]=size(s); % % % % Ukol 1 % % rychlost svetla v m/s c=3e8; % % rychlost svetla v km/s c1=3e5; % % slepa rychlost vb=c/2*fop/fc; % % impulzova odezva MTI filtru - dvojite potlaceni h1=[1-2 1]/4; % % vypocet freq. charky MTI filtru h=freqz(h1,1,500,'whole'); % % horizontalni osa - radialni rychlost rr=vb*(0:length(h)-1)/length(h); figure() hold on plot(rr,abs(h),'linewidth',4) plot(vb,0,'h red','markersize',10) title('amplitudova charakteristika MTI filtru'); xlabel('radialni rychlost [m/s]'); ylabel(' H [-]'); legend('amp. charka','slepa rychlost',2); % text(vb-2,0.02,'slepa rychlost \rightarrow','horizontalalignment','right','backgroundcolor','yellow') % % % % Ukol 2 % % delka vzorkovaci periody Tv=1/fv; % % urceni horizontalni osy - azimutu ve stupnich azimut=(0:po-1)*v_phi/fop; % % urceni vzdalenosti v km, prvni vzorek prijat v Rmin R=(0:pv-1)*c1/2*Tv+Rmin; % % komplexni sdruzeni repliky, vahovani Hamming. oknem s01=conj(s0).*hamming(length(s0)); % % komprese pulsu - Kompresor pulsu v blokovem schematu f=filter(-s01,1,s); % % Dopplerovska filtrace - viz blokove schema (MTI filtr) f1=filter(h1,1,f.').'; figure('name','pred kompresi') h=image(azimut,r,20*log10(abs(s))); set(get(h,'parent'),'ydir','normal'); %prevraceni osy y - nula dole title('amplituda vstupniho signalu - pred kompresi') xlabel('phi [ ]') ylabel('r [km]')
8 colorbar figure('name','prizpusobeny filtr') h=image(azimut,r,20*log10(abs(f))); set(get(h,'parent'),'ydir','normal'); %prevraceni osy y - nula dole title('signal po pruchodu filtrem') xlabel('phi [ ]') ylabel('r [km]') colorbar figure('name','dopplerovska filtrace') h=image(azimut,r,20*log10(abs(f1))); set(get(h,'parent'),'ydir','normal'); %prevraceni osy y - nula dole title('signal za MTI filtrem') xlabel('phi [ ]') ylabel('r [km]') colorbar figure('name','dopplerovska filtrace 3D') h=surf(azimut(length(h1):end),r,20*log10(abs(f1(:,length(h1):end)))); set(get(h,'parent'),'ydir','normal'); %prevraceni osy y - nula dole title('signal za MTI filtrem 3D') xlabel('phi [ ]') ylabel('r [km]') axis([min(azimut(length(h1):end)) max(azimut(length(h1):end)) min(r) max(r)]) colorbar
SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7
SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7 Daniel Tureček St-lichý týden, 9:15 Zadání Určete periodu signálu s(k), určete stejnosměrnou složku, výkon, autokorelační funkci. Záznam signálu je v souboru persig2.
Komplexní obálka pásmového signálu
České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového
1 Zpracování a analýza tlakové vlny
1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)
Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
BPC2E_C08 Parametrické 3D grafy v Matlabu
BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,
Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje
Číslicové filtry. Honza Černocký, ÚPGM
Číslicové filtry Honza Černocký, ÚPGM Aliasy Digitální filtry Diskrétní systémy Systémy s diskrétním časem atd. 2 Na co? Úprava signálů Zdůraznění Potlačení Detekce 3 Zdůraznění basy 4 Zdůraznění výšky
UNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Návrh AMTI filtru pro radar s proměnnou periodou vysílání impulsů Michal Řezníček Diplomová práce 2015 Prohlášení autora Prohlašuji, že jsem
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš
KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.
Dálkoměrný signál služby SPS systému GPS: vlastnosti, měření zpoždění a výpočet polohy
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace
oblasti je znázorněn na obr Komplexní obálku můžeme rozepsat na její reálnou a
Fakulta elektrotechniky a komunikačních technologií VUT v Brně 5 2 Komplexníobálka Zadání 1. Mějme dán pásmový signál s(t) =[1 0.5cos (2π5t)] cos (2π100t) (a) Zobrazte tento signál a odhad jeho modulového
Problematika rušení meteorologických radarů ČHMÚ
Problematika rušení meteorologických radarů ČHMÚ Ondřej Fibich, Petr Novák (zdrojová prezentace) Český Hydrometeorologický ústav, oddělení radarových měření Meteorologické radary využití - detekce srážkové
ADA Semestrální práce. Harmonické modelování signálů
České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte
Semestrální projekt. Vyhodnocení přesnosti sebelokalizace VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta elektrotechniky a komunikačních technologií
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Semestrální projekt Vyhodnocení přesnosti sebelokalizace Vedoucí práce: Ing. Tomáš Jílek Vypracovali: Michaela Homzová,
1 Základní funkce pro zpracování obrazových dat
1 Základní funkce pro zpracování obrazových dat 1.1 Teoretický rozbor 1.1.1 Úvod do zpracování obrazu v MATLABu MATLAB je primárně určen pro zpracování a analýzu numerických dat. Pro analýzu obrazových
Fourierova transformace
Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence
Obrazovkový monitor. Antonín Daněk. semestrální práce předmětu Elektrotechnika pro informatiky. Téma č. 7: princip, blokově základní obvody
Obrazovkový monitor semestrální práce předmětu Elektrotechnika pro informatiky Antonín Daněk Téma č. 7: princip, blokově základní obvody Základní princip proud elektronů Jedná se o vakuovou elektronku.
BPC2E_C09 Model komunikačního systému v Matlabu
BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
31ZZS 9. PŘEDNÁŠKA 24. listopadu 2014
3ZZS 9. PŘEDNÁŠKA 24. listopadu 24 SPEKTRÁLNÍ ANALÝZA Fourierovy řady Diskrétní Fourierovy řady Fourierova transformace Diskrétní Fourierova transformace Spektrální analýza Zobrazení signálu ve frekvenční
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
Vlastnosti Fourierovy transformace
Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy
Základy zpracování obrazu
Základy zpracování obrazu Tomáš Mikolov, FIT VUT Brno V tomto cvičení si ukážeme základní techniky používané pro digitální zpracování obrazu. Pro jednoduchost budeme pracovat s obrázky ve stupních šedi
2. Číslicová filtrace
Żpracování signálů a obrazů 2. Číslicová filtrace.......... Petr Česák Zimní semestr 2002/2003 . 2. Číslicová filtrace FIR+IIR ZADÁNÍ Účelem cvičení je seznámit se s průběhem frekvenčních charakteristik
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ
VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Modelování blízkého pole soustavy dipólů
1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu
r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.
Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)
X37SGS Signály a systémy
X7SGS Signály a systémy Matlab minihelp (poslední změna: 0. září 2008) 1 Základní maticové operace Vytvoření matice (vektoru) a výběr konkrétního prvku matice vytvoření matice (vektoru) oddělovač sloupců
filtry FIR zpracování signálů FIR & IIR Tomáš Novák
filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí
Analýza a zpracování digitálního obrazu
Analýza a zpracování digitálního obrazu Úlohy strojového vidění lze přibližně rozdělit do sekvence čtyř funkčních bloků: Předzpracování veškerých obrazových dat pomocí filtrací (tj. transformací obrazové
Výpis m-souboru: Výsledný průběh:
Příklad č. 1 Generujte a nakreslete náhodný šumový signál s normálním rozdělením o délce 100 vzorků a vzorkovací frekvencí 8kHz, rozsah amplitudy od 1 do 1 (funkce randn). N=100; % Počet vzorků Tv=1/fv;
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU
4. MĚŘENÍ NA SMĚŠOVAČI A MEZIFREKVENČNÍM FILTRU Cíl měření Seznámit se s vlastnostmi dvojitě vyváženého směšovače a stanovit: 1) spektrum výstupního signálu a vliv mezifrekvenčního filtru na tvar spektra,
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
Kreslení grafů v Matlabu
Kreslení grafů v Matlabu Pavel Provinský 3. října 2013 Instrukce: Projděte si všechny příklady. Každý příklad se snažte pochopit. Pak vymyslete a naprogramujte příklad podobný. Tím se ujistíte, že příkladu
1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.
Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou
Zpracování signálu a detekce
Zpracování signálu a detekce Přednáška pro studenty MRAR Radiolokační a radionavigační systémy Ing. Pavel Šedivý psedivy@retia.cz www.retia.cz 466 85 514 1 RETIA, a.s. Pardubice Soukromá společnost Přibližně
Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů
Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů Část 1 - Syntéza orchestrálních nástrojů pro symfonickou báseň B.Smetany "Vltava" Cílem této části práce je syntetizovat symfonickou báseň B.Smetany
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Kepstrální analýza řečového signálu
Semestrální práce Václav Brunnhofer Kepstrální analýza řečového signálu 1. Charakter řečového signálu Lidská řeč je souvislý, časově proměnný proces. Je nositelem určité informace od řečníka k posluchači
Při návrhu FIR filtru řešíme obvykle následující problémy:
Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.
Zvuk. 1. základní kmitání. 2. šíření zvuku
Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Příklady použití tenkých vrstev Jaromír Křepelka
Příklady použití tenkých vrstev Jaromír Křepelka Příklad 01 Spočtěte odrazivost prostého rozhraní dvou izotropních homogenních materiálů s indexy lomu n 0 = 1 a n 1 = 1,52 v závislosti na úhlu dopadu pro
Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty
Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:
Cvi ení 2. Cvi ení 2. Modelování systém a proces. Mgr. Lucie Kárná, PhD. March 5, 2018
Modelování systém a proces Mgr. Lucie Kárná, PhD karna@fd.cvut.cz March 5, 2018 1 Gracké moºnosti Matlabu 2 Zobrazení signálu 3 4 Analýza signálu Gracké moºnosti Matlabu Základní gracké p íkazy I Graf
4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru
4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)
Světlo jako elektromagnetické záření
Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti
Laboratorní úloha č. 8: Elektroencefalogram
Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační
Rozprostřené spektrum. Multiplex a mnohonásobný přístup
Rozprostřené spektrum Multiplex a mnohonásobný přístup Multiplex Přenos více nezávislých informačních signálů jedním přenosovým prostředím (mezi dvěma body) Multiplexování MPX Vratný proces sdružování
Spektrální analýza a diskrétní Fourierova transformace. Honza Černocký, ÚPGM
Spektrální analýza a diskrétní Fourierova transformace Honza Černocký, ÚPGM Povídání o cosinusovce 2 Argument cosinusovky 0 2p a pak každé 2p perioda 3 Cosinusovka s diskrétním časem Úkol č. 1: vyrobit
Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D
Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce
Měření vlastností datového kanálu
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ÚLOHA E Měření vlastností datového kanálu Vypracoval: V rámci předmětu: Jan HLÍDEK Základy datové komunikace (X32ZDK) Měřeno: 14. 4. 2008 Cvičení:
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY
TSO NEBO A INVARIANTNÍ ROZPOZNÁVACÍ SYSTÉMY V PROSTŘEDÍ MATLAB K. Nováková, J. Kukal FJFI, ČVUT v Praze ÚPŘT, VŠCHT Praha Abstrakt Při rozpoznávání D binárních objektů z jejich diskrétní realizace se využívají
Analýza optické trasy optickým reflektometrem
Analýza optické trasy optickým reflektometrem Zadání: Pomocí optického reflektometru, zkrácené označení OTDR (Optical Time-Domain Reflectometer), proměřte trasu, která je složena z několika optických vláken.
Nastavení parametrů PID a PSD regulátorů
Fakulta elektrotechniky a informatiky Univerzita Pardubice Nastavení parametrů PID a PSD regulátorů Semestrální práce z předmětu Teorie řídicích systémů Jméno: Jiří Paar Datum: 9. 1. 2010 Zadání Je dána
Fyzikální praktikum FJFI ČVUT v Praze
Fyzikální praktikum FJFI ČVUT v Praze Úloha 12: Sonar Datum měření: 5. 11. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V domácí přípravě spočítejte úhel prvních
[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0
Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?
ETC Embedded Technology Club setkání 6, 3B zahájení třetího ročníku
ETC Embedded Technology Club setkání 6, 3B 13.11. 2018 zahájení třetího ročníku Katedra měření, Katedra telekomunikací,, ČVUT- FEL, Praha doc. Ing. Jan Fischer, CSc. ETC club,6, 3B 13.11.2018, ČVUT- FEL,
13 Barvy a úpravy rastrového
13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody
MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ
MATLAB PRO PODPORU VÝUKY KOMUNIKAČNÍCH SYSTÉMŮ Aneta Coufalíková, Markéta Smejkalová Mazálková Univerzita obrany Katedra Komunikačních a informačních systémů Matlab ve výuce V rámci modernizace výuky byl
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
Hough & Radon transform - cvičení
Hough & Radon transform - cvičení ROZ UTIA - ZOI Adam Novozámský (novozamsky@utia.cas.cz) Motivace Co to je Houghova transformace a k čemu se používá?: metoda pro nalezení parametrického popisu objektů
Měření času, periody, šíře impulsu a frekvence osciloskopem
http://www.coptkm.cz/ Měření času, periody, šíře impulsu a frekvence osciloskopem Měření času S měřením času, neboli se stanovením doby, která uběhne při zobrazení určité části průběhu, při kontrole časové
Obrázek 2 Vodorovné a svislé půlvlnné antény a jejich zrcadlové obrazy. Činitel odrazu. Účinek odrazu je možno vyjádřit jako součinitel, který
10 OBRAZ ANTÉNY Často je vhodné použít pro znázornění účinku odrazu představu obrazu antény. Jak ukazuje obrázek 1, odražený paprsek urazí cestu stejné délky (AD se rovná BD), jakou by urazil, kdyby byl
FILTRACE VE FOURIEROVSKÉM SPEKTRU
1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU
3 METODY PRO POTLAČENÍ ŠUMU U ŘE- ČOVÉHO SIGNÁLU V současné době se pro potlačení šumu u řečového signálu používá mnoho různých metod. Jedná se například o metody spektrálního odečítání, Wienerovy filtrace,
2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru:
Pracovní úkol 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na převrácené
pracovní list studenta
Výstup RVP: Klíčová slova: pracovní list studenta Goniometrické funkce Mirek Kubera žák načrtne grafy elementárních funkcí a určí jejich vlastnosti, při konstrukci grafů aplikuje znalosti o zobrazeních,
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí
Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010
Modelování anelastické odezvy vlastních kmitů zemětřesení v Chile 2010 Eliška Zábranová Katedra geofyziky MFF UK, VCDZ Úvod Vlastní kmity jsou elementy stojatého vlnění s nekonečným počtem stupňů volnosti.
Zpracování obrazů. Honza Černocký, ÚPGM
Zpracování obrazů Honza Černocký, ÚPGM 1D signál 2 Obrázky 2D šedotónový obrázek (grayscale) Několikrát 2D barevné foto 3D lékařské zobrazování, vektorová grafika, point-clouds (hloubková mapa, Kinect)
9 Impedanční přizpůsobení
9 Impedanční přizpůsobení Impedančním přizpůsobením rozumíme situaci, při níž činitelé odrazu zátěže ΓL a zdroje (generátoru) Γs jsou komplexně sdruženy. Za této situace nedochází ke vzniku stojatého vlnění.
popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu
4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.
Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu
25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE
25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně
DPZ10 Radar, lidar. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava
DPZ10 Radar, lidar Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava RADAR SRTM Shuttle Radar Topography Mission. Endeavour, 2000 Dobrovolný Hlavní anténa v nákladovém prostoru, 2. na stožáru
Software pro vzdálenou laboratoř
Software pro vzdálenou laboratoř Autor: Vladimír Hamada, Petr Sadovský Typ: Software Rok: 2012 Samostatnou část vzdálených laboratoří tvoří programové vybavené, které je oživuje HW část vzdáleného experimentu
Úloha č. 7 Disperzní vlastnosti optických vlnovodů
Úloha č. 7 Disperzní vlastnosti optických vlnovodů 1 Teoretický úvod Optické vláknové vlnovody jsou důležitou komponentou optických komunikačních sítí. Jejich nejvýznamnějším parametrem je měrný útlum
A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014
A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY
NOVÉ METODY HODNOCENÍ OBRAZOVÉ KVALITY Stanislav Vítek, Petr Páta, Jiří Hozman Katedra radioelektroniky, ČVUT FEL Praha, Technická 2, 166 27 Praha 6 E-mail: svitek@feld.cvut.cz, pata@feld.cvut.cz, hozman@feld.cvut.cz
PSK1-9. Číslicové zpracování signálů. Číslicový signál
Název školy: Autor: Anotace: PSK1-9 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Princip funkce číslicové filtrace signálu Vzdělávací oblast: Informační a komunikační
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
Základní metody číslicového zpracování signálu část I.
A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU
UŽITÍ KOHERENČNÍ FUNKCE PRO DISTRIBUOVANOU ANALÝZU VÍCEKANÁLOVÝCH SIGNÁLŮ Robert Háva, Aleš Procházka Vysoká škola chemicko-technologická, Abstrakt Ústav počítačové a řídicí techniky Analýza vícekanálových
Algoritmy a struktury neuropočítačů ASN - P11
Aplikace UNS při rozpoznání obrazů Základní úloha segmentace obrazu rozdělení obrazu do několika významných oblastí klasifikační úloha, clusterová analýza target Metody Kohonenova metoda KSOM Kohonenova
Filtrace obrazu ve frekvenční oblasti
Filtrace obrazu ve frekvenční oblasti Václav Hlaváč České vysoké učení technické v Praze Český institut informatiky, robotiky a kybernetiky 166 36 Praha 6, Jugoslávských partyzánů 1580/3 http://people.ciirc.cvut.cz/hlavac,
Uživatelská příručka. Software DataPlot nástroj pro vizualizaci csv dat
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra betonových a zděných konstrukcí Uživatelská příručka Vytvořeno v rámci grantu Grantové agentury České republiky GA16-18448S a grantu Studentské
Nové trendy v zabezpečení rozsáhlých areálů
Nové trendy v zabezpečení rozsáhlých areálů Tomáš Semerád Siemens, s. r. o. divize Building Technologies Page 1 Nové trendy v zabezpečení rozsáhlých areálů Obsah Termovize RADAR Page 2 Nové trendy v zabezpečení
popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu
9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad