Vlastnosti Fourierovy transformace

Rozměr: px
Začít zobrazení ze stránky:

Download "Vlastnosti Fourierovy transformace"

Transkript

1 Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy ve frekvenční oblasti

2 Aditivita: něco přidám v časové oblasti a přidá se to i ve frekvenční (nezávisle)

3 Komprese / expanze Když signál natáhnu v časové oblasti, smrskne se mi ve frekvenční a obráceně Příklad: gaussovka (jejím obrazem je opět gaussovka)

4 Posunutí v časové oblasti Při posunutí v časové oblasti zůstává magnituda stejná a mění se pouze fáze

5 Jaká informace je ukryta ve fázi? Vezmu jednoduchý signál, provedu DFT, převedu do polárních souřadnic, postupně nahradím magnitudu a fázi náhodnými čísly a následně zrekonstruuji zpět do časové oblasti (IDFT) Ve fázi je dobře vidět poloha hran. Proč? Hrana v časové oblasti vznikne, když na stejném místě roste současně hodně sinusovek musí mít stejnou fázi zobecnění: hodně informace o tvaru signálu v časové oblasti je schováno ve fázi. Naopak na fázi moc nezáleží u signálů, kde na tvaru moc nezáleží a informace je schovaná ve frekvencích, např. audio signál. % vygeneruji jednoduchy signal clear all x(1:50) = 0; x(51:100) = linspace(0.9,1.2,50); x(101:299) = 0; % provedu DFT a prevod do polarnich souradnic [ReX ImX] = DFT(x); [XMag, XPha] = RectToPolar(ReX,ImX); % nahodna faze z intervalu pi / pi XPha0 = (rand(1,length(xmag))-0.5)*2*pi; % rekonstrukce jen z magnitudy [X2r X2i] = PolarToRect(XMag,XPha0); x2 = IDFT(X2r, X2i); % rekonstrukce jen z faze XMag0 = rand(1,length(xmag)); [X3r X3i] = PolarToRect(XMag0,XPha); x3 = IDFT(X3r, X3i); % a ted spolecne namalujeme subplot(3,1,1); plot(x); title('originalni signal'); subplot(3,1,2); plot(x2) title('rekonstrukce z magnitudy'); subplot(3,1,3); plot(x3) title('rekonstrukce z faze');

6 Periodicita signálu v časové oblasti DFT považuje časový signál za periodický. Když něco uděláme se spektrem, před převedením zpět do časové oblasti, může být výsledný časový signál delší, nevejde se do daného počtu vzorků. Příklad cirkulární konvoluce (přednáška o aplikacích konvoluce pomocí DFT)

7 Periodicita signálu ve frekvenční oblasti Záporné frekvence od -0,5 do 0 vzorkovací frekvence Zrcadlový obraz: magnituda sudá, fáze lichá Záporná frekvence, co je to za podivnost?

8 Amplitudová modulace Modulace spojení (merging) dvou signálů Amplitudová modulace násobení Obálka nosné = původní signál Násobení v časové oblasti = konvoluce ve frekvenční Nosná je puls výsledek konvoluce je posun Výsledek ve frekvenční oblasti Nosná zůstane Spektrum originálu se tam objeví Objeví se ještě něco dalšího! Co to je? Negativní frekvence! Více o modulacích v PDF GenerováníSignálu

9 % amplitudova modulace - ukazka zapornych frekvenci clear all; [Y,FS,NBITS]=wavread('mechanika2.wav'); y2 = Y'; Y2 = fft(y2); delka = length(y2); delkas = length(y2) / FS; % delka signalu v sekundach % vytvoreni nosne (na frekvenci napr. ctvrtiny vzorkovacky originalu) t = linspace(0,delkas,delka); nosna = sin(fs/4*2*pi*t); NOS = fft(nosna); % amplitudova modulace - nasobeni signalu v casove oblasti hloubkamodulace = 1; am = nosna.* (1 + hloubkamodulace * y2); % tomu by mela odpovidat konvoluce ve frekvencni % a protoze jadro je puls, tak se to jen posune a zjevi % se zaporne frekvence AM = fft(am); % a ted uz to jen namalujeme subplot(3,1,1); plot(abs(y2(1:delka/2))); axis([0 delka/2 0 max(abs(y2))]); title('frekvence audio'); subplot(3,1,2); plot(abs(nos(1:delka/2))); axis([0 delka/2 0 max(abs(nos))]); title('frekvence nosna'); subplot(3,1,3); plot(abs(am(1:delka/2))); axis([0 delka/ ]); title('frekvence amplitudove modulace'); Totéž v Matlabu

10 Užitečné dvojice Každému signálu v časové oblasti odpovídá nějaký signál ve frekvenční oblasti a obráceně. Existují dvojice (časová/frekvenční) které jsou užitečnější než jiné. Například obdélníkovému pulsu odpovídá funkce sinc, gaussovce gaussovka, atd. Impuls / konstanta (viz slide komprese/expanze komprese na puls, expanze na konstantu)

11 Funkce sinc / Obdélníkový puls clear all t = linspace(-10,10); y = sinc(t); subplot(2,2,1) plot(t,y); axis tight xlabel('cas (sec)');ylabel('amplituda'); title('funkce sinc') Y = fft(y); subplot(2,2,2) Ym = abs(y(1:length(y)/2)); f = linspace(0,0.5,length(ym)); plot(f,ym); axis tight xlabel('frekvence (Hz)');ylabel('Amplituda'); title('spektrum funkce sinc') from = -100; to = 100; points = 1500; t = linspace(from,to,points); y = sinc(t); subplot(2,2,3) plot(t,y); axis tight xlabel('cas (sec)');ylabel('amplituda'); title('funkce sinc') Y = fft(y); subplot(2,2,4) Tvz = (to-from)/points; fvz = 1/Tvz; Ym = abs(y(1:length(y)/2)); f = linspace(0,0.5*fvz,length(ym)); plot(f,ym); axis tight xlabel('frekvence (Hz)');ylabel('Amplituda'); title('spektrum funkce sinc') sinc( a) = sin ( π a) π a

12 Obdélníkový puls / funkce sinc Cvičení: pořádně prozkoumejte funkci sinc, bude se nám hodit do budoucna (proč asi?) vyzkoušejte další dvojice (trojúhelník, gaussovka,, využijte matlabovské funkce tripuls apod. viz help)

13 Chirp signál Chrip signál je užitečná věcička v aplikacích jako je radar. Jeho frekvenční odezva vypadá následovně: 2 Magnituda je konstantní, fáze klesá podle vztahu Faze() i = αi + βi. Z toho jsme schopni vygenerovat příslušné ReX a ImX složky (potřebujeme PolarToRect funkci) a následně pomocí IDFT i impulsní odezvu: IDFT Když tedy do systému s takovou odezvou pustíme jednu delta funkci, dostaneme divoký signál který začíná na nízkých frekvencích, které se postupně zvyšují. K čemu je to dobré?

14 Chirp signál je reverzibilní, když pustíme chirp signál do antichirp systému, dostaneme zpátky jediný puls. Antichirp signál bude mít opět magnitudu konstantní a fázi obrácenou. Docílíme toho tak, že převrátíme zleva doprava impulsní odezvu. DFT Převrácená impulsní odezva ReX a ImX vypadají podobně, co ta fáze??? A k čemu to teda je????

15 Aplikace chirp signálu Radar: vezmu směrovou anténu a vypustím z ní krátký impuls rádiových vln. Ta letí a letí, až narazí na nepřátelské letadlo a vrátí se. Vlna letí rychle, čím je impuls delší, tím je horší rozlišení (1 mikrosekunda je cca 300 m), takže potřebuji co nejkratší impuls. Aby vlna doletěla (a detekovatelná část se odrazila), potřebuji do ní nacpat určité množství energie. Čím víc, tím líp. Co nejvíc energie co nejkratší puls shoří mi to Řešení: využiji chirp signál! Napřed mám impuls, než odletí z antény tak ho přehodím na chirp, dostanu zpátky chirp, ten převedu zpátky na impuls a můžu nepřítele sejmout raz dva. Cvičení: prozkoumejte chirp signál Vygenerujte podobné obrázky jako v přednáškových slidech

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku

Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Systémy Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Pro nás: krabička něco dělající se signály: xt, xn něco do ní leze vstup ( ) [ ] něco z ní leze ven výstup yt ( ), yn

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

Komplexní obálka pásmového signálu

Komplexní obálka pásmového signálu České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

Frekvenční analýza optických zobrazovacích systémů

Frekvenční analýza optických zobrazovacích systémů OPT/OZI L05 Frekvenční analýza optických zobrazovacích systémů obecný model vstupní pupila výstupní pupila v z u y z o x z i difrakčně limitovaný zobrazovací systém: rozbíhavá sférická vlna od bodového

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2) 1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

ednáška a telefonní modemy Ing. Bc. Ivan Pravda

ednáška a telefonní modemy Ing. Bc. Ivan Pravda 11.předn ednáška Telefonní přístroje, modulační metody a telefonní modemy Ing. Bc. Ivan Pravda Telefonní přístroj princip funkce - klasická analogová telefonní přípojka (POTS Plain Old Telephone Service)

Více

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici 7. ODE a SIMULINK Jednou z často používaných aplikací v Matlabu je modelování a simulace dynamických systémů. V zásadě můžeme postupovat buď klasicky inženýrsky (popíšeme systém diferenciálními rovnicemi

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

SYNTÉZA AUDIO SIGNÁLŮ

SYNTÉZA AUDIO SIGNÁLŮ SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické

Více

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Fourierovy Řady Jakub Jeřábek

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Fourierovy Řady Jakub Jeřábek UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Fourierovy Řady Jakub Jeřábek Bakalářská práce 2012 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární

Více

íta ové sít baseband narrowband broadband

íta ové sít baseband narrowband broadband Každý signál (diskrétní i analogový) vyžaduje pro přenos určitou šířku pásma: základní pásmo baseband pro přenos signálu s jednou frekvencí (není transponován do jiné frekvence) typicky LAN úzké pásmo

Více

DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY. Digitální signál bude rekonstruován přijímačem a přiváděn do audio zesilovače.

DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY. Digitální signál bude rekonstruován přijímačem a přiváděn do audio zesilovače. DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY 104-4R Pomocí stavebnice Optel sestavte optický systém, který umožní přenos zvuku. Systém bude vysílat audio informaci prostřednictvím optického kabelu jako sekvenci

Více

ADA Semestrální práce. Harmonické modelování signálů

ADA Semestrální práce. Harmonické modelování signálů České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte

Více

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným

Více

v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9

v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 České vysoké učení technické v Praze Algoritmy pro měření zpoždění mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 31. března 23 Obsah 1 Zadání 1 2 Uvedení do problematiky měření zpoždění signálů 1

Více

" Furierova transformace"

 Furierova transformace UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace

Více

Klasifikace hudebních stylů

Klasifikace hudebních stylů Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů

Více

ÚVOD DO PROBLEMATIKY PIV

ÚVOD DO PROBLEMATIKY PIV ÚVOD DO PROBLEMATIKY PIV Jiří Nožička, Jan Novotný ČVUT v Praze, Fakulta strojní, Ú 207.1, Technická 4, 166 07, Praha 6, ČR 1. Základní princip PIV Particle image velocity PIV je měřící technologie, která

Více

popsat princip činnosti čidel rychlosti a polohy samostatně změřit zadanou úlohu

popsat princip činnosti čidel rychlosti a polohy samostatně změřit zadanou úlohu 10. Čidla rychlosti a polohy Čas ke studiu: 15 inut Cíl Po prostudování tohoto odstavce budete uět popsat princip činnosti čidel rychlosti a polohy saostatně zěřit zadanou úlohu Výklad 10. 1. Čidla rychlosti

Více

Modulované signály. Protokol 1

Modulované signály. Protokol 1 Modulované signály Protokol 1 Jan Kotyza, Adam Uhlíř KOT99, UHL3 Zadání: 1. Vygenerovat modulované signály 3 typů modulací signálu, zapsat matematický zápis, analyzovat jejich základní parametry. Napsat

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude:

Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude: Vzorkování Vzorkování je převodem spojitého signálu na diskrétní. Lze si ho představit jako násobení sledu diracových impulzů (impulzů jednotkové plochy a nulové délky) časovým průběhem vzorkovaného signálu.

Více

Základní metody číslicového zpracování signálu část I.

Základní metody číslicového zpracování signálu část I. A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz) NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku

Více

P9 Provozní tvary kmitů

P9 Provozní tvary kmitů P9 Provozní tvary kmitů (měření a vyhodnocení) Pozn. Matematické základy pro tuto přednášku byly uvedeny v přednáškách Metody spektrální analýzy mechanických systémů Co jsou provozní tvary kmitů? Provozní

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Vybrané kapitoly z praktické NMR spektroskopie

Vybrané kapitoly z praktické NMR spektroskopie Vybrané kapitoly z praktické NMR spektroskopie DRX 500 Avance SPECTROSPIN 500 Způsob snímání dat, CW versus FT CW frekvence RF záření postupně se mění B eff 2 efektivní magnetické pole zůstává konstantní

Více

Parametrické přístupy k filtraci ultrazvukových signálů

Parametrické přístupy k filtraci ultrazvukových signálů České vysoké učení technické v Praze Fakulta elektrotechnická Katedra měření Parametrické přístupy k filtraci ultrazvukových signálů Bakalářská práce Luboš Kocourek 2010 Studijní program: Elektrotechnika

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 TOMÁŠ VAŇKÁT

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 TOMÁŠ VAŇKÁT UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 TOMÁŠ VAŇKÁT UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY ANALÝZA SIGNÁLU DIGITÁLNÍHO TELEVIZNÍHO VYSÍLÁNÍ

Více

Optická spektroskopie

Optická spektroskopie Univerzita Palackého v Olomouci Přírodovědecká fakulta Optická spektroskopie Antonín Černoch, Radek Machulka, Jan Soubusta Olomouc 2012 Oponenti: Mgr. Karel Lemr, Ph.D. RNDr. Dagmar Chvostová Publikace

Více

Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně

Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně Analýza vlastností a chování DSD modulátoru v časové a frekvenční doméně Dominik Peklo, Pavel Valoušek dominik@audiopraise.com, pavel@audiopraise.com 1 Úvod V internetových diskuzích na serveru www.f-sport.cz/hifi

Více

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND Analogové modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace Co je to modulace?

Více

Zvuková karta. Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti

Zvuková karta. Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti Zvuk a zvuková zařízení. Vývoj, typy, vlastnosti Zvuková karta Počítač řady PC je ve své standardní konfiguraci vybaven malým reproduktorem označovaným jako PC speaker. Tento reproduktor je součástí skříně

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Elektrické parametry spojů v číslicových zařízeních

Elektrické parametry spojů v číslicových zařízeních Elektrické parametry spojů v číslicových zařízeních Co je třeba znát z teoretických základů? jak vyjádřit schopnost přenášet data jak ji správně chápat jak a v čem ji měřit čím je schopnost přenášet data

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Dvourozměrná NMR spektroskopie metody

Dvourozměrná NMR spektroskopie metody Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence

Více

Základní komunikační řetězec

Základní komunikační řetězec STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Základní komunikační řetězec PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

SPM SPECTRUM NOVÁ UNIKÁTNÍ METODA PRO DIAGNOSTIKU LOŽISEK

SPM SPECTRUM NOVÁ UNIKÁTNÍ METODA PRO DIAGNOSTIKU LOŽISEK SPM SPECTRUM NOVÁ UNIKÁTNÍ METODA PRO DIAGNOSTIKU LOŽISEK V této části prezentujeme výsledky použití metody SPM Spectrum (Shock Pulse Method Metoda rázových pulsů) jako metody pro monitorování stavu valivých

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor 2007. Sylabus tématu

Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II. Vítězslav Stýskala, Jan Dudek únor 2007. Sylabus tématu Stýskala, 2006 L e k c e z e l e k t r o t e c h n i k y Určeno pro studenty kombinované formy FS, předmětu Elektrotechnika II Vítězslav Stýskala, Jan Dudek únor 2007 Sylabus tématu 1. Elektromagnetické

Více

Technická zpráva. Metoda rázových pulsů SPM a. čtyři fáze poškození valivých ložisek

Technická zpráva. Metoda rázových pulsů SPM a. čtyři fáze poškození valivých ložisek Technická zpráva Metoda rázových pulsů SPM a čtyři fáze poškození valivých ložisek Tim Sundström R&D, SPM Instrument AB 07. 08. 2013 2 (13) 3 (13) Obsah 1 Cíl dokumentu... 4 2 Úvod... 4 3 Čtyři fáze poškození

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE. 2010 Tomáš Holý

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE. 2010 Tomáš Holý ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE 2010 Tomáš Holý ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Katedra měření Zpracování signálů z detektorů

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Měřící přístroje a měření veličin

Měřící přístroje a měření veličin Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu

Více

evodníky Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Přednáška č. 14 Milan Adámek adamek@fai.utb.cz U5 A711 +420576035251

evodníky Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Přednáška č. 14 Milan Adámek adamek@fai.utb.cz U5 A711 +420576035251 Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření A/D a D/A převodnp evodníky Přednáška č. 14 Milan Adámek adamek@fai.utb.cz U5 A711 +420576035251 A/D a D/A převodníky 1 Důvody převodu signálů

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

Multimédia. Gregor Rozinaj, Renata Rybárová, Ivan Minárik, Juraj Kačur

Multimédia. Gregor Rozinaj, Renata Rybárová, Ivan Minárik, Juraj Kačur Multimédia Gregor Rozinaj, Renata Rybárová, Ivan Minárik, Juraj Kačur Autoři: Gregor Rozinaj, Renata Rybárová, Ivan Minárik, Juraj Kačur Název díla: Multimédia Přeložil: Jaroslav Svoboda Vydalo: České

Více

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod

INFORMACE NRL č. 12/2002 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí 50 Hz. I. Úvod INFORMACE NRL č. 12/2 Magnetická pole v okolí vodičů protékaných elektrickým proudem s frekvencí Hz I. Úvod V poslední době se stále častěji setkáváme s dotazy na vliv elektromagnetického pole v okolí

Více

GONIOMETRIE A TRIGONOMETRIE

GONIOMETRIE A TRIGONOMETRIE GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu

Více

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY ANALÝZA SIGNÁLU FM ROZHLASU BAKALÁŘSKÁ PRÁCE AUTOR: Radek Kolář VEDOUCÍ PRÁCE: Prof. Ing. Pavel Bezoušek, CSc. 2009 1 UNIVERSITY OF PARDUBICE

Více

Základy zpracování obrazu

Základy zpracování obrazu UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Základy zpracování obrazu Ing. Miroslav Fribert, Dr Pardubice 006 . Operace s maticemi, program Mathematica. Matice ve zpracování obrazu Matematickým

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

Téma 27. 1 Analogo Číslicové Převodníky AČP. 1.1 AČP s postupnou aproximací

Téma 27. 1 Analogo Číslicové Převodníky AČP. 1.1 AČP s postupnou aproximací Téma 7 Jan Bednář bednaj1@fel.cvut.cz digitalizace je postup vzorkování v čase, následného kvantování v úrovni a kódování vznik periodického frekvenčního spektra signálu, kde se uplatňuje kvantizační šum

Více

MĚŘENÍ VZDÁLENOSTI S POUŽITÍM RADARU RANGE MEASUREMENT USING RADAR

MĚŘENÍ VZDÁLENOSTI S POUŽITÍM RADARU RANGE MEASUREMENT USING RADAR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER GRAPHICS AND

Více

MATLAB HRAVĚ Zdeněk Jančík, FIT VUT Brno

MATLAB HRAVĚ Zdeněk Jančík, FIT VUT Brno MATLAB HRAVĚ Zdeněk Jančík, FIT VUT Brno MATLAB (MATrix LABoratory) software pro vědecké výpočty a zobrazování. 1 Několik praktických rad po startu Windows spusťte Matlab z adresáře Q:\MATLAB dvojitým

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY

ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ GENERÁTORY INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ZDROJE MĚŘÍCÍHO SIGNÁLU MĚŘÍCÍ

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola

Více

Digitální telefonní signály

Digitální telefonní signály EVROPSKÝ SOCIÁLNÍ FOND Digitální telefonní signály PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Digitální telefonní

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY

13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY 13. OSCILOSKOPY, DALŠÍ MĚŘICÍ PŘÍSTROJE A SENZORY analogový osciloskop (základní paramery, blokové schéma, spoušěná časová základna princip synchronizace, pasivní sonda k osciloskopu, dvoukanálový osciloskop

Více

Derivační spektrofotometrie a rozklad absorpčního spektra

Derivační spektrofotometrie a rozklad absorpčního spektra Derivační spektrofotometrie a rozklad absorpčního spektra Teorie: Derivační spektrofotometrie, využívající derivace absorpční křivky, je obecně používanou metodou pro zvýraznění detailů průběhu záznamu,

Více

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014

K přednášce NUFY028 Teoretická mechanika prozatímní učební text, verze 01 10. Spojitá prostředí: rovnice struny Leoš Dvořák, MFF UK Praha, 2014 K přednášce NUFY8 Teoretická mechanika prozatímní učební text, verze 1 1 Spojitá prostředí: rovnice strun Leoš Dvořák, MFF UK Praha, 14 Spojitá prostředí: rovnice strun Dosud jsme se zabývali pohbem soustav

Více

1 Elektronika pro zpracování optického signálu

1 Elektronika pro zpracování optického signálu 1 Elektronika pro zpracování optického signálu Výběr elektroniky a detektorů pro měření optického signálu je odvislé od toho, jaký signál budeme detekovat. V první řadě je potřeba vědět, jakých intenzit

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

ANALÝZA LIDSKÉHO HLASU

ANALÝZA LIDSKÉHO HLASU ANALÝZA LIDSKÉHO HLASU Pomůcky mikrofon MCA-BTA, LabQuest, program LoggerPro (nebo LoggerLite), tabulkový editor Excel, program Mathematica Postup Z každodenní zkušenosti víme, že každý lidský hlas je

Více

SBÍRKA ZÁKONŮ. Ročník 2008 ČESKÁ REPUBLIKA. Částka 51 Rozeslána dne 15. května 2008 Cena Kč 80, O B S A H :

SBÍRKA ZÁKONŮ. Ročník 2008 ČESKÁ REPUBLIKA. Částka 51 Rozeslána dne 15. května 2008 Cena Kč 80, O B S A H : Ročník 2008 SBÍRKA ZÁKONŮ ČESKÁ REPUBLIKA Částka 51 Rozeslána dne 15. května 2008 Cena Kč 80, O B S A H : 161. Nařízení vlády o technickém plánu přechodu zemského analogového televizního vysílání na zemské

Více

Digitální modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Digitální modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace analogových modulací modulační i

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

Základy zpracování obrazu

Základy zpracování obrazu Základy zpracování obrazu Tomáš Mikolov, FIT VUT Brno V tomto cvičení si ukážeme základní techniky používané pro digitální zpracování obrazu. Pro jednoduchost budeme pracovat s obrázky ve stupních šedi

Více

Akustika. Cesta zvuku od hudebního nástroje přes nahrávací a reprodukční řetězec k posluchači

Akustika. Cesta zvuku od hudebního nástroje přes nahrávací a reprodukční řetězec k posluchači Akustika Cesta zvuku od hudebního nástroje přes nahrávací a reprodukční řetězec k posluchači Vzdělávání v rámci projektu Rozvoj výzkumného potenciálu JAMU Princip zvukařiny x s c T R Q O L M Poslech nebo

Více

Laboratorní úloha 7 Fázový závěs

Laboratorní úloha 7 Fázový závěs Zadání: Laboratorní úloha 7 Fázový závěs 1) Změřte regulační charakteristiku fázového závěsu. Změřené průběhy okomentujte. Jaký vliv má na dynamiku filtr s různými časovými konstantami? Cíl měření : 2)

Více

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí.

27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Petr Martínek martip2@fel.cvut.cz, ICQ: 303-942-073 27. asové, kmitotové a kódové dlení (TDM, FDM, CDM). Funkce a poslání úzkopásmových a širokopásmových sítí. Multiplexování (sdružování) - jedná se o

Více

MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY

MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 5) Uložení a komprese zvuku Petr Lobaz, 17. 3. 2009 ULOŽENÍ ZVUKU ANALOGOVÉ mechanický záznam gramofon magnetický záznam magnetofon optický záznam zvuková stopa filmu

Více

Informatika 8. třída/6

Informatika 8. třída/6 Rekurze Jedním z důležitých principů pro návrh procedur je tzv. rekurze. Nejlépe uvidíme tento princip na příkladech dvou velmi jednoduchých procedur (hvězdička označuje násobení). Rekurze vlastně označuje

Více