Vlastnosti Fourierovy transformace

Rozměr: px
Začít zobrazení ze stránky:

Download "Vlastnosti Fourierovy transformace"

Transkript

1 Vlastnosti Fourierovy transformace Linearita Fourierova transformace je lineární (všechny druhy :-) ), je tedy homogenní a aditivní Homogenita: změna amplitudy v časové oblasti způsobí stejnou změnu amplitudy ve frekvenční oblasti

2 Aditivita: něco přidám v časové oblasti a přidá se to i ve frekvenční (nezávisle)

3 Komprese / expanze Když signál natáhnu v časové oblasti, smrskne se mi ve frekvenční a obráceně Příklad: gaussovka (jejím obrazem je opět gaussovka)

4 Posunutí v časové oblasti Při posunutí v časové oblasti zůstává magnituda stejná a mění se pouze fáze

5 Jaká informace je ukryta ve fázi? Vezmu jednoduchý signál, provedu DFT, převedu do polárních souřadnic, postupně nahradím magnitudu a fázi náhodnými čísly a následně zrekonstruuji zpět do časové oblasti (IDFT) Ve fázi je dobře vidět poloha hran. Proč? Hrana v časové oblasti vznikne, když na stejném místě roste současně hodně sinusovek musí mít stejnou fázi zobecnění: hodně informace o tvaru signálu v časové oblasti je schováno ve fázi. Naopak na fázi moc nezáleží u signálů, kde na tvaru moc nezáleží a informace je schovaná ve frekvencích, např. audio signál. % vygeneruji jednoduchy signal clear all x(1:50) = 0; x(51:100) = linspace(0.9,1.2,50); x(101:299) = 0; % provedu DFT a prevod do polarnich souradnic [ReX ImX] = DFT(x); [XMag, XPha] = RectToPolar(ReX,ImX); % nahodna faze z intervalu pi / pi XPha0 = (rand(1,length(xmag))-0.5)*2*pi; % rekonstrukce jen z magnitudy [X2r X2i] = PolarToRect(XMag,XPha0); x2 = IDFT(X2r, X2i); % rekonstrukce jen z faze XMag0 = rand(1,length(xmag)); [X3r X3i] = PolarToRect(XMag0,XPha); x3 = IDFT(X3r, X3i); % a ted spolecne namalujeme subplot(3,1,1); plot(x); title('originalni signal'); subplot(3,1,2); plot(x2) title('rekonstrukce z magnitudy'); subplot(3,1,3); plot(x3) title('rekonstrukce z faze');

6 Periodicita signálu v časové oblasti DFT považuje časový signál za periodický. Když něco uděláme se spektrem, před převedením zpět do časové oblasti, může být výsledný časový signál delší, nevejde se do daného počtu vzorků. Příklad cirkulární konvoluce (přednáška o aplikacích konvoluce pomocí DFT)

7 Periodicita signálu ve frekvenční oblasti Záporné frekvence od -0,5 do 0 vzorkovací frekvence Zrcadlový obraz: magnituda sudá, fáze lichá Záporná frekvence, co je to za podivnost?

8 Amplitudová modulace Modulace spojení (merging) dvou signálů Amplitudová modulace násobení Obálka nosné = původní signál Násobení v časové oblasti = konvoluce ve frekvenční Nosná je puls výsledek konvoluce je posun Výsledek ve frekvenční oblasti Nosná zůstane Spektrum originálu se tam objeví Objeví se ještě něco dalšího! Co to je? Negativní frekvence! Více o modulacích v PDF GenerováníSignálu

9 % amplitudova modulace - ukazka zapornych frekvenci clear all; [Y,FS,NBITS]=wavread('mechanika2.wav'); y2 = Y'; Y2 = fft(y2); delka = length(y2); delkas = length(y2) / FS; % delka signalu v sekundach % vytvoreni nosne (na frekvenci napr. ctvrtiny vzorkovacky originalu) t = linspace(0,delkas,delka); nosna = sin(fs/4*2*pi*t); NOS = fft(nosna); % amplitudova modulace - nasobeni signalu v casove oblasti hloubkamodulace = 1; am = nosna.* (1 + hloubkamodulace * y2); % tomu by mela odpovidat konvoluce ve frekvencni % a protoze jadro je puls, tak se to jen posune a zjevi % se zaporne frekvence AM = fft(am); % a ted uz to jen namalujeme subplot(3,1,1); plot(abs(y2(1:delka/2))); axis([0 delka/2 0 max(abs(y2))]); title('frekvence audio'); subplot(3,1,2); plot(abs(nos(1:delka/2))); axis([0 delka/2 0 max(abs(nos))]); title('frekvence nosna'); subplot(3,1,3); plot(abs(am(1:delka/2))); axis([0 delka/ ]); title('frekvence amplitudove modulace'); Totéž v Matlabu

10 Užitečné dvojice Každému signálu v časové oblasti odpovídá nějaký signál ve frekvenční oblasti a obráceně. Existují dvojice (časová/frekvenční) které jsou užitečnější než jiné. Například obdélníkovému pulsu odpovídá funkce sinc, gaussovce gaussovka, atd. Impuls / konstanta (viz slide komprese/expanze komprese na puls, expanze na konstantu)

11 Funkce sinc / Obdélníkový puls clear all t = linspace(-10,10); y = sinc(t); subplot(2,2,1) plot(t,y); axis tight xlabel('cas (sec)');ylabel('amplituda'); title('funkce sinc') Y = fft(y); subplot(2,2,2) Ym = abs(y(1:length(y)/2)); f = linspace(0,0.5,length(ym)); plot(f,ym); axis tight xlabel('frekvence (Hz)');ylabel('Amplituda'); title('spektrum funkce sinc') from = -100; to = 100; points = 1500; t = linspace(from,to,points); y = sinc(t); subplot(2,2,3) plot(t,y); axis tight xlabel('cas (sec)');ylabel('amplituda'); title('funkce sinc') Y = fft(y); subplot(2,2,4) Tvz = (to-from)/points; fvz = 1/Tvz; Ym = abs(y(1:length(y)/2)); f = linspace(0,0.5*fvz,length(ym)); plot(f,ym); axis tight xlabel('frekvence (Hz)');ylabel('Amplituda'); title('spektrum funkce sinc') sinc( a) = sin ( π a) π a

12 Obdélníkový puls / funkce sinc Cvičení: pořádně prozkoumejte funkci sinc, bude se nám hodit do budoucna (proč asi?) vyzkoušejte další dvojice (trojúhelník, gaussovka,, využijte matlabovské funkce tripuls apod. viz help)

13 Chirp signál Chrip signál je užitečná věcička v aplikacích jako je radar. Jeho frekvenční odezva vypadá následovně: 2 Magnituda je konstantní, fáze klesá podle vztahu Faze() i = αi + βi. Z toho jsme schopni vygenerovat příslušné ReX a ImX složky (potřebujeme PolarToRect funkci) a následně pomocí IDFT i impulsní odezvu: IDFT Když tedy do systému s takovou odezvou pustíme jednu delta funkci, dostaneme divoký signál který začíná na nízkých frekvencích, které se postupně zvyšují. K čemu je to dobré?

14 Chirp signál je reverzibilní, když pustíme chirp signál do antichirp systému, dostaneme zpátky jediný puls. Antichirp signál bude mít opět magnitudu konstantní a fázi obrácenou. Docílíme toho tak, že převrátíme zleva doprava impulsní odezvu. DFT Převrácená impulsní odezva ReX a ImX vypadají podobně, co ta fáze??? A k čemu to teda je????

15 Aplikace chirp signálu Radar: vezmu směrovou anténu a vypustím z ní krátký impuls rádiových vln. Ta letí a letí, až narazí na nepřátelské letadlo a vrátí se. Vlna letí rychle, čím je impuls delší, tím je horší rozlišení (1 mikrosekunda je cca 300 m), takže potřebuji co nejkratší impuls. Aby vlna doletěla (a detekovatelná část se odrazila), potřebuji do ní nacpat určité množství energie. Čím víc, tím líp. Co nejvíc energie co nejkratší puls shoří mi to Řešení: využiji chirp signál! Napřed mám impuls, než odletí z antény tak ho přehodím na chirp, dostanu zpátky chirp, ten převedu zpátky na impuls a můžu nepřítele sejmout raz dva. Cvičení: prozkoumejte chirp signál Vygenerujte podobné obrázky jako v přednáškových slidech

[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0

[ n. Konvoluce. = 0 jinak. 0 jinak. Užitečné signály (diskrétní verze) Jednotkový skok 1 pro n = 0 Užitečné signály (diskrétní verze) Konvoluce σ Jednotkový skok [ n] Jednotkový impuls (delta funkce) Posunutý jednotkový impuls 1 pro n 0 1 pro n = 0 δ = δ [ n] [ n k] = 0 jinak 0 jinak Proč jsou užitečné?

Více

Fourierova transformace

Fourierova transformace Fourierova transformace Jean Baptiste Joseph Fourier (768-83) Jeho obdivovatel (nedatováno) Opáčko harmonických signálů Spojitý harmonický signál ( ) = cos( ω + ϕ ) x t C t C amplituda ω úhlová frekvence

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Rekurentní filtry. Matlab

Rekurentní filtry. Matlab Rekurentní filtry IIR filtry filtry se zpětnou vazbou a nekonečnou impulsní odezvou Výstupní signál je závislý na vstupu a minulém výstupu. Existují různé konvence zápisu, pozor na to! Někde je záporná

Více

Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku

Systémy. Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Systémy Systém: souhrn souvisejících prvků, sdružený do nějakého smysluplného celku Pro nás: krabička něco dělající se signály: xt, xn něco do ní leze vstup ( ) [ ] něco z ní leze ven výstup yt ( ), yn

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

FILTRACE VE FOURIEROVSKÉM SPEKTRU

FILTRACE VE FOURIEROVSKÉM SPEKTRU 1/18 FILTRACE VE FOURIEROVSKÉM SPEKTRU (patří do lineárních integrálních transformací) Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1

doc. Dr. Ing. Elias TOMEH   Elias Tomeh / Snímek 1 doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

Základní metody číslicového zpracování signálu a obrazu část II.

Základní metody číslicového zpracování signálu a obrazu část II. A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,

Více

A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014

A2B31SMS 11. PŘEDNÁŠKA 4. prosince 2014 A2B31SMS 11. PŘEDNÁŠKA 4. prosince 214 Číslicové audio efekty Hřebenové filtry Fázovací filtry Dozvuky Konvoluční reverb Schroederův algoritmus modelování dozvuku Číslicové audio efekty Filtrace - DP,

Více

Číslicové zpracování signálů a Fourierova analýza.

Číslicové zpracování signálů a Fourierova analýza. Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza

Více

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ

VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ VYUŽITÍ MATLABU PRO PODPORU VÝUKY A PŘI ŘEŠENÍ VÝZKUMNÝCH ÚKOLŮ NA KATEDŘE KOMUNIKAČNÍCH A INFORMAČNÍCH SYSTÉMŮ Markéta Mazálková Katedra komunikačních a informačních systémů Fakulta vojenských technologií,

Více

Komplexní obálka pásmového signálu

Komplexní obálka pásmového signálu České vysoké učení technické v Praze, Fakulta elektrotechnická X37SGS Signály a systémy Komplexní obálka pásmového signálu Daniel Tureček 8.11.8 1 Úkol měření Nalezněte vzorky komplexní obálky pásmového

Více

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2

polyfázové filtry (multirate filters) cascaded integrator comb filter (CIC) A0M38SPP - Signálové procesory v praxi - přednáška 8 2 A0M38SPP - Signálové procesory v praxi - přednáška 8 2 Decimace snížení vzorkovací frekvence Interpolace zvýšení vzorkovací frekvence Obecné převzorkování signálu faktorem I/D Efektivní způsoby implementace

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

Magnetická rezonance (2)

Magnetická rezonance (2) NMR spektroskopie Principy zobrazování Fourierovské MRI Magnetická rezonance (2) J. Kybic, J. Hornak 1, M. Bock, J. Hozman 2008 2013 1 http://www.cis.rit.edu/htbooks/mri/ NMR spektroskopie Principy zobrazování

Více

Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů

Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů Zpráva k semestrální práci z B2M31SYN Syntéza audio signálů Část 1 - Syntéza orchestrálních nástrojů pro symfonickou báseň B.Smetany "Vltava" Cílem této části práce je syntetizovat symfonickou báseň B.Smetany

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

BPC2E_C09 Model komunikačního systému v Matlabu

BPC2E_C09 Model komunikačního systému v Matlabu BPCE_C9 Model komunikačního systému v Matlabu Cílem cvičení je vyzkoušet si sestavit skripty v Matlabu pro model jednoduchého komunikačního systému pro přenos obrázků. Úloha A. Sestavte model komunikačního

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Frekvenční analýza optických zobrazovacích systémů

Frekvenční analýza optických zobrazovacích systémů OPT/OZI L05 Frekvenční analýza optických zobrazovacích systémů obecný model vstupní pupila výstupní pupila v z u y z o x z i difrakčně limitovaný zobrazovací systém: rozbíhavá sférická vlna od bodového

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály Systémy: definice, několik příkladů Vlastnosti systémů

Více

Modulace a šum signálu

Modulace a šum signálu Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

ednáška a telefonní modemy Ing. Bc. Ivan Pravda

ednáška a telefonní modemy Ing. Bc. Ivan Pravda 11.předn ednáška Telefonní přístroje, modulační metody a telefonní modemy Ing. Bc. Ivan Pravda Telefonní přístroj princip funkce - klasická analogová telefonní přípojka (POTS Plain Old Telephone Service)

Více

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici 7. ODE a SIMULINK Jednou z často používaných aplikací v Matlabu je modelování a simulace dynamických systémů. V zásadě můžeme postupovat buď klasicky inženýrsky (popíšeme systém diferenciálními rovnicemi

Více

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2) 1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního

Více

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Fourierovy Řady Jakub Jeřábek

UNIVERZITA PARDUBICE. Fakulta elektrotechniky a informatiky. Fourierovy Řady Jakub Jeřábek UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky Fourierovy Řady Jakub Jeřábek Bakalářská práce 2012 Prohlášení autora Prohlašuji, že jsem tuto práci vypracoval samostatně. Veškeré literární

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

SYNTÉZA AUDIO SIGNÁLŮ

SYNTÉZA AUDIO SIGNÁLŮ SYNTÉZA AUDIO SIGNÁLŮ R. Čmejla Fakulta elektrotechnická, ČVUT v Praze Abstrakt Příspěvek pojednává o technikách číslicové audio syntézy vyučovaných v předmětu Syntéza multimediálních signálů na Elektrotechnické

Více

Úkol 1 Zpráva k semestrální práci k předmětu B2M31SYN Syntéza audio signálů Lukáš Krauz krauzluk@fel.cvut.cz Hlavním cílem této úlohy bylo vytvořit za pomoci MIDI souboru, obsahující noty a stopy k jednotlivým

Více

DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY. Digitální signál bude rekonstruován přijímačem a přiváděn do audio zesilovače.

DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY. Digitální signál bude rekonstruován přijímačem a přiváděn do audio zesilovače. DIGITÁLNÍ KOMUNIKACE S OPTICKÝMI VLÁKNY 104-4R Pomocí stavebnice Optel sestavte optický systém, který umožní přenos zvuku. Systém bude vysílat audio informaci prostřednictvím optického kabelu jako sekvenci

Více

" Furierova transformace"

 Furierova transformace UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM FAKULTA ŽIVOTNÍHO PROSTŘEDÍ " Furierova transformace" Seminární práce z předmětu Dálkový průzkum Země Marcela Bartošová, Veronika Bláhová OŽP, 3.ročník

Více

Klasifikace hudebních stylů

Klasifikace hudebních stylů Klasifikace hudebních stylů Martin Šimonovský (mys7@seznam.cz) Rozpoznávání hudby úloha z oblasti DSP klasifikace dle hudebních stylů

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9

v Praze mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 České vysoké učení technické v Praze Algoritmy pro měření zpoždění mezi kanály EEG Ondřej Drbal 5. ročník, stud. sk. 9 31. března 23 Obsah 1 Zadání 1 2 Uvedení do problematiky měření zpoždění signálů 1

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Fyzikální podstata zvuku

Fyzikální podstata zvuku Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění

Více

Výpis m-souboru: Výsledný průběh:

Výpis m-souboru: Výsledný průběh: Příklad č. 1 Generujte a nakreslete náhodný šumový signál s normálním rozdělením o délce 100 vzorků a vzorkovací frekvencí 8kHz, rozsah amplitudy od 1 do 1 (funkce randn). N=100; % Počet vzorků Tv=1/fv;

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

ZÁKLADNÍ EXPERIMENTÁLNÍ

ZÁKLADNÍ EXPERIMENTÁLNÍ Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ

Více

íta ové sít baseband narrowband broadband

íta ové sít baseband narrowband broadband Každý signál (diskrétní i analogový) vyžaduje pro přenos určitou šířku pásma: základní pásmo baseband pro přenos signálu s jednou frekvencí (není transponován do jiné frekvence) typicky LAN úzké pásmo

Více

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace

Filtrace snímků ve frekvenční oblasti. Rychlá fourierova transformace Filtrace snímků ve frekvenční oblasti Rychlá fourierova transformace semestrální práce z předmětu KIV/ZVI zpracoval: Jan Bařtipán A03043 bartipan@students.zcu.cz Obsah Úvod....3 Diskrétní Fourierova transformace

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB

Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB Syntéza zvuků a hudebních nástrojů v programovém prostředí MATLAB Úvod Cílem této semestrální práce je syntéza orchestrálních nástrojů pro symfonickou báseň Vltava Bedřicha Smetany a libovolná vlastní

Více

popsat princip činnosti čidel rychlosti a polohy samostatně změřit zadanou úlohu

popsat princip činnosti čidel rychlosti a polohy samostatně změřit zadanou úlohu 10. Čidla rychlosti a polohy Čas ke studiu: 15 inut Cíl Po prostudování tohoto odstavce budete uět popsat princip činnosti čidel rychlosti a polohy saostatně zěřit zadanou úlohu Výklad 10. 1. Čidla rychlosti

Více

Restaurace (obnovení) obrazu při známé degradaci

Restaurace (obnovení) obrazu při známé degradaci Restaurace (obnovení) obrazu při známé degradaci Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky

Více

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

DSY-4. Analogové a číslicové modulace. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 Analogové a číslicové modulace Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti DSY-4 analogové modulace základní číslicové modulace vícestavové modulace modulace s rozprostřeným

Více

ÚVOD DO PROBLEMATIKY PIV

ÚVOD DO PROBLEMATIKY PIV ÚVOD DO PROBLEMATIKY PIV Jiří Nožička, Jan Novotný ČVUT v Praze, Fakulta strojní, Ú 207.1, Technická 4, 166 07, Praha 6, ČR 1. Základní princip PIV Particle image velocity PIV je měřící technologie, která

Více

Modulované signály. Protokol 1

Modulované signály. Protokol 1 Modulované signály Protokol 1 Jan Kotyza, Adam Uhlíř KOT99, UHL3 Zadání: 1. Vygenerovat modulované signály 3 typů modulací signálu, zapsat matematický zápis, analyzovat jejich základní parametry. Napsat

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,

Více

oblasti je znázorněn na obr Komplexní obálku můžeme rozepsat na její reálnou a

oblasti je znázorněn na obr Komplexní obálku můžeme rozepsat na její reálnou a Fakulta elektrotechniky a komunikačních technologií VUT v Brně 5 2 Komplexníobálka Zadání 1. Mějme dán pásmový signál s(t) =[1 0.5cos (2π5t)] cos (2π100t) (a) Zobrazte tento signál a odhad jeho modulového

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude:

Vzorkování. Je-li posloupnost diracových impulzů s periodou T S : Pak časová posloupnost diskrétních vzorků bude: Vzorkování Vzorkování je převodem spojitého signálu na diskrétní. Lze si ho představit jako násobení sledu diracových impulzů (impulzů jednotkové plochy a nulové délky) časovým průběhem vzorkovaného signálu.

Více

Stochastické signály (opáčko)

Stochastické signály (opáčko) Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

ADA Semestrální práce. Harmonické modelování signálů

ADA Semestrální práce. Harmonické modelování signálů České vysoké učení technické v Praze ADA Semestrální práce Harmonické modelování signálů Jiří Kořínek 31.12.2005 1. Zadání Proveďte rozklad signálu do harmonických komponent (řeč, hudba). Syntetizujte

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu

Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu Syntéza audio signálů Aditivní syntéza symfonického orchestru a akordeonu Bedřich Smetana - Vltava 3 oktávy durové stupnice Johann C. F. Fischer - Preludium a fuga G dur Bedřich Smetana - Jiřinková polka

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku

Laboratorní měření 1. Seznam použitých přístrojů. Popis měřicího přípravku Laboratorní měření 1 Seznam použitých přístrojů 1. Generátor funkcí 2. Analogový osciloskop 3. Měřící přípravek na RL ČVUT FEL, katedra Teorie obvodů Popis měřicího přípravku Přípravek umožňuje jednoduchá

Více

Základní metody číslicového zpracování signálu část I.

Základní metody číslicového zpracování signálu část I. A4M38AVS Aplikace vestavěných systémů Základní metody číslicového zpracování signálu část I. Radek Sedláček, katedra měření, ČVUT v Praze FEL, 2015 Obsah přednášky Úvod, motivace do problematiky číslicového

Více

Direct Digital Synthesis (DDS)

Direct Digital Synthesis (DDS) ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Direct Digital Synthesis (DDS) Přímá číslicová syntéza Tyto materiály vznikly za podpory

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván

Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnáván Periodicita v časové řadě, její popis a identifikace, exponenciální vyrovnávání Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Periodicita v časových

Více

Synth challange 2016

Synth challange 2016 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Synth challange 2016 Komentář k práci Jan Dvořák OBSAH ÚVOD... 2 1 Syntéza orchestrálních nástrojů pro symfonickou báseň B. Smetany "Vltava"...

Více

Semestrální práce z předmětu Syntéza audio signálů

Semestrální práce z předmětu Syntéza audio signálů Semestrální práce z předmětu Syntéza audio signálů Téma: Syntéza orchestrálních nástojů ve skladbě Vltava od Bedřicha Smetany a syntéza zvuku mouchy Dominik Šmíd zimní semestr 2016/17 Obsah: 1. Úvod 2.

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722

Základy a aplikace digitálních. Katedra radioelektroniky (13137), blok B2, místnost 722 Základy a aplikace digitálních modulací Josef Dobeš Katedra radioelektroniky (13137), blok B2, místnost 722 dobes@fel.cvut.cz 6. října 2014 České vysoké učení technické v Praze, Fakulta elektrotechnická

Více

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV BIOMEDICÍNSKÉHO INŽENÝRSTVÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz) NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

PB169 Operační systémy a sítě

PB169 Operační systémy a sítě PB169 Operační systémy a sítě Přenos dat v počítačových sítích Marek Kumpošt, Zdeněk Říha Způsob propojení sítí opak. Drátové sítě TP (twisted pair) kroucená dvoulinka 100Mbit, 1Gbit Koaxiální kabel vyšší

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI

ROZ1 - Cv. 3 - Šum a jeho odstranění ÚTIA - ZOI Šum Co je to šum v obrázku? Šum Co je to šum v obrázku? V obrázku je přidaná falešná informace nahodilého původu Jak vzniká v digitální fotografii? Šum Co je to šum v obrázku? V obrázku je přidaná falešná

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Rezonance v obvodu RLC

Rezonance v obvodu RLC Rezonance v obvodu RLC Úkoly: 1. Prozkoumejte, jak rezonanční frekvence závisí na kapacitě kondenzátoru. 2. Prozkoumejte, jak rezonanční frekvence závisí na parametrech cívky. 3. Zjistěte, jak se při rezonanci

Více

SEP2 Sensor processor. Technická dokumentace

SEP2 Sensor processor. Technická dokumentace SEP2 Sensor processor Technická dokumentace EGMedical, s.r.o. Křenová 19, 602 00 Brno CZ www.strasil.net 2010 Obsah 1. Úvod...3 2. Zapojení zařízení...4 2.1. Připojení napájecího napětí...4 2.2. Připojení

Více

Generování signálu v Matlabu

Generování signálu v Matlabu Základy zpracování signálu Jiří Krejsa, Generování signálu v Matlabu Jak získám signál? - měření Jak vyrobit signál v Matlabu? Řada funkcí, základní jsou v klasickém Matlabu, další v SPT (Signal Processing

Více