IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON
|
|
- David Bláha
- před 6 lety
- Počet zobrazení:
Transkript
1 IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o.
2 TEPELNÝ STROJ Tepelný stroj je stroj, který pracuje na základě prvního termodynamického zákona, podle něhož je možné vzájemně přeměnit teplo na vnitřní energii anebo práci. Tepelný stroj musí zároveň respektovat druhý termodynamický zákon, podle kterého není možné vykonávat přeměnu energií úplně.
3 PRVNÍ TERMODYNAMICKÝ ZÁKON - První termodynamický zákon představuje ve fyzice formulaci zákona zachování energie. Podle tohoto zákona je celková energie izolované soustavy stálá (časově neměnná). Energie tedy v izolované soustavě nemůže samovolně vznikat ani zanikat. Druh energie se však může měnit, např. mechanická energie může přecházet na teplo apod. - První hlavní termodynamickou větu je tedy možno vyjádřit následujícím tvrzením: - Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. - Existují však i jiné formulace, např. Nelze sestrojit stroj, který by trvale dodával mechanickou energii, aniž by spotřeboval odpovídající množství energie jiného druhu.
4 PRVNÍ TERMODYNAMICKÝ ZÁKON Obrázek č. 1 První termodynamický zákon Tepelný stroj
5 DRUHÝ TERMODYNAMICKÝ ZÁKON - Druhý termodynamický zákon je důležitý termodynamický zákon určující přirozený směr, kterým přírodní procesy probíhají. - První termodynamický zákon je zákonem kvantitativním, který říká, že všechny druhy energie jsou kvantitativně ekvivalentní (rovnocenné) a vzájemně je lze transformovat. - Druhý termodynamický zákon je kvalitativní, uvádí jak probíhají tepelné děje v případě, že je tepelnou energii možno přeměňovat s určitým omezením. Je empirický a pravděpodobnostní. - Veličina, která charakterizuje směr vývoje systému se nazývá entropie.
6 DRUHÝ TERMODYNAMICKÝ ZÁKON FORMULACE ZÁKONA - Clausiusova formulace Teplo nemůže při styku dvou těles různých teplot samovolně přecházet z tělesa chladnějšího na těleso teplejší. Teplo tedy nepřechází samovolně z prostředí o nižší teplotě do prostředí s vyšší teplotou. Tento přechod se v praxi nepotvrdil, ale není vyloučený. - W. Thomsonova a Planckova formulace Nelze sestrojit periodicky pracující tepelný stroj, který by trvale konal práci pouze tím, že by ochlazoval jedno těleso, a k žádné další změně v okolí by nedocházelo. Z praxe víme, že všechny druhy energií lze přeměnit na teplo. Obrácený přechod beze zbytku je z hlediska pravděpodobnosti nerealizovatelný a v praxi jej nepozorujeme.
7 DRUHÝ TERMODYNAMICKÝ ZÁKON FORMULACE ZÁKONA - W. Thomsonova a Ostwaldova formulace Nelze sestrojit perpetum mobile druhého druhu.není možné sestrojit periodicky pracující stroj, který by jen přijímal teplo od určitého tělesa (ohřívače) a vykonával stejně velkou práci. Každý takový stroj pracuje tak, že přijímá od ohřívače teplo Q 1 a chladiči odevzdá teplo Q 2 (Q 2 < Q 1 ), přičemž vykoná práci W=Q 1 -Q 2. - Carnotova formulace Žádný tepelný stroj pracující mezi dvěma teplotami nemůže mít vyšší účinnost než Carnotův stroj pracující mezi stejnými teplotami. - Carathéodoryho formulace V každém okolí každého stavu teplotně homogenního systému existují stavy, k nimž se není možno libovolně přiblížit adiabatickou změnou stavových parametrů. Existují tedy adiabaticky nedosažitelné stavy.
8 ROZDĚLENÍ TEPELNÝCH STROJŮ Tepelné stroje se dělí na: - tepelné motory, ve kterých se přeměňuje teplo dodávané ze zásobníku s vyšší teplotou na práci při vzniku zůstatkového tepla, které je potřeba dovést do zásobníku s nižší teplotou. Pracovní cyklus takového stroje v p-v diagramu probíhá ve směru hodinových ručiček. - chladicí stroje nebo tepelná čerpadla, ve kterých se spotřebovává přivedená mechanická práce na přenos tepla ze zásobníku s nižší teplotou do zásobníku s vyšší teplotou. Pracovní cyklus takového stroje v p-v diagramu probíhá proti směru hodinových ručiček.
9 TEPELNÝ STROJ V CARNOTOVĚ CYKLU Tepelný stroj pracující v Carnotově cyklu je takzvaný ideální stroj, není možné ho sestrojit tak, aby jeho reálná účinnost byla taková, jaká je teoretická účinnost. Carnotův cyklus slouží jako důkaz toho, že ani ideální tepelný stroj nemůže dosáhnout 100% účinnosti, ale vždy jen nižší. Nevyhnutelnou podmínkou toho, aby byl probíhající cyklus Carnotovým cyklem, je, že všechny probíhající děje jsou vratné. Obrázek č. 2 Znázornění Carnotova cyklu v p- V diagramu. Plocha ohraničená křivkami je rovna práci, kterou stroj vykonal při jednom cyklu.
10 POUŽITÉ ZDROJE [1] ISO (1), Přispěvatelé Wikipedie, Tepelný stroj [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize , 12:37 UTC, [citováno ] < [2] ISO (1), Přispěvatelé Wikipedie, První termodynamický zákon [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize , 18:10 UTC, [citováno ] < D_z%C3%A1kon&oldid= > [3] ISO (1), Přispěvatelé Wikipedie, Druhý termodynamický zákon [online], Wikipedie: Otevřená encyklopedie, c2013, Datum poslední revize , 14:20 UTC, [citováno ] < D_z%C3%A1kon&oldid= >
11 POUŽITÉ OBRÁZKY [1] Commons.wikimedia.org [online]. [cit ]. ]. Dostupný pod licencí GNU Free Documentation License, www: [2] Commons.wikimedia.org [online]. [cit ]. Dubaj poskytuje komukoli právo užívat jej za libovolným účelem, a to bezpodmínečně s výjimkou podmínek vyžadovaných příslušnou právní úpravou dané země. www:
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 5. TEPLOTNÍ STUPNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLOTNÍ STUPNICE Teplotních stupnic existuje více: - Kelvinova stupnice - Fahrenheitova stupnice
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. IDEÁLNÍ PLYN - Ideální plyn je plyn, který má na rozdíl od skutečného plynu tyto ideální vlastnosti:
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 8. KALORIMETRICKÁ ROVNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. KALORIMETR, BLACKŮV KALORIMETR Kalorimetr je zařízení umožňující pokusně provádět tepelnou
STRUKTURA PEVNÝCH LÁTEK A KAPALIN
STRUKTURA PEVNÝCH LÁTEK A KAPALIN 19. ZMĚNY SKUPENSTVÍ, FÁZOVÝ DIAGRAM Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. SKUPENSTVÍ - Skupenství neboli stav je konkrétní forma látky, charakterizovaná
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.
STRUKTURA PEVNÝCH LÁTEK A KAPALIN
STRUKTURA PEVNÝCH LÁTEK A KAPALIN 10. VLHKOST VZDUCHU Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. VLHKOST VZDUCHU - Vlhkost je základní vlastnost vzduchu. - Vlhkost vzduchu udává, jaké množství
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
1.4. II. věta termodynamiky
... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,
soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy
Soustava soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Okolí Hraniční plocha Soustava Soustava Rozdělení podle vztahu
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Termomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK
ermomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
STRUKTURA PEVNÝCH LÁTEK A KAPALIN
STRUKTURA PEVNÝCH LÁTEK A KAPALIN 18. POVRCHOVÁ VRSTVA KAPALIN, KAPILÁRNÍ ELEVACE, DEPRESE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. POVRCHOVÉ NAPĚTÍ - Povrchové napětí je efekt, při kterém
TEPLO A TEPELNÉ STROJE
TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
FYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
Elektroenergetika 1. Termodynamika
Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
12. Tepelné stroj 12.1 Přeměna tepelné energie na práci Izotermické rozpínání plynu Adiabatické rozpínání plynu kruhovým dějem
1. Tepelné stroj 1.1 Přeměna tepelné energie na práci Mají-li plyny vysoký tlak a teplotu převládá v celkové vnitřní energii energie kinetická. Je-li plyn uzavřený ve válci s pohyblivým pístem, pak při
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_15 Název materiálu: 1. termodynamický zákon. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k výuce 1. termodynamického zákona. Vztah vykonané
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 16. JADERNÝ REAKTOR Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÝ REAKTOR Jaderný reaktor je zařízení, ve kterém probíhá řetězová jaderná reakce, kterou lze
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY vynález parního stroje a snaha o zvýšení jeho účinnosti vedly k podrobnému studiu tepelných dějů, při nichž plyn nebo pára konají práci velký význam pro
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika
Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy
Teplo, práce a 1. věta termodynamiky
eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane
Termomechanika. Doc. Dr. RNDr. Miroslav HOLEČEK
ermomechanika. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
SVOBODA, E., BAKULE, R.
Termodynamika 1. Termodynamika 2. Termodynamická soustava 3. Termodynamický stav 4. Veličiny: látkové množství, molární veličina, vnitřní energie, práce v termodynamice 5. Termodynamické principy: nultý
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie
10. Práce plynu, tepelné motory
0. Práce plynu, tepelné motory Práce plynu: Plyn uzavřený v nádobě s pohyblivým pístem působí na píst tlakovou silou F a při zvětšování objemu koná práci W. Při zavedení práce vykonané plynem W = -W, lze
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 17. OCHRANA PŘED JADERNÝM ZÁŘENÍM Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. OCHRANA PŘED JADERNÝM ZÁŘENÍM VLIV RADIACE NA LIDSKÝ ORGANISMUS. 1. Buňka poškození
Termomechanika 5. přednáška
Termomechanika 5. přednáška Miroslav Holeček, Jan Vychytil Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.
TERMODYNAMIKA Kalorimetrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Kalorimetrie TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ze zkušenosti víme, že při styku dvou různě teplých těles se jejich teploty vyrovnávají.
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
Druhy energie a jejich vlastnosti
Druhy energie a jejich vlastnosti 1 Číslo projektu Název školy CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Tematický okruh Téma BIOLOGIE A
TEPELNÉ MOTORY (první část)
TEPELNÉ MOTORY (první část) A) Výklad: Tepelné motory: Tepelné motory jsou hnací stroje, které přeměňují část vnitřní energie paliva uvolněné hořením na energii pohybovou (tj. mechanickou). Obecný princip
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
4. Práce, výkon, energie a vrhy
4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce
Vnitřní energie, práce, teplo.
Vnitřní energie, práce, teplo. Vnitřní energie tělesa Částice uvnitř látek mají kinetickou a potenciální energii. Je to energie uvnitř tělesa, proto ji nazýváme vnitřní energie. Značíme ji písmenkem U
Termodynamické zákony
ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
ZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie( 1
VZOROVÝ ZKOUŠKOVÝ TEST z fyzikální chemie(www.vscht.cz/fch/zktesty/) 1 Zkouškový test z FCH I, 10. srpna 2015 Vyplňuje student: Příjmení a jméno: Kroužek: Upozornění: U úloh označených ikonou uveďte výpočet
dq = 0 T dq ds = definice entropie T Entropie Při pohledu na Clausiův integrál pro vratné cykly :
Entropie Při pohledu na Clausiův integrál pro vratné cykly : si dříve či později jistě uvědomíme, že nulová hodnota integrálu nějaké veličiny při kruhovém termodynamickém procesu je základním znakem toho,
Perpetuum mobile a zákony termodynamiky
Perpetuum mobile a zákony termodynamiky RNDr. O. Bílek Sestrojit perpetuum mobile, hypotetický stroj, který by pro svůj chod nepotřeboval žádný vnější zdroj energie anebo by ji čerpal pouze z tepla a s
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
13 otázek za 1 bod = 13 bodů Jméno a příjmení:
13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit
II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky III
II. MOLEKULOVÁ FYZIKA. Základy termodynamiky III Obsah Cyklický děj. epelné stroje. Základní formulace. zákona D. Carnotův cyklus. Ottův cyklus. Stirlingův motor. Účinnost D strojů. Účinnost vratného a
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
Identifikátor materiálu: ICT 2 51
Identifikátor materiálu: ICT 2 51 Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního materiálu Druh
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
Fyzikální chemie Úvod do studia, základní pojmy
Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty
Práce tepelného stroje
Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 12 : Práce tepelného stroje Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 23.11.2012 Klasifikace: Část I Práce tepelného stroje 1 Zadání
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s
1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření
MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Cvičení z termomechaniky Cvičení 7.
Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika
Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
Otázky Termomechanika (2014)
Otázky Termomechanika (2014) 1. Základní pojmy a veličiny termomechaniky a. Makroskopický a mikroskopický popis systému, makroskopické veličiny b. Tlak: definice makroskopická a mikroskopické objasnění
Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)
Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ
N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
TEPELNÉ MOTORY STIRLINGŮV MOTOR, HISTORIE A VÝVOJOVÉ TRENDY
Středoškolská technika 2011 Setkání a prezentace prací středoškolských studentů na ČVUT TEPELNÉ MOTORY STIRLINGŮV MOTOR, HISTORIE A VÝVOJOVÉ TRENDY Ondřej Burian STŘEDNÍ PRŮMYSLOVÁ ŠKOLA HRADEC KRÁLOVÉ,