IDEÁLNÍ PLYN. Stavová rovnice
|
|
- Antonie Pokorná
- před 6 lety
- Počet zobrazení:
Transkript
1 IDEÁLNÍ PLYN Stavová rovnice
2 Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale pružné jsou to vzájemné srážky molekul a nárazy molekul na stěny nádoby
3 důsledky: ideální plyn je dokonale stlačitelný může se stlačit až na nulový objem potenciální energie plynu je nulová vnitřní energie se rovná pouze kinetické energii plynu kinetická energie plynu je přímo úměrná termodynamické teplotě
4 pro jednoatomovou molekulu: 3 E K 2 kt k Boltzmannova konstanta k, J / K
5 Stavové veličiny plyn v rovnovážném stavu charakterizujeme stavovými veličinami: termodynamická teplota T tlak p objem počet částic N (nebo hmotnost m, látkové množství n)
6 stavová rovnice vztah mezi stavovými veličinami popis stavu plynu tvar stavové rovnice p,, T, N p NkT p,, T, n p nr m T p,,t, m, M m p m M m R m T
7 p,, T (m=konst.) nebo p T konst. p,, T (. stav) p 2, 2, T 2 (2. stav) p T p 2 T 2 2
8 R m molární plynová konstanta R 8,3 J / K. mol m k Boltzmannova konstanta k, J / K R m N A k 6, , ,3 J / K mol
9 Avogadrův zákon plyny o stejném tlaku, objemu a teplotě mají stejný počet molekul 2 plyny p, p,, T,, T, N N 2 N N 2
10 Daltonův zákon Když ideální plyn tvoří směs různých plynů (které spolu chemicky nereagují), celkový tlak směsi je součet parciálních (jednotlivých) tlaků p p i
11 Tepelné děje v plynech vyjdeme ze stavové rovnice pro konstantní počet částic jedna stavová veličina (, p, T) je konstantní, druhé dvě se mění
12 Tepelné děje v plynech izochorický děj izobarický děj izotermický děj =konstantní mění se p,t p=konstantní mění se,t T=konstantní mění se,p
13 Izochorický děj Objem plynu je konstantní p p konst. T konst T = konst. Charlesův zákon tlak plynu je přímo úměrný termodynamické teplotě
14 p diagram
15 pt diagram
16 I. věta termodynamiky práce plynu W=0 J (práce se koná, jenom když se mění objem) přijaté teplo v Q c v mt (c v je měrná tepelná kapacita při konstantním objemu)
17 Přijme-li plyn teplo při izochorickém ději, zvětší se jeho vnitřní energie Q U
18 Izobarický děj Tlak plynu je konstantní p= konst. konst. T T konst Gay - Lussacův zákon objem plynu je přímo úměrný termodynamické teplotě
19 p diagram
20 T diagram
21 Práce při izobarickém ději Práce se vypočítá jako W F. s p. práce vykonaná plynem se také rovná obsahu plochy pod křivkou v p diagramu
22
23 přijaté teplo Q p c p mt c p je měrná tepelná kapacita při konstantním tlaku
24 I. věta termodynamiky Q p U p Přijme-li plyn teplo při izobarickém ději, zvětší se jeho vnitřní energie a plyn vykoná práci pro daný plyn Q p Q v (přijaté teplo je větší o vykonanou práci) c c p v
25 Izotermický děj Teplota plynu je konstantní T=konst. p. konst. Boylův Mariottův zákon součin tlaku plynu a jeho objemu je konstantní
26 p diagram
27 I. věta termodynamiky vnitřní energie je konstantní (protože je konstantní i teplota) U 0J Q T W Přijme-li plyn teplo při izotermickém ději, vykoná stejně velkou práci
28 práce při izotermickém ději při všech dějích můžeme velikost práce počítat jako obsah plochy pod křivkou v p diagramu
29 Protože izoterma je jedna větev hyperboly, musíme velikost práce počítat W 2 nr W d m i T 2 ln ln 2 nr T p d i m nr m T 2 d 2 ln W nr m T ln 2
30 Adiabatický děj děj, při kterém neprobíhá tepelná výměna (plyn je tepelně izolovaný od okolí nebo probíhá dost rychle) Q=0J
31 I. věta termodynamiky U W vykoná-li plyn práci, zmenší se jeho vnitřní energie při stlačování plynu- adiabatická komprese teplota plynu roste, vnitřní energie také při rozpínání plynu- adiabatická expanze teplota plynu klesá, vnitřní energie také
32 Poissonův zákon p konst - Poissonova konstanta - závisí na typu plynu c p protože c c p c
33 jiný zápis Poissonova zákona (odvozeno ze stavové rovnice) T konst T p konst
34 p diagram
35 práce vypočítá se zase jako obsah plochy v p diagramu plyn přejde ze stavu stavu p, T, p, T, do mezi stavovými veličinami platí vztah 2 p p p p 2 p
36 p p d p pd W 2 2 p p W
37 Kruhový děj Práce, kterou koná plyn uzavřený ve válci s pohyblivým pístem při zvětšování objemu, má omezenou hodnotu. Tepelný stroj může pracovat jen tehdy, když se plyn po ukončení expanze vrátí do původního stavu.
38 Kruhový (cyklický) děj je děj, při kterém je konečný stav soustavy stejný jako počáteční. p diagramu ho znázorňuje uzavřená křivka.
39 Obsah plochy uvnitř křivky v pracovním diagramu znázorňuje práci vykonanou pracovní látkou během jednoho cyklu.
40 Protože počáteční a konečný stav pracovní látky je stejný, celková změna vnitřní energie po ukončení jednoho cyklu je nulová. Při expanzi plyn přijímá teplo Q od ohřívače. Při kompresi odevzdává teplo Q 2 chladiči.
41 Celkové teplo, které pracovní látka přijme, je Q Q Q 2 Podle I. věty termodynamiky je vykonaná práce rovna tomuto teplu.
42 Účinnost kruhového děje Q Q Q 2 Q Q 2
43 Francouzský inženýr Carnot dokázal, že kruhový děj bude mít maximální účinnost, když bude složen ze dvou izotermických a dvou adiabatických dějů c T 2 T Práce, vykonaná během jednoho Carnotova cyklu W nr ln 2 T m T 2
44 II. věta termodynamiky Není možné sestrojit periodicky pracující tepelný stroj, který by jen přijímal teplo od ohřívače a vykonával stejně velkou práci.
45
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
6. Stavy hmoty - Plyny
skupenství plynné plyn x pára (pod kritickou teplotou) stavové chování Ideální plyn Reálné plyny Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti skupenství plynné reálný plyn ve stavu
STRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
III. STRUKTURA A VLASTNOSTI PLYNŮ
III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo
Ing. Stanislav Jakoubek
Ing. Stanislav Jakoubek Číslo DUMu III/2-2-3-14 III/2-2-3-15 III/2-2-3-16 III/2-2-3-17 III/2-2-3-18 III/2-2-3-19 III/2-2-3-20 Název DUMu Ideální plyn Rychlost molekul plynu Základní rovnice pro tlak ideálního
MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA
Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 06_3_ Struktura a vlastnosti plynu Ing. Jakub Ulmann Obsažené učivo je teoretickým základem principu všech
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
Plyn. 11 plynných prvků. Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K 11 plynných prvků Vzácné plyny He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 H 2 20 He 4.4 Ne 27 Ar 87 Kr 120 Xe 165 Rn 211 N 2 77 O 2 90 F 2 85 Cl 2 238 1 Plyn
Teplo, práce a 1. věta termodynamiky
eplo, práce a. věta termodynamiky eplo ( tepelná energie) Nyní již víme, že látka (plyn) s vyšší teplotou obsahuje částice (molekuly), které se pohybují s vyššími rychlostmi a můžeme posoudit, co se stane
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
FYZIKA I cvičení, FMT 2. POHYB LÁTKY
FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného
Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2
Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Příklady k zápočtu molekulová fyzika a termodynamika
Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Termodynamické zákony
ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
13 otázek za 1 bod = 13 bodů Jméno a příjmení:
13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
Cvičení z termomechaniky Cvičení 3.
Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů
Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9
Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................
Termodynamika pro +EE1 a PEE
ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE
IDEÁLNÍ PLYN 11. IDEÁLNÍ A REÁLNÝ PLYN, STAVOVÁ ROVNICE Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. IDEÁLNÍ PLYN - Ideální plyn je plyn, který má na rozdíl od skutečného plynu tyto ideální vlastnosti:
Poznámky k cvičením z termomechaniky Cvičení 4. Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou
Adiabatická změna: Při adiabatickém ději nedochází k výměně tepla s okolím, tedy platí: dq = 0; dq = 0 () Postulát, že nedochází k výměně tepla má dopad na první větu termodynamickou Pro její první tvar:
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY
IV. KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM, TEPELNÉ MOTORY vynález parního stroje a snaha o zvýšení jeho účinnosti vedly k podrobnému studiu tepelných dějů, při nichž plyn nebo pára konají práci velký význam pro
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Elektroenergetika 1. Termodynamika
Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
1.4. II. věta termodynamiky
... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
Poznámky k semináři z termomechaniky Grafy vody a vodní páry
Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,
SVOBODA, E., BAKULE, R.
Termodynamika 1. Termodynamika 2. Termodynamická soustava 3. Termodynamický stav 4. Veličiny: látkové množství, molární veličina, vnitřní energie, práce v termodynamice 5. Termodynamické principy: nultý
Jméno: _ podpis: ročník: č. studenta. Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď)
Jméno: _ podpis: ročník: č. studenta Otázky typu A (0.25 bodů za otázku, správně je pouze jedna odpověď) 1. JEDNOTKA PASCAL JE DEFINOVÁNÁ JAKO a. N.m.s b. kg.m-1.s-2 c. kg.m-2 d. kg.m.s 2. KALORIMETRICKÁ
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Thermos teplo Dynamic změna
Termodynamika Plán přednášky: Předmět studia Základní pojmy Termodynamické zákony předmět studia Co je to termodynamika? Soubor matematických modelů a představ, které nám umožňují popsat jakým způsobem
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
Skupenské stavy látek
Skupenské stavy Skupenské stavy látek Všechny látky jsou tvořeny atomy, molekulami nebo ionty, které jsou v neustálém pohybu a které na sebe působí soudržnými silami, závislými na vnějších podmínkách.
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].
Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Přehled otázek z fyziky pro 2.ročník
Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :
Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku
dq = 0 T dq ds = definice entropie T Entropie Při pohledu na Clausiův integrál pro vratné cykly :
Entropie Při pohledu na Clausiův integrál pro vratné cykly : si dříve či později jistě uvědomíme, že nulová hodnota integrálu nějaké veličiny při kruhovém termodynamickém procesu je základním znakem toho,
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
12. Tepelné stroj 12.1 Přeměna tepelné energie na práci Izotermické rozpínání plynu Adiabatické rozpínání plynu kruhovým dějem
1. Tepelné stroj 1.1 Přeměna tepelné energie na práci Mají-li plyny vysoký tlak a teplotu převládá v celkové vnitřní energii energie kinetická. Je-li plyn uzavřený ve válci s pohyblivým pístem, pak při
Kruhový děj s plynem
.. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
TEPLO A TEPELNÉ STROJE
TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
Práce, výkon, energie
Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
Látkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM
Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)