Elektroenergetika 1. Termodynamika a termodynamické oběhy
|
|
- Rudolf Sedlák
- před 8 lety
- Počet zobrazení:
Transkript
1 Termodynamika a termodynamické oběhy
2 Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický systém Termodynamické zákony Teplo, práce, entalpie, entropie, termodynamické děje,. Termodynamika a termodynamické oběhy 2
3 Termodynamický systém Část látkového prostoru, který můžeme oddělit od okolí hranicí W Izolovaný nevyměňuje se svým okolím hmotu a energii Q p, V, T Uzavřený nevyměňuje se svým okolím hmotu, vyměňuje energii m Otevřený vyměňuje energii i hmotu Termodynamická rovnováha stav termodyn. systému v němž jsou všechny části v mechanické, tepelné a chemické rovnováze Termodynamika a termodynamické oběhy 3
4 Termodynamický děj Stavové veličiny popisují termodynamický systém v rovnovážném stavu (p, V, U, T, ) Při přechodu soustavy z jednoho rovnovážného stavu do druhého nastává termodynamický děj Hodnoty stavových veličin nezávisí na způsobu (cestě) jakým změna proběhla Hodnoty nestavových veličin (Q, W) závisí na způsobu (cestě) jakým změna proběhla Rozeznáváme děje Vratné a nevratné vratný děj může probíhat v obou směrech, kdy při obráceném ději soustava projde všemi stavy jako při ději přímém Kruhové počáteční a konečný stav systému jsou stejné Termodynamika a termodynamické oběhy 4
5 Termodynamické zákony První zákon termodynamiky Změna vnitřní energie izolovaného systému je součtem tepla, které bylo do systému dodáno a práce, která byla na systému vykonána du = δq δw Objemová práce W je změna objemu systému za konstantního tlaku δw = pdv Práce W je kladná pokud systém koná práci energie opouští systém, pokud je práce konána na systému má záporné znaménko energie je přidána do systému Termodynamika a termodynamické oběhy 5
6 Termodynamické zákony Druhý zákon termodynamiky (pravděpodobnost, empirie) Definice entropie ds = δq T Pro vratné a rovnovážné stavy izolované soustavy ds=0, pro samovolné procesy ds>0 Entropie se nikdy samovolně nezmenšuje Změna entropie při konstantní hodnotě tepla je větší při nižší teplotě Třetí termodynamický zákon Nulové termodynamické teploty nelze žádným způsobem dosáhnout Termodynamika a termodynamické oběhy 6
7 Entalpie Definice H = U + pv dh = du + pdv + Vdp Izobarický děj dp=0 dh = δq pdv + pdv + Vdp dh = δq Adiabatický děj δq = 0 dh = Vdp = δw Termodynamika a termodynamické oběhy 7
8 Carnotův oběh Tepelný oběh s nejvyšší tepelnou účinností v daném rozsahu teplot T 1 a T 2, která nezávisí na pracovní látce Sestává ze čtyř stavových změn 1-2 Adiabatická komprese mezi teplotami T 1 a T Izotermická expanze při teplotě T Adiabatická expanze při poklesu teploty z T 2 na T Izotermická komprese při teplotě T 1 Termodynamika a termodynamické oběhy 8
9 Účinnost Carnotova cyklu Účinnost η = celková mechanická práce systému celková energie spotřebovaná systémem = W Q p Mechanická práce systému W = Q p Q o pak η= Q p Q o Q p =1 Q 0 Q P = 1 T 1 s 1 s 2 T 2 s 1 s 2 = 1 T 1 T 2 Termodynamika a termodynamické oběhy 9
10 Fázový diagram vody Trojný bod vody Teplota 0,01 C a tlak 611 Pa Kritický bod vody Kritická teplota 647,3 C a tlak 22,12 MPa Termodynamika a termodynamické oběhy 10
11 T-s diagram voda-pára Termodynamika a termodynamické oběhy 11
12 Mollierův diagram vody (h-s diagram vody a páry) Termodynamika a termodynamické oběhy 12
13 Clausius-Rankinův oběh Izobarický ohřev a odpar vody 3-4 Izobarické přehřívání páry 4-5 Adiabatická expanze páry v turbíně 5-1 Izobarická kondenzace páry v kondenzátoru Termodynamika a termodynamické oběhy 13
14 Účinnost Clausius-Rankinova oběhu Vyjádření přijatého tepla Q p = h 4 h 1 Mechanická práce turbíny W = h 4 h 5 Tepelná účinnost η = W Q p = h 4 h 5 h 4 h 1 Termodynamika a termodynamické oběhy 14
15 Zvýšení účinnosti Clausius-Rankinova oběhu Zvýšení teploty a tlaku páry Velké nároky na materiálové, konstrukční a bezpečnostní požadavky Elektrárny s nadkritickými parametry Snížení teploty a tlaku kondenzace Limitováno teplotou okolního prostředí Běžné kondenzační teploty 30 C a tlaku 4 kpa Opakování části oběhu s nejvyšší účinností Přihřívání páry ( i vícenásobné) Termodynamika a termodynamické oběhy 15
16 Zvýšení účinnosti Clausius-Rankinova oběhu přihříváním páry Termodynamika a termodynamické oběhy 16
17 Regenerační ohřev napajecí vody Přihřívání napajecí vody při dopravě mezi kondenzátorem a kotlem regeneračními ohříváky (tepelné výměníky) Topnou látkou je odebraná pára z turbíny Snížení množství tepla odvedeného bez užitku v kondenzátoru tzn. zvýšení účinnosti Termodynamika a termodynamické oběhy 17
18 Systém regeneračního ohřevu Termodynamika a termodynamické oběhy 18
19 Ztráty na turbíně Ztráty třením, ztráty vnitřními netěstnostmi, ztráty změnou směru proudu, rázem páry na vstupu do lopatkové mříže,... Termodynamika a termodynamické oběhy 19
20 Ztráty v čerpadle Termodynamika a termodynamické oběhy 20
21 Energetická bilance turbíny m in h a P el m o1 h o1 m o2 h o2mo3h o3 (m in -m o1 -m o2 -m o3 )h e m in h a (m o1 h o1 +m o2 h o2 +m o3 h o3 ) m in m o1 m o2 m o3 h e P el Q z = 0 Q z - zahrnuje ztráty v generátoru a turbíně Pozn.: m značíme hmotnostní tok v kg/s Termodynamika a termodynamické oběhy 21
22 Energetická bilance regeneračního ohřevu m p c w t 12 VTO1 m o1 h o1 NTO1 m o2 h o2 m k1 c w t k1 m p c w t 11 m o3 h o3 NTO2 m p c w t 22 m p c w t 21 m p c w t 32 m p c w t 31 m k1 c w t k1 (m k1 +m k2 )c w t k2 (m k1 +m k2 )c w t k2 (m k1 +m k2 +m k3 )c w t k3 Termodynamika a termodynamické oběhy 22
23 Energetická bilance regeneračního VTO1 NTO1 NTO2 ohřevu m o1 h o1 + m p c w t 11 m p c w t 12 m k1 c w t k1 =0 m o2 h o2 + m k1 c w t k1 + m p c w t 21 m p c w t 22 (m k1 +m k2 )c w t k2 = 0 m o3 h o3 + (m k1 + m k2 )c w t k2 +m p c w t 31 m p c w t 32 m k1 + m k2 + m k3 c w t k3 = 0 Termodynamika a termodynamické oběhy 23
24 Energetická bilance kondenzátoru m k h e m k h e + m w c w t w1 m w c w t w2 m k c w t k = 0 m w c w t w1 Tepelný výkon kondenzátoru: Q k = m w c w (t w2 t w1 ) = m k (h e c w t k ) m w c w t w2 m k c w t k Termodynamika a termodynamické oběhy 24
25 Energetická bilance kotle m p h nv m p h a + m pv q n Qz = 0 Účinnost kotle η k = m(h a h nv ) m pv q n = Q 1 m pv q n Měrná spotřeba tepla m p h a m pv q n q s = 3600Q 1 P Měrná spotřeba páry m p = 3600 m P [kj/kwh] [kg/kwh] m p h nv kde P je elektrický výkon a m hmotnostní tok páry Q z Termodynamika a termodynamické oběhy 25
26 Odběr páry z turbíny Protitlaká turbína Teplárenský součinitel α = Q T Q max Q T [GJ/h] max. množství tepla dodaného parou prošlou turbínou Q max [GJ/h] max. množství tepla dodané odběrateli Termodynamika a termodynamické oběhy 26
27 Odběr páry z turbíny Turbína s regulovaným odběrem páry Umožňuje nezávislou dodávku elektrické a tepelné energie Termodynamika a termodynamické oběhy 27
28 Braytonův oběh Termodynamika a termodynamické oběhy 28
29 Paroplynový oběh Termodynamika a termodynamické oběhy 29
Elektroenergetika 1. Termodynamika
Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny
Parní turbíny Rovnotlaký stupe
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.
Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak
Parní turbíny Rovnotlaký stupeň
Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost
přednáška č. 6 Elektrárny B1M15ENY Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D.
Elektrárny B1M15ENY přednáška č. 6 Tepelné oběhy: Stavové změny Typy oběhů Možnosti zvýšení účinnosti Ing. Jan Špetlík, Ph.D. ČVUT FEL Katedra elektroenergetiky E-mail: spetlij@fel.cvut.cz Termodynamika:
Příklad 1: Bilance turbíny. Řešení:
Příklad 1: Bilance turbíny Spočítejte, kolik kg páry za sekundu je potřeba pro dosažení výkonu 100 MW po dobu 1 sek. Vstupní teplota a tlak do turbíny jsou 560 C a 16 MPa, výstupní teplota mokré páry za
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Termodynamika pro +EE1 a PEE
ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]
Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:
Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5
Energetika Osnova předmětu 1) Úvod
Osnova předmětu 1) Úvod 2) Energetika 3) Technologie přeměny 4) Tepelná elektrárna a její hlavní výrobní zařízení 5) Jaderná elektrárna 6) Ostatní tepelné elektrárny 7) Kombinovaná výroba elektřiny a tepla
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
Termomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK
ermomechanika 3. přednáška Doc. Dr. RNDr. Miroslav HOLEČEK Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Zvyšování vstupních parametrů
CARNOTIZACE Zvyšování vstupních parametrů TTT + vyšší tepelná účinnost ZVYŠOVÁNÍ ÚČINNOSTI R-C CYKLU - roste vlhkost páry na konci expanze (snížení η td, příp. eroze lopatek) - vyšší tlaky = větší nároky
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy
Soustava soustava - část prostoru s látkovou náplní oddělená od okolí skutečnými nebo myšlenými stěnami okolí prostor vně uvažované soustavy Okolí Hraniční plocha Soustava Soustava Rozdělení podle vztahu
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
TEPLO A TEPELNÉ STROJE
TEPLO A TEPELNÉ STROJE STROJE A ZAŘÍZENÍ ČÁSTI A MECHANISMY STROJŮ ENERGIE,, PRÁCE A TEPLO Energie - z řeckého energia: aktivita, činnost. Ve strojírenské praxi se projevuje jako dominantní energie mechanická.
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
Termomechanika 5. přednáška
Termomechanika 5. přednáška Miroslav Holeček, Jan Vychytil Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
1.4. II. věta termodynamiky
... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,
Cvičení z termomechaniky Cvičení 7.
Příklad 1 Vypočítejte účinnost a výkon Humpreyoho spalovacího cyklu bez regenerace, když látkou porovnávacího oběhu je vzduch. Cyklus nakreslete v p-v a T-s diagramu. Dáno: T 1 = 300 [K]; τ = T 1 = 4;
Zásobování teplem. Cvičení Ing. Martin NEUŽIL, Ph. D Ústav Energetiky ČVUT FS Technická Praha 6
Zásobování teplem Cvičení 2 2015 Ing. Martin NEUŽIL, Ph. D Ústav Energetiky ČVUT FS Technická 4 166 07 Praha 6 Měření tlaku (1 bar = 100 kpa = 1000 mbar) x Bar Přetlak Absolutní tlak 1 Bar Atmosférický
Malé zdroje elektrické energie Úvod, Energie, Transformace energie
1 Úvod Očekávané vyčerpání ropy a zemního plynu již v průběhu 21. století, růst světové populace i nároků jednotlivců na celém světě na energii, prohlubující se závislost soudobé civilizace na spolehlivé
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
Termomechanika 5. přednáška Michal Hoznedl
Termomechanika 5. přednáška Michal Hoznedl Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím citovaných zdrojů
Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze
ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Výroba elektrické energie
Elektrárny 2016 1 Výroba elektrické energie Výroba = přeměna energie primárních zdrojů na energii elektrickou Slunce voda, vítr, fotovoltaika, chemická en. (uhlí, plyn), jádro Země - geotermální interakce
Otázky Termomechanika (2014)
Otázky Termomechanika (2014) 1. Základní pojmy a veličiny termomechaniky a. Makroskopický a mikroskopický popis systému, makroskopické veličiny b. Tlak: definice makroskopická a mikroskopické objasnění
Cvičení z termomechaniky Cvičení 3.
Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní
Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =
Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv
Magnetokalorický jev MCE
Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek
Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá
Termodynamika. Martin Keppert. Katedra materiálového inženýrství a chemie
Termodynamika Martin Keppert Katedra materiálového inženýrství a chemie keppert@fsv.cvut.cz http://tpm.fsv.cvut.cz/ Co to je termodynamika Nauka o energii, jejích formách a přenosu Energie schopnost systému
Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost
Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie
Elektrárny A2B13PEL 2015 PEL 1
Elektrárny A2B13PEL 2015 PEL 1 Dělení a provoz výroben elektrické energie Dle typu technologie klasické tepelné (parní) elektrárny na fosilní paliva biomasu paro-plynové elektrárny (elny s PPC) jaderné
Kombinovaná výroba elektřiny a tepla
Kombinovaná výroba elektřiny a tepla Kurz Kombinovaná výroba elektřiny a tepla Doc. Ing. Jiří Míka, CSc. Katedra energetiky (361) Energetické jednotky pro využití netradičních zdrojů energie Program 6.9.2017
6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)
TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC
h nadmořská výška [m]
Katedra prostředí staveb a TZB KLIMATIZACE, VĚTRÁNÍ Cvičení pro navazující magisterské studium studijního oboru Prostředí staveb Cvičení č. 1 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly za
=, V = T * konst. =, p = T * konst. Termodynamika ideálních plynů
Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustav : Hmotnost procházející kontrolní plochou je nulová 2. Definice otevřené termodynamické soustav: Hmotnost procházející kontrolní
Parní turbíny a kondenzátory
Parní turbíny a kondenzátory. přednáška Autor: Jiří Kučera Datum: 3..8 OBSAH Informace o předmětu Parní turbína v tepelném cyklu I. - tepelná a termodynamická účinnost, spotřeby tepla a páry - změny hlavních
IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON
IDEÁLNÍ PLYN 14. TEPELNÉ STROJE, PRVNÍ A DRUHÝ TERMODYNAMICKÝ ZÁKON Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPELNÝ STROJ Tepelný stroj je stroj, který pracuje na základě prvního termodynamického
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu,
Příklad 1: V tlakové nádobě o objemu 0,23 m 3 jsou 2 kg vodní páry o tlaku 1,6 MPa. Určete, jestli je pára sytá, mokrá nebo přehřátá, teplotu, případně suchost a měrnou entalpii páry. Příklad 2: Entalpická
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.
ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Funkce, rozdělení, parametry, začlenění parního kotle do schémat
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc.
Doc. Ing. Michal KOLOVRATNÍK, CSc. Doc. Ing. Tomáš DLOUHÝ, CSc. ČVUT v PRAZE, Fakulta strojní Ústav mechaniky tekutin a energetiky Odbor tepelných a jaderných energetických zařízení pro energetiku 1 optimalizace
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Centralizované zásobování teplem (CZT) výroba, rozvod a
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM
ZÁKLADNÍ POJMY V OBLASTI ZÁSOBOVÁNÍ TEPLEM ZÁKLADNÍ POJMY Zásobování teplem energetické odvětví, jehož účelem je výroba, dodávka a rozvod tepla. Soustava zásobování tepelnou energií (SZTE) soubor zařízení
Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan
Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor RNDr. Miroslav Štefan Tematická oblast Chemie obecná termodynamika Ročník 1. ročník Datum tvorby 22.4.2014 Anotace
POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) ( 19 ) ČESKOSLOVENSKA SOCIALISTICKÁ. (51) Int Cl* (22) přihlášeno 29 12 85 (21) PV 10087-85 P 28 D 1/04
ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A ( 19 ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 256987 (Bl) (22) přihlášeno 29 12 85 (21) PV 10087-85 (51) Int Cl* P 28 D 1/04 ÚftAD PRO VYNÁLEZY A OBJEVY (40)
Thermos teplo Dynamic změna
Termodynamika Plán přednášky: Předmět studia Základní pojmy Termodynamické zákony předmět studia Co je to termodynamika? Soubor matematických modelů a představ, které nám umožňují popsat jakým způsobem
1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ. Základní stavové veličiny látky. Vztahy mezi stavovými veličinami ideálních plynů
1/1 PŘEHLED TEORIE A VÝPOČTOVÝCH VZTAHŮ Základní stavové veličiny látky Vztahy mezi stavovými veličinami ideálních plynů Stavová rovnice ideálního plynu f(p, v, T)=0 Měrné tepelné kapacity, c = f (p,t)
Termodynamické zákony
ermoynamické zákony. termoynamický zákon (zákon zachování energie) (W je práce vykonaná na systém) teplo Q oané systému plus vynaložená práce W zvyšují vnitřní energii systému U (W je práce vykonaná systémem)
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU
CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní
Kapitoly z fyzikální chemie KFC/KFCH. II. Termodynamika
Kapitoly z fyzikální chemie KFC/KFCH II. Termodynamika Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Termodynamika therme - teplo a dunamis - síla popis jak systémy
1/62 Zdroje tepla pro CZT
1/62 Zdroje tepla pro CZT kombinovaná výroba elektřiny a tepla výtopny, elektrárny a teplárny teplárenské ukazatele úspory energie teplárenským provozem Zdroje tepla 2/62 výtopna pouze produkce tepla kotle
CHEMICKÁ ENERGETIKA. Celá termodynamika je logicky odvozena ze tří základních principů, které mají axiomatický charakter.
CHEMICKÁ ENERGETIKA Energetickou stránkou soustav a změnami v těchto soustavách se zabývá fyzikální disciplína termodynamika. Z široké oblasti obecné termodynamiky se chemická termodynamika zajímá o chemické
Fyzikální chemie Úvod do studia, základní pojmy
Fyzikální chemie Úvod do studia, základní pojmy HMOTA A JEJÍ VLASTNOSTI POSTAVENÍ FYZIKÁLNÍ CHEMIE V PŘÍRODNÍCH VĚDÁCH HISTORIE FYZIKÁLNÍ CHEMIE ZÁKLADNÍ POJMY DEFINICE FORMY HMOTY Formy a nositelé hmoty
FYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky
Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky
Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA ELEKTROENERGETIKY A EKOLOGIE DIPLOMOVÁ PRÁCE Analýza a optimalizace procesního řízení Aleš Hromádka 2014/2015 Analýza a optimalizace procesního
12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par
1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné
Pokročilé technologie spalování tuhých paliv
Pokročilé technologie spalování tuhých paliv Může zvyšovaní obsahu CO 2 v ovzduší změnit životní podmínky na Zemi? Možnosti zvyšování účinnosti parních kotlů 1 Vliv účinnosti uhelného bloku na produkci
8. Chemické reakce Energetika - Termochemie
- Termochemie TERMOCHEMIE oddíl termodynamiky Tepelné zabarvení chemických reakcí Samovolnost chemických reakcí Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti - Termochemie TERMOCHEMIE
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení BAKALÁŘSKÁ PRÁCE Vliv přihřívání na účinnost tepelného
Termodynamika ideálních plynů
Za správnost neručím, cokoli s jinou než černou barvou je asi špatně Informace jsou primárně z přednášek Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustavy - neprochází přes ni
Termodynamika - Formy energie
Termodynamika - Formy energie Energetické přeměny při chemických a fyzikálních procesech, přenos energie mezi látkami, vzájemné přeměny různých druhů energie, Rozhoduje pouze počáteční a konečný stav Nezávisí
1 Předmět úpravy Tato vyhláška upravuje v návaznosti na přímo použitelný předpis Evropské unie 1 ) a) způsob určení množství elektřiny z vysokoúčinné
453 VYHLÁŠKA ze dne 13. prosince 2012 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Ministerstvo průmyslu a obchodu stanoví podle 53 odst. 1 písm. g) a
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Termomechanika cvičení
KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace
Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce
Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny