Kristýna Kuncová. Matematika B3

Rozměr: px
Začít zobrazení ze stránky:

Download "Kristýna Kuncová. Matematika B3"

Transkript

1 (7) Křivky a křivkový integrál Kristýna Kuncová Matematika B3 Kristýna Kuncová (7) Křivky a křivkový integrál 1 / 39

2 y Kristýna Kuncová (7) Křivky a křivkový integrál 2 / 39

3 y Kristýna Kuncová (7) Křivky a křivkový integrál 3 / 39

4 y Kristýna Kuncová (7) Křivky a křivkový integrál 4 / 39

5 y Kristýna Kuncová (7) Křivky a křivkový integrál 5 / 39

6 y Zdroj : Kristýna Kuncová (7) Křivky a křivkový integrál 6 / 39

7 y Kristýna Kuncová (7) Křivky a křivkový integrál 7 / 39

8 y Kristýna Kuncová (7) Křivky a křivkový integrál 8 / 39

9 y Zdroj : Kristýna Kuncová (7) Křivky a křivkový integrál 9 / 39

10 Pokus o definici křivky Definice Křivkou γ v R 2 rozumíme spojité zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou spojité. Definice Křivkou γ v R 3 rozumíme spojité zobrazení γ : [a, b] R 3, γ = (γ 1, γ 2, γ 3 ), kde γ 1, γ 2, γ 3 : [a, b] R 3 jsou spojité. Kristýna Kuncová (7) Křivky a křivkový integrál 10 / 39

11 Problematické příklady - vybarví plochu Zdroj : Kristýna Kuncová (7) Křivky a křivkový integrál 11 / 39

12 Problematické příklady 2 - nekonečná délka Zdroj : snowflake Kristýna Kuncová (7) Křivky a křivkový integrál 12 / 39

13 Def: Křivka Definice Křivkou γ v R 2 rozumíme zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou C 1 ([a, b]). Definice Křivkou γ v R 3 rozumíme zobrazení γ : [a, b] R 3, γ = (γ 1, γ 2, γ 3 ), kde γ 1, γ 2, γ 3 : [a, b] R 3 jsou C 1 ([a, b]). Poznámka Derivace v a a b jsou jednostranné. Interval [a, b] je omezený a uzavřený. Kristýna Kuncová (7) Křivky a křivkový integrál 13 / 39

14 y γ 1 (t) = t, γ 2 (t) = sin t Kristýna Kuncová (7) Křivky a křivkový integrál 14 / 39

15 y γ 1 (t) = cos t, γ 2 (t) = sin t Kristýna Kuncová (7) Křivky a křivkový integrál 15 / 39

16 y γ 1 (t) = cos t/(1 + (sin t) 2 ), γ 2 (t) = cos t sin t/(1 + (sin t) 2 ) Kristýna Kuncová (7) Křivky a křivkový integrál 16 / 39

17 y γ 1 (t) = e t/25 cos t, γ 2 (t) = e t/25 sin t Kristýna Kuncová (7) Křivky a křivkový integrál 17 / 39

18 y γ 1 (t) = t cos t, γ 2 (t) = t sin t, γ 3 (t) = t Kristýna Kuncová (7) Křivky a křivkový integrál 18 / 39

19 y γ 1 (t) = cos 3 t, γ 2 (t) = sin 3 t Kristýna Kuncová (7) Křivky a křivkový integrál 19 / 39

20 y γ 1 (t) = 16 sin 3 t, γ 2 (t) = 13 cos t 5 cos(2t) 2 cos(3t) cos(4t) Kristýna Kuncová (7) Křivky a křivkový integrál 20 / 39

21 y Zdroj : Kristýna Kuncová (7) Křivky a křivkový integrál 21 / 39

22 Def: Oblouk Definice Křivkou γ v R 2 rozumíme zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou C 1 ([a, b]). Křivka se nazývá oblouk, jestliže γ je prosté na [a, b], Kristýna Kuncová (7) Křivky a křivkový integrál 22 / 39

23 Def: Uzavřená křivka Definice Křivkou γ v R 2 rozumíme zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou C 1 ([a, b]). Křivka se nazývá uzavřená, jestliže γ(a) = γ(b), Kristýna Kuncová (7) Křivky a křivkový integrál 23 / 39

24 Def: Jordanova křivka Definice Křivkou γ v R 2 rozumíme zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou C 1 ([a, b]). Křivka se nazývá uzavřená, jestliže γ(a) = γ(b), Jordanova, jestliže γ je prosté na [a, b) a křivka je uzavřená, Kristýna Kuncová (7) Křivky a křivkový integrál 24 / 39

25 Def: Jednoduchá a hladká křivka Definice Křivkou γ v R 2 rozumíme zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou C 1 ([a, b]). Křivka se nazývá jednoduchá, jestliže je bud Jordanova nebo oblouk, hladká, jestliže je jednoduchá a funkce γ 1, γ 2 mají spojité první derivace pro každé t [a, b] je alespoň jedna z derivací γ 1(t), γ 2(t) nenulová. Zdroj : Není hladká Zdroj : Je hladká Kristýna Kuncová (7) Křivky a křivkový integrál 25 / 39

26 Def: Orientace křivky Nakreslete následující křivky: 1 1 γ 1(t) = t, γ 2(t) = 1 t, t [0, 1 ] 2 2 γ 1(t) = t, γ 2(t) = 1 t, t [0, 3 ] 4 3 γ 1(t) = t, γ 2(t) = 1 t, t [0, 1] 2 1 γ 1(t) = 1 t, γ 2(t) = t, t [0, 1 ] 2 2 γ 1(t) = 1 t, γ 2(t) = t, t [0, 3 ] 4 3 γ 1(t) = 1 t, γ 2(t) = t, t [0, 1] Definice Orientace křivky znamená, že je dán směr zvětšování délky. Dvě parametrizace jedné křivky jsou orientovány souhlasně, pokud mají stejný směr růstu. (Jejich tečné vektory jsou orientovány stejným směrem.) Určete, zda jsou následující křivky souhlasně orientované: 1 γ 1 (t) = t, γ 2 (t) = 1 t, t [0, 1] 2 γ 1 (t) = 1 t, γ 2 (t) = t, t [0, 1] Kristýna Kuncová (7) Křivky a křivkový integrál 26 / 39

27 Def: Orientace křivky Definice Pro Jordanovu křivku je kladná orientace proti směru hodinových ručiček. Nakreslete následující křivky: 1 1 γ 1(t) = cos t, γ 2(t) = sin t, t [0, π ] 2 2 γ 1(t) = cos t, γ 2(t) = sin t, t [0, π] 3 γ 1(t) = cos t, γ 2(t) = sin t, t [0, 2π] 2 1 γ 1(t) = cos 2t, γ 2(t) = sin 2t, t [0, π ] 4 2 γ 1(t) = cos 2t, γ 2(t) = sin 2t, t [0, π ] 2 3 γ 1(t) = cos 2t, γ 2(t) = sin 2t, t [0, π] 3 1 γ 1(t) = sin t, γ 2(t) = cos t, t [0, π ] 2 2 γ 1(t) = sin t, γ 2(t) = cos t, t [0, π] 3 γ 1(t) = sin t, γ 2(t) = cos t, t [0, 2π] Určete orientaci křivek: 1 γ 1 (t) = cos t, γ 2 (t) = sin t, t [0, 2π] 2 γ 1 (t) = cos 2t, γ 2 (t) = sin 2t, t [0, π] 3 γ 1 (t) = sin t, γ 2 (t) = cos t, t [0, 2π] Kristýna Kuncová (7) Křivky a křivkový integrál 27 / 39

28 Parametrizace Definice γ = γ([a, b]) R 2 značí geometrický obraz křivky. Zobrazení γ jako takové zveme parametrizace. Poznámka Různé parametrizace mohou mít stejný obraz. γ 1 (t) = cos t, γ 2 (t) = sin t, t [0, 2π] γ 1 (t) = cos t, γ 2 (t) = sin t, t [0, 4π] γ 1 (t) = sin t, γ 2 (t) = cos t, t [0, 2π] γ 1 (t) = sin t 2, γ 2 (t) = cos t 2, t [0, 2π] γ 1 (t) = sin t, γ 2 (t) = cos (t), t [0, 4π 2 ] Kristýna Kuncová (7) Křivky a křivkový integrál 28 / 39

29 Parametrizace - úlohy Otázka Které z následujících parametrizace neparametrizují jednotkovou kružnici? A γ 1 (t) = cos t, γ 2 (t) = sin t, t [0, 2π] B γ 1 (t) = sin 2 t, γ 2 (t) = cos 2 t, t [0, 2π] C γ 1 (t) = sin t 2, γ 2 (t) = cos t 2, t [0, 2π] D γ 1 (t) = sin 2t, γ 2 (t) = cos 2t, t [0, π] B Kristýna Kuncová (7) Křivky a křivkový integrál 29 / 39

30 Parametrizace - úlohy 2 Otázka Obrázek vpravo znázorňuje křivku x(t) = f (t), y(t) = g(t). Který obrázek ukazuje křivku x(t) = f (t) + 2, y(t) = g(t) 3? B Kristýna Kuncová (7) Křivky a křivkový integrál 30 / 39

31 Parametrizace - úlohy 3 Otázka Obrázek vlevo znázorňuje křivku x(t) = f (t), y(t) = g(t). Jaký předpis patří k obrázku vpravo? A x(t) = f (t), y(t) = g(t). B x(t) = f (t), y(t) = g(t). C x(t) = f (t), y(t) = g(t). D x(t) = f ( t), y(t) = g(t). E x(t) = f (t), y(t) = g( t). B Kristýna Kuncová (7) Křivky a křivkový integrál 31 / 39

32 Tečný vektor Definice Vektor γ (t) = (γ 1 (t), γ 2 (t)) nazveme tečným vektorem křivky γ. Kristýna Kuncová (7) Křivky a křivkový integrál 32 / 39

33 Tečný vektor - příklad Spočtěte tečný vektor pro křivky 1 γ 1 (t) = cos t, γ 2 (t) = sin t, t [0, 2π] 2 γ 1 (t) = cos 2t, γ 2 (t) = sin 2t, t [0, π] 3 γ 1 (t) = sin t, γ 2 (t) = cos t, t [0, 2π] Nejprve obecně a pak v bodech [1, 0], [0, 1], [ 1, 0]. 1 ( sin t, cos t), t = 0, (0, 1), t = π 2, ( 1, 0), t = π, (0, 1), 2 ( 2 sin 2t, 2 cos 2t), t = 0, (0, 2), t = π 4, ( 2, 0), t = π 2, (0, 2), 3 (cos t, sin t), t = π 2, (0, 1), t = 0, (1, 0), t = 3 π 2, (0, 1), Kristýna Kuncová (7) Křivky a křivkový integrál 33 / 39

34 Po částech hladká křivka Definice Křivkou γ v R 2 rozumíme zobrazení γ : [a, b] R 2, γ = (γ 1, γ 2 ), kde γ 1, γ 2 : [a, b] R 2 jsou C 1 ([a, b]). Křivka se nazývá hladká, jestliže je jednoduchá a funkce γ 1, γ 2 mají spojité první derivace pro každé t [a, b] je alespoň jedna z derivací γ 1 (t), γ 2 (t) nenulová. Křivka se nazývá po částech hladká, jestliže je hladká až na konečně mnoho bodů. Kristýna Kuncová (7) Křivky a křivkový integrál 34 / 39

35 Křivkový integrál 1. druhu Definice (Křivkový integrál 1. druhu) Necht γ je po částech hladká křivka a necht je dána funkce f : γ R. Pak definujeme křivkový integrál 1. druhu funkce f podél křivky γ jako γ f (s) ds = b a f ((γ 1 (t), γ 2 (t)) γ 2 1 b (t) + γ 2 2 (t) dt = f (γ(t)) γ (t) dt. a Zdroj : integral Kristýna Kuncová (7) Křivky a křivkový integrál 35 / 39

36 Křivkový integrál 1. druhu - úlohy Otázka Na obrázcích je znázorněn křivkový integrál I j = C j x ds přes následující křivky. Vyberte pravdivé tvrzení: Zdroj : conceptests/question-library/index.shtml A I 3 < I 2 < I 1 B I 3 < I 1 < I 2 C I 3 = I 2 < I 1 D I 1 < I 2 < I 3 E Nemáme dost informace. D Kristýna Kuncová (7) Křivky a křivkový integrál 36 / 39

37 Křivkový integrál 1. druhu - úlohy 2 Otázka Na obrázcích je znázorněn křivkový integrál I j = C f j ds přes následující funkce (čím světlejší barva, tím vyšší hodnoty). Vyberte pravdivé tvrzení: Zdroj : conceptests/question-library/index.shtml A I 1 = I 3 < I 2 B I 1 = I 2 = I 2 C I 2 < I 1 = I 3 D I 1 < I 2 < I 3 E Nemáme dost informace. A Kristýna Kuncová (7) Křivky a křivkový integrál 37 / 39

38 Vlastnosti křivkového integrálu 1. druhu Věta (Vlastnosti křivkového integrálu 1. druhu) Necht γ a γ jsou křivky, f a g jsou funkce (R 2 R), a, b R jsou čísla. Pak, za předpokladu, že integrály jsou dobře definovány a existují, platí a γ af + bg ds = a f ds + b g ds γ γ γ+γ f ds = γ f ds + f ds. γ Kristýna Kuncová (7) Křivky a křivkový integrál 38 / 39

39 Věta: O nezávislosti na parametrizaci (křivk. 1. druhu) Věta (O nezávislosti na parametrizaci křivkového integrálu 1. druhu) Necht γ a γ jsou hladké křivky takové, že γ = γ. Necht f je definována na γ a je spojitá. Pak f ds = f ds. γ γ Kristýna Kuncová (7) Křivky a křivkový integrál 39 / 39

Kristýna Kuncová. Matematika B3

Kristýna Kuncová. Matematika B3 (5) Funkce více proměnných II Kristýna Kuncová Matematika B3 Kristýna Kuncová (5) Funkce více proměnných II 1 / 20 Parciální derivace - příklad Otázka Tabulka vpravo znázorňuje hodnoty funkce f (x, y).

Více

Kristýna Kuncová. Matematika B2

Kristýna Kuncová. Matematika B2 (8) Funkce více proměnných Kristýna Kuncová Matematika B2 Kristýna Kuncová (8) Funkce více proměnných 1 / 19 Parciální derivace Definice Derivaci funkce f : R R v bodě a definujeme jako limitu f f (a +

Více

MA2, M2. Kapitola 4. Vektorové funkce jedné reálné proměnné. c 2009, analyza.kma.zcu.cz

MA2, M2. Kapitola 4. Vektorové funkce jedné reálné proměnné. c 2009, analyza.kma.zcu.cz 79 Kapitola 4 Vektorové funkce jedné reálné proměnné 80 Definice 4.1(vektorová funkce jedné reálné proměnné) Nechť D R.Zobrazení x: D R n se nazývá vektorová funkce jedné reálné proměnné t s definičním

Více

(5) Primitivní funkce

(5) Primitivní funkce (5) Primitivní funkce Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (5) Primitivní funkce 1 / 20 Def: Primitivní funkce Definice Necht funkce f je definována na neprázdném otevřeném intervalu (a,

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

7. Aplikace derivace 7E. Křivky. 7E. Křivky

7. Aplikace derivace 7E. Křivky. 7E. Křivky 7E. Křivky Derivace nacházejí uplatnění také při studiu křivek. Obrazně řečeno křivka v rovině je množina bodů, která vznikne pohybem pera po papíře. Předpokládáme přitom, že hrot pera je stále v kontaktu

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Plošný integrál Studijní text, 16. května Plošný integrál

Plošný integrál Studijní text, 16. května Plošný integrál Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu

Více

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.

30. listopadu Derivace. VŠB-TU Ostrava. Dostupné:   s1a64/cd/index.htm. KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Otázky k ústní zkoušce, přehled témat A. Číselné řady

Otázky k ústní zkoušce, přehled témat A. Číselné řady Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Integrální počet - I. část (neurčitý integrál a základní integrační metody)

Integrální počet - I. část (neurčitý integrál a základní integrační metody) Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27

(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27 (1) Limity Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Limity 1 / 27 Proč studovat matematiku Zdroje: http://www.karlin.mff.cuni.cz/ pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6ec3ndnr86s

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení

11. KŘIVKOVÝ INTEGRÁL Křivkový integrál I. druhu Úlohy k samostatnému řešení Sbíra úloh z matematia 11 Křivový integrál 11 KŘIVKOVÝ INTEGRÁL 115 111 Křivový integrál I druhu 115 Úloh samostatnému řešení 115 11 Křivový integrál II druhu 116 Úloh samostatnému řešení 116 11 Greenova

Více

Matematická analýza 4

Matematická analýza 4 Matematická analýza 4 LS 2015-16 Miroslav Zelený 18. Metrické prostory III 19. Křivkový a plošný integrál 20. Absolutně spoj. fce a fce s konečnou variací 21. Fourierovy řady 18. Metrické prostory III

Více

Matematika 5 FSV UK, ZS Miroslav Zelený

Matematika 5 FSV UK, ZS Miroslav Zelený Matematika 5 FSV UK, ZS 2018-19 Miroslav Zelený 1. Stabilita řešení soustav diferenciálních rovnic 2. Úvod do variačního počtu 3. Globální extrémy 4. Teorie optimálního řízení 5. Různé 1. Stabilita řešení

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta

14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta 14. Věty Gauss-Ostrogradského, Greenova a Stokesova věta Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2010/11 14.1 Úvod Definice (zobecněná plocha) Řekneme, že S R n (n 2) je zobecněná (n

Více

INTEGRACE KOMPLEXNÍ FUNKCE

INTEGRACE KOMPLEXNÍ FUNKCE INTEGRAE KOMPLEXNÍ FUNKE LEKE34-KIN auchyova obecná auchyova auchyův vzorec vičení KŘIVKOVÝ INTEGRÁL Na konci kapitoly o derivaci je uvedena souvislost existence derivace s potenciálním polem. Existuje

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

1/15. Kapitola 2: Reálné funkce více proměnných

1/15. Kapitola 2: Reálné funkce více proměnných 1/15 Kapitola 2: Reálné funkce více proměnných Vlastnosti bodových množin 2/15 Definice: ε-ové okolí... O ε (X) = {Y R n ρ(x, Y ) < ε} prstencové ε-ové okolí... P ε (X) = {Y R n 0 < ρ(x, Y ) < ε} Definice:

Více

Diferenciáln. lní geometrie ploch

Diferenciáln. lní geometrie ploch Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní

Více

Matematika III. Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík. Ústav matematiky

Matematika III. Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík. Ústav matematiky Matematika III Základy vektorové analýzy Miroslava Dubcová, Drahoslava Janovská, Daniel Turzík Ústav matematiky Přednášky LS 2015-2016 Obsah 1 Skalární a vektorový součin Skalární součin Vektorový součin

Více

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Derivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

PLOŠNÝ A KŘIVKOVÝ INTEGRÁL

PLOŠNÝ A KŘIVKOVÝ INTEGRÁL PLOŠNÝ A KŘIVKOVÝ INTERÁL JAN MALÝ Obsah 1. Plochy a křivky 1 2. Křivkový a plošný integrál prvého druhu 1 3. Křivkový integrál druhého druhu 3 4. Elementy teorie pole 4 5. Plošný integrál kodimenze 1

Více

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx.

sin(x) x lim. pomocí mocninné řady pro funkci sin(x) se středem x 0 = 0. Víme, že ( ) k=0 e x2 dx. Použití mocniných řad Nejprve si ukážeme dvě jednoduchá použití Taylorových řad. Příklad Spočtěte následující limitu: ( ) sin(x) lim. x x ( ) Najdeme lim sin(x) x x pomocí mocninné řady pro funkci sin(x)

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2

Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Reziduová věta a její aplikace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Reziduová věta a její aplikace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Reziduová věta a její aplikace / Motivace Mějme

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 2018-2019 Vybrané kapitoly z matematiky 2018-2019 1 / 18 Vektorová analýza a teorie pole Vybrané kapitoly z matematiky 2018-2019 2 / 18 Vektorová funkce jedné

Více

1 Integrál komplexní funkce pokračování

1 Integrál komplexní funkce pokračování Integrál komplexní funkce pokračování Definice. Nechť D a F ) je taková funkce, že F ) = f) pro všechna D. Pak F ) naýváme primitivní funkcí k funkci f) v oblasti D. Protože při integraci funkce f po křivce,

Více

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál

Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a

Více

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,

Obsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b, Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze

MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

Potenciál vektorového pole

Potenciál vektorového pole Kapitola 12 Potenciál vektorového pole 1 Definice a výpočet Důležitým typem vektorového pole je pole F, pro které existuje spojitě diferencovatelná funkce f tak, že F je pole gradientů funkce f, tedy F

Více

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Holomorfní funkce. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Holomorfní funkce Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Holomorfní funkce 1 / 8 Derivace Definice Necht f je komplexní

Více

PLOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule).

PLOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). uzavřená hladká kraj LOCHY lochy v prostoru, které byly zatím

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: graf funkce, derivace funkce a její

Více

Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007

Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně. 14. května 2007 Rychlotest-řešení Ústav teoretické fyziky a astrofyziky Přírodovědecké fakulty Masarykovy Univerzity v Brně 14. května 2007 Příklad 1 Mějme funkci y = sin x rozhodněte zda směrnice tečny k dané křivce

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

9. cvičení z Matematické analýzy 2

9. cvičení z Matematické analýzy 2 9. cvičení z Matematické analýzy 7. listopadu -. prosince 7 9. Určete Fourierovu řadu periodického rozšíření funkce ft = t na, a její součet. Definice: Necht f je -periodická funkce, která je integrabilní

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

10 Funkce více proměnných

10 Funkce více proměnných M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

1. Obyčejné diferenciální rovnice

1. Obyčejné diferenciální rovnice & 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá

Více