SIGNÁLY A LINEÁRNÍ SYSTÉMY
|
|
- Jiřina Müllerová
- před 6 lety
- Počet zobrazení:
Transkript
1 SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz
2 KDE A KDY SE BUDEME VÍDAT?
3 KDE A KDY SE BUDEME VÍDAT? přednášky: středa 8-10 hod., UKB, A29, 3NP, PC učebna RCX2 cvičení: středa hod., jednou za dva týdny, UKB, A29, 3NP, PC učebna RCX2 začínáme
4 LITERATURA Holčík,J.: Signály, časové řady a lineární systémy. CERM, Brno, 2012, 136s. Holčík, J.: přednáškové prezentace webová stránka předmětu Holčík, J.: Úvod do systémů a signálů (Elektronické studijní texty) webová stránka předmětu Jiřina,M., Holčík, J.: Úvod do systémů a signálů (Elektronické studijní texty) webová stránka předmětu
5 LITERATURA Jan,J.: Číslicová filtrace, analýza a restaurace signálů. VUTIUM, Brno Šebesta,V., Smékal,Z.: Signály a soustavy (Elektronické studijní texty FEKT VUT v Brně), Brno 2003.
6 LITERATURA Proakis J. G. Manolakis D. K. Digital Signal Processing (4th Edition), CRC; 1 edition, 2006 Kamen, E.W., Heck, B.S. Fundamentals of Signals and Systems Using the Web and Matlab (3rd Edition), Prentice Hall (2006) Lathi,B.P. Signal Processing and Linear Systems, Oxford Univ. Press, Oxford 1998 Carlson G.E. Signal and Linear System Analysis: with MATLAB, 2e, John Wiley & Sons, Inc., 1998, Oppenheim,A.V., Willsky, A.S., Hamid,S.: Signals and Systems (2nd Edition) Prentice-Hall Signal Processing Series, Prentice Hall; 1996
7 LITERATURA Kalouptsidis N. Signal Processing Systems: Theory and Design. John Wiley & Sons, Inc., 1997 Chen C.T. Linear System Theory and Design (Oxford Series in Electrical and Computer Engineering) Oxford University Press, USA; 3rd ed Oppenheim A V., Schafer R W., Buck J R. Discrete- Time Signal Processing (2nd Edition) (Prentice-Hall Signal Processing Series), Prentice Hall; 1999 Brockwell,P.J., Davis,R.A.: Introduction to Time Series and Forecasting, Springer; 2 edition (2003), Engelberg, S. Random Signals and Noise: A Mathematical Introduction, CRC Press, Inc., 2007
8 UKONČENÍ PŘEDMĚTU Požadavky: ústní zkouška učená rozprava o dvou z témat, která budou náplní předmětu
9 I. ZAČÍNÁME
10 NĚKOLIK PŘÍKLADŮ NA ÚVOD Preference politických stran v ČR v období od 8/2004 do 3/2008
11 NĚKOLIK PŘÍKLADŮ NA ÚVOD Vývoj incidence a mortality zhoubného nádoru prsu v ČR a) roční vzorkování; b) měsíční vzorkování
12 NĚKOLIK PŘÍKLADŮ NA ÚVOD
13 NĚKOLIK PŘÍKLADŮ NA ÚVOD
14 NĚKOLIK PŘÍKLADŮ NA ÚVOD
15 NĚKOLIK PŘÍKLADŮ NA ÚVOD
16 NĚKOLIK PŘÍKLADŮ NA ÚVOD Vývoj incidence a mortality zhoubného nádoru prsu v ČR a) roční vzorkování; b) měsíční vzorkování
17 NĚKOLIK PŘÍKLADŮ NA ÚVOD vstupní veličina(y) výstupní veličina(y) stavová(é) veličina(y)
18 NĚKOLIK PŘÍKLADŮ NA ÚVOD parametry popisující vlastnosti systému vstupní veličina(y) výstupní veličina(y) stavová(é) veličina(y)
19 NĚKOLIK PŘÍKLADŮ NA ÚVOD
20 NĚKOLIK PŘÍKLADŮ NA ÚVOD
21 NĚKOLIK PŘÍKLADŮ NA ÚVOD
22 NĚKOLIK PŘÍKLADŮ NA ÚVOD EKG - elektrokardiogram
23 NĚKOLIK PŘÍKLADŮ NA ÚVOD EKG - elektrokardiogram
24 NĚKOLIK PŘÍKLADŮ NA ÚVOD kardiotokogram
25 NĚKOLIK PŘÍKLADŮ NA ÚVOD
26 NĚKOLIK PŘÍKLADŮ NA ÚVOD
27 NĚKOLIK PŘÍKLADŮ NA ÚVOD
28 NĚKOLIK PŘÍKLADŮ NA ÚVOD
29 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT 29
30 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK 30
31 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK O STAVU, RESP. CHOVÁNÍ REÁLNÉHO OBJEKTU 31
32 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK 32
33 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK CÍLEM JE ODHALIT TEN PŘÍČINNÝ DETERMINISTICKÝ VZTAH NAVZDORY VŠEMU TOMU, CO NÁM TO ODHALENÍ KAZÍ 33
34 K ČEMU TO JE? REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK zjistit co se děje v reálném objektu; dokázat jej zařadit; dokázat predikovat jeho chování;. 34
35 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK 35
36 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK DATA 36
37 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK MĚŘENÍ DATA ZPRACOVÁNÍ 37
38 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK MĚŘENÍ DATA UŽITEČNÁ SLOŽKA + BALAST ZPRACOVÁNÍ 38
39 užitečná složka ZÁKLADNÍ KONCEPT to je ta deterministická část dat, kterou využijeme pro generování výroku 39
40 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA UŽITEČNÁ SLOŽKA + BALAST ZPRACOVÁNÍ 40
41 ZÁKLADNÍ KONCEPT užitečná složka to je ta deterministická část dat, kterou využijeme pro generování výroku balast část dat nesouvisející s cílem zpracování deterministická část přímo ze zdroje 41
42 DATA (ČASOVÉ ŘADY) užitečná složka to je ta deterministická část dat, kterou využijeme pro generování výroku balast část dat nesouvisející s cílem zpracování deterministická část přímo ze zdroje zavlečená po cestě 42
43 DATA (ČASOVÉ ŘADY) užitečná složka to je ta deterministická část dat, kterou využijeme pro generování výroku balast část dat nesouvisející s cílem zpracování deterministická část přímo ze zdroje zavlečená po cestě všechno ostatní, tj. nedeterministická (?) složka na její příčiny buď nemáme nebo nám to nestojí za námahu 43
44 NEDETERMINISTICKÁ SLOŽKA náhodná pravděpodobnost, statistika (G.Cardano Liber de ludo aleae 1663) neurčitá příslušnost, fuzzy algebra (L.A.Zadeh 1965) hrubá důvěra, hrubé množiny (Z.Pawłak 1991) 44
45 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK CÍLEM JE ODHALIT TEN PŘÍČINNÝ DETERMINISTICKÝ VZTAH NAVZDORY VŠEMU TOMU, CO NÁM TO ODHALENÍ KAZÍ 45
46 JAK ELIMINOVAT JEDNOTLIVÉ SLOŽKY? matematický model deterministické složky(složek) a zkoumáme jak data odpovídají modelové představě 46
47 JAK ELIMINOVAT JEDNOTLIVÉ SLOŽKY? matematický model deterministické složky(složek) a zkoumáme jak data odpovídají modelové představě 47
48 JAK ELIMINOVAT JEDNOTLIVÉ SLOŽKY? model deterministické složky(složek); nelineární lineární časová oblast frekvenční oblast 48
49 JAK ELIMINOVAT JEDNOTLIVÉ SLOŽKY? model deterministické složky(složek); nelineární lineární časová oblast frekvenční oblast model nedeterministické složky pravděpodobnostní fuzzy hrubý 49
50 II. SIGNÁLY ZÁKLADNÍ POJMY
51 CO JE TO SIGNÁL?
52 CO JE TO SIGNÁL?
53 CO JE TO SIGNÁL?
54 CO JE TO SIGNÁL?
55 CO JE TO SIGNÁL?
56 CO JE TO SIGNÁL?
57 CO JE TO SIGNÁL?
58 CO JE TO SIGNÁL?
59 CO JE TO SIGNÁL?
60 CO JE TO SIGNÁL? DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné materiální povahy, nesoucí informaci o stavu systému, který jej generuje.
61 CO JE TO SIGNÁL? DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné materiální povahy, nesoucí informaci o stavu systému, který jej generuje, a jeho dynamice.
62 A Z ČEHO SE TEDY SIGNÁLY (DATA) SKLÁDAJÍ? nesou informaci o měřeném objektu (informace je nehmotná) na nějakém nosiči (hmotném to bývá nějaká hmotná fyzikální, chemická, biologická, veličina);
63 INFORMACE poznatek (znalost) týkající se jakýchkoliv objektů, např. faktů, událostí, věcí, procesů nebo myšlenek včetně pojmů, které mají v daném kontextu specifický význam (ISO/IEC :1993 Informační technologie část I: Základní pojmy ) název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. Proces přijímání a využívání informace je procesem našeho přizpůsobování k nahodilostem vnějšího prostředí a aktivního života v tomto prostředí (WIENER); poznatek, který omezuje nebo odstraňuje nejistotu týkající se výskytu určitého jevu z dané množiny možných jevů;!!! NEHMOTNÁ!!!
64 A Z ČEHO SE TA DATA SKLÁDAJÍ? nesou informaci o měřeném objektu (informace je nehmotná) na nějakém nosiči (hmotném to bývá nějaká hmotná fyzikální, chemická, biologická, veličina); nesou jednak užitečnou informaci, která se příčinně (deterministicky) váže k měřenému reálnému objektu (!!!!), jednak balast, který se na tu informaci připojil někde po cestě
65 ZÁKLADNÍ KONCEPT CÍL VŠECH MOŽNÝCH ANALÝZ Odhalit příčinný (deterministický) vztah mezi zdrojem a projevy navzdory všemu, co nám to odhalení kazí.
66 ZPRACOVÁNÍ SIGNÁLU
67 ZPRACOVÁNÍ SIGNÁLU NOSIČ
68 ZPRACOVÁNÍ SIGNÁLU INFORMACE NOSIČ
69 ZPRACOVÁNÍ SIGNÁLU INFORMACE NOSIČ TO NECHME TECHNIKŮM (ELEKTRIKÁŘŮM, )
70 ZPRACOVÁNÍ SIGNÁLU INFORMACE ZPRACOVÁNÍ INFORMACE NOSIČ TO NECHME TECHNIKŮM (ELEKTRIKÁŘŮM, )
71 ZPRACOVÁNÍ INFORMACE K čemu ta informace bude?
72 ZPRACOVÁNÍ INFORMACE abychom dokázali říct, co to je za objekt (rozpoznání, klasifikace, ); abychom dokázali posoudit jeho stav (O.K., hypertenze, epilepsie, exitus, úroveň chemického zamoření dané lokality, ); abychom dokázali předpovědět jeho budoucnost (lze léčit a vyléčit, ocenit finanční nároky léčení po dobu přežití, les do 20 let odumře, sociální složení obyvatelstva v daném časovém rozpětí, );
73 popis ZPRACOVÁNÍ INFORMACE
74 ZPRACOVÁNÍ INFORMACE popis matematický model
75 ZPRACOVÁNÍ INFORMACE popis matematický model analyticky (nějakou funkcí)
76 ZPRACOVÁNÍ INFORMACE popis matematický model analyticky (nějakou funkcí) posloupností hodnot
77 ZPRACOVÁNÍ INFORMACE popis matematický model analyticky (nějakou funkcí) posloupností hodnot!!! ČASOVÁ ŘADA!!!
78 ZPRACOVÁNÍ INFORMACE popis matematický model analyticky (nějakou funkcí) posloupností hodnot!!! ČASOVÁ ŘADA!!!
79 ZPRACOVÁNÍ INFORMACE popis matematický model analyticky (nějakou funkcí) posloupností hodnot!!! ČASOVÁ ŘADA!!! Závislost nějaké veličiny na jiné nazýváme v případě spojité nezávislé veličiny funkcí, v případě diskrétní nezávislé veličiny posloupností, resp. časovou řadou (obecně je to zobrazení). Pojem signál je tedy jakousi technickou náhražkou matematického pojmu zobrazení.
80 ČASOVÁ ŘADA Vývoj počtu pacientů v lázeňských zařízeních Pramen: Ústav zdravotnických informací a statistiky
81 ČASOVÁ ŘADA Vývoj počtu hospitalizací v lůžkových psychiatrických zařízeních (na osob) Pramen: Ústav zdravotnických informací a statistiky
82 ČASOVÁ ŘADA (SIGNÁL V DISKRÉTNÍM ČASE) Definice (základní): Časová řada je uspořádaná množina hodnot {y t :t=1,,n}, kde index t určuje čas, kdy byla hodnota y t určena.
83 ČASOVÁ ŘADA (SIGNÁL V DISKRÉTNÍM ČASE) Definice (základní): Časová řada je uspořádaná množina hodnot {y t :t=1,,n}, kde index t určuje čas, kdy byla hodnota y t určena. Mnohé další modifikace: Časové okamžiky t jednotlivých pozorování nemusí být rovnoměrné {y(t i ):i=1,,n}. Každá hodnota může mít akumulační (integrační) charakter za určité období než že by vyjadřovala okamžitý stav
84 ČASOVÁ ŘADA (SIGNÁL V DISKRÉTNÍM ČASE) Definice (základní): Časová řada je uspořádaná množina hodnot {y t :t=1,,n}, kde index t určuje čas, kdy byla hodnota y t určena. Mnohé další modifikace: Hodnoty mohou být rozšířeny o násobná měření (vývoj hmotnosti každého experimentálního zvířete v dané skupině) Každý skalár y t může být nahrazen vektorem p hodnot y t = (y 1t,,y pt )
85 ČASOVÉ ŘADY CO S NIMI? stručný popis jejích vlastností (pomocí několika některých souhrnných parametrů (statistik?)) na jednoduchá data příliš složitý průběh k popisu spíše funkce než jednoduchá hodnota, např. klouzavý průměr než střední hodnota; složky řady trend, sezónní změny, pomalé a rychlé změny, nepravidelné oscilace frekvenční analýza predikce budoucích hodnot velká část analytických metod pro časové řady; (Predikce (z lat. prae-, před, a dicere, říkat) znamená předpověď či prognózu, tvrzení o tom, co se stane nebo nestane v budoucnosti. Na rozdíl od věštění nebo hádání se slovo predikce obvykle užívá pro odhady, opřené o vědeckou hypotézu nebo teorii.
86 ČASOVÉ ŘADY CO S NIMI? monitorování průběhu a detekce významných změn - např. sledování funkce ledvin po transplantaci; modelování průběhu pochopení procesů způsobujících vznik dat; pragmatický nástroj pro splnění výše uvedených cílů lze řešit např. pomocí lineárních systémů autoregresivní (AR), integrační (I), s klouzavým průměrem (moving average MA)
87 ZA TÝDEN NASHLEDANOU
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz KDE A KDY SE BUDEME VÍDAT? O ČEM
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz KDE A KDY SE BUDEME VÍDAT? O ČEM
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.424.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XIV. ANALÝZA
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
ÚVOD DO MATEMATICKÉ BIOLOGIE I. UKB, pav. A29, RECETOX, dv.č.112 Institut biostatistiky a analýz
ÚVOD DO MATEMATICKÉ BIOLOGIE I. prof. Ing. Jiří Holčík, CSc. UKB, pav. A29, RECETOX, dv.č.112 holcik@iba.muni.cz zástupce ředitele IBA PřF a LF MU pro výuku: RNDr. Tomáš Pavlík, Ph.D. e-mail: pavlik@iba.muni.cz
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
Speciální numerické metody 4. ročník bakalářského studia. Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D.
Speciální numerické metody 4. ročník bakalářského studia Cvičení: Ing. Petr Lehner Přednášky: doc. Ing. Martin Krejsa, Ph.D. 1 Základní informace o cvičení Předmět: 228-0210/01 Speciální numerické metody
Quo Vadis PM 2014 Predikce vývoje projektu aneb od věštění k předpovědi. Kutná Hora 13.- 14. XI. 2014 B. LACKO branislav.lacko@seznam.
Quo Vadis PM 2014 Predikce vývoje projektu aneb od věštění k předpovědi Kutná Hora 13.- 14. XI. 2014 B. LACKO branislav.lacko@seznam.cz 1 Cíle přednášky Poukázat na důležitost predikce v současné praxi
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Jan Škoda. 29. listopadu 2013
Matematicko-fyzikální fakulta Univerzity Karlovy v Praze 29. listopadu 2013 Náplň přednášky state estimation Naivní přístup KF Matematický model Problém podmínky linearity EKF. & ukázka Co se nedozvíte:
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
Elektronické obvody analýza a simulace
Elektronické obvody analýza a simulace Jiří Hospodka katedra Teorie obvodů, 804/B3 ČVUT FEL 4. října 2006 Jiří Hospodka (ČVUT FEL) Elektronické obvody analýza a simulace 4. října 2006 1 / 7 Charakteristika
Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky
A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační
Elektronická podpora výuky na ÚBMI
Závěrečná zpráva rozvojového projektu Elektronická podpora výuky na ÚBMI MŠMT č. 645 Odpovědný řešitel: Prof. Ing. Jiří Holčík, CSc. ČVUT v Praze - FBMI Kladno, leden 2006 Vyhodnocení splněných cílů a
Úvodní informace. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :47
O předmětu Úvodní informace Matematické modelování Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 1. přednáška 11MSP 2018 verze:
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
Hodnocení a modelování populačních dat na příkladu epidemiologie vážných chorob: I. Analýza dat, princip predikcí.
Hodnocení a modelování populačních dat na příkladu epidemiologie vážných chorob: I. Analýza dat, princip predikcí. Úvod do matematické biologie Tomáš Pavlík & O. Májek, L. Dušek, J. Mužík, E. Gelnarová,
1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
Úvodní informace. Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní. verze: :18
O předmětu Úvodní informace Matematické modelování Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 1. přednáška 11MSP 2019 verze:
Usuzování za neurčitosti
Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Aplikace T -prostorů při modelování kompozičních časových řad
Aplikace T -prostorů při modelování kompozičních časových řad P. Kynčlová 1,3 P. Filzmoser 1, K. Hron 2,3 1 Department of Statistics and Probability Theory Vienna University of Technology 2 Katedra matematické
STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.
STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC
Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská
Václav Matoušek KIV. Umělá inteligence a rozpoznávání. Václav Matoušek / KIV
Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 16. 2. (3h) 2. 3. (4h) 17. 3. (5h) 14. 4. (3h) Úvod, historie a vývoj UI, základní
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Pokročilé neparametrické metody. Klára Kubošová
Pokročilé neparametrické metody Klára Kubošová Pokročilé neparametrické metody Výuka 13 přednášek doplněných o praktické cvičení v SW Úvod do neparametrických metod + princip rozhodovacích stromů Klasifikační
Matematika IV 10. týden Kódování
Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice
Ing. Michael Rost, Ph.D.
Statistika úvodní přednáška Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Cíle základního kurzu: seznámit posluchače se základy počtu pravděpodobnosti, seznámit posluchače s aspekty
(K611MSAP) prof. Miroslav Vlček. 24. února Ústav aplikované matematiky Fakulta dopravní ČVUT
(K611MSAP) Ústav aplikované matematiky Fakulta dopravní ČVUT 24. února 2011 K611MSAP Základní informace Přednášející: prof. RNDr. Miroslav Vlček, DrSc. (vlcek@fd.cvut.cz) přednášky: čt. 8.00-9.30 & 9.45-11.15
Geoinformatika. I Geoinformatika a historie GIS
I a historie GIS jaro 2014 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Motivace Proč chodit na přednášky?
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Algoritmy komprese dat
Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností připomenutí, souvislosti
Lékařská fakulta Masarykovy univerzity Brno. MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál / 35
Biosignál MUDr. Jaromír Šrámek Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2012 MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál 2012 1 / 35 Obsah co nás dnes čeká... Opakování základních
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Kybernetika a umělá inteligence, cvičení 10/11
Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace
Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
Provozní pevnost a životnost dopravní techniky. - úvod do předmětu
Provozní pevnost a životnost dopravní techniky - úvod do předmětu doc. Ing. Miloslav Kepka, CSc. ZČU v Plzni, Fakulta strojní, Katedra konstruování strojů Provozní pevnost a životnost dopravní techniky
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl
Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36
Testování změn v binárnách autoregresních modelech Šárka Hudecová KPMS MFF UK ROBUST 2012 Němčičky 9. 14.9.2012 Testování změn v binárnách autoregresních modelech Šárka Hudecová 1/ 36 Uvažovaná situace
Úvod do modelování a simulace. Ing. Michal Dorda, Ph.D.
Úvod do modelování a simulace systémů Ing. Michal Dorda, Ph.D. 1 Základní pojmy Systém systémem rozumíme množinu prvků (příznaků) a vazeb (relací) mezi nimi, která jako celek má určité vlastnosti. Množinu
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT. Institut biostatistiky a analýz
ANALÝZA A KLASIFIKACE BIOMEDICÍNSKÝCH DAT prof. Ing. Jiří Holčík,, CSc. NEURONOVÉ SÍTĚ otázky a odpovědi 1 AKD_predn4, slide 8: Hodnota výstupu závisí na znaménku funkce net i, tedy na tom, zda bude suma
LEARNING TOXICOLOGY THROUGH OPEN EDUCATIONAL RESOURCES
LEARNING TOXICOLOGY THROUGH OPEN EDUCATIONAL RESOURCES ZPRACOVÁNÍ ENVIRONMENTÁLNÍCH DAT A HLÁŠENÍ VÝSLEDKŮ Camelia DRAGHICI, Ileana MANCIULEA Transilvania University of Braşov c.draghici@unitbv.ro, i.manciulea@unitbv.ro
5. Umělé neuronové sítě. Neuronové sítě
Neuronové sítě Přesný algoritmus práce přírodních neuronových systémů není doposud znám. Přesto experimentální výsledky na modelech těchto systémů dávají dnes velmi slibné výsledky. Tyto systémy, včetně
Téma 22. Ondřej Nývlt
Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené
Analýza chování algoritmu MSAF při zpracování řeči v bojových prostředcích
Analýza chování algoritmu MSAF při zpracování řeči v bojových prostředcích Analysis of MSAF algorithm for speech enhancement in combat vehicles Ing. Jaroslav Hovorka MESIT přístroje spol. s r.o., Uherské
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
PRINCIPY ZABEZPEČENÍ KVALITY
(c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška
Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost
Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do
Analýza a zpracování signálů. 1. Úvod
Analýza a zpracování signálů 1. Úvod DSP matematická a algoritmická manipulace s číslicovými signály jejímž cílem je extrahovat důležité informace, které jsou přenášeny signálem Vstupní signál Zpracovaný
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
Úvodní poznámky a literatura. Robotika. Úvodní poznámky a literatura. Vladimír Smutný. Centrum strojového vnímání
a literatura Robotika Úvodní poznámky a literatura Vladimír Smutný Centrum strojového vnímání Český institut informatiky, robotiky a kybernetiky (CIIRC) České vysoké učení technické v Praze Tyto podklady
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Literatura Havaldar P., Medioni G.: Multimedia Systems: Algorithms, Standards, and Industry Practices. Course
STATISTICKÝ SOUBOR. je množina sledovaných objektů - statistických jednotek, které mají z hlediska statistického zkoumání společné vlastnosti
ZÁKLADNÍ STATISTICKÉ POJMY HROMADNÝ JEV Statistika pracuje s tzv. HROMADNÝMI JEVY cílem statistického zpracování dat je podání informace o vlastnostech a zákonitostech hromadných jevů: velkého počtu jedinců
SENZORY PRO ROBOTIKU
1/13 SENZORY PRO ROBOTIKU Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac ROBOTICKÉ SENZORY - PŘEHLED
KET/ZPI - Zabezpečení podnikových informací
KET/ZPI - Zabezpečení podnikových informací Přednášející: Ing. František Steiner, Ph.D. Ing. František Steiner, Ph.D. EK417 Katedra technologií a měření mail: steiner@ket.zcu.cz tel: 377 634 535 Konzultace:
Manažerské rozhodování
3MA413 Manažerské rozhodování Česky Anglicky Německy Forma výuky Úroveň studia Manažerské rozhodování Managerial Decision Making Managemententscheidungen 2 hod. přednášek 2 hod. cvičení magisterská navazující
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI
VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ
VYUŽITÍ PRAVDĚPODOBNOSTNÍ METODY MONTE CARLO V SOUDNÍM INŽENÝRSTVÍ Michal Kořenář 1 Abstrakt Rozvoj výpočetní techniky v poslední době umožnil také rozvoj výpočetních metod, které nejsou založeny na bázi
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
Struktura a typy lékařských přístrojů. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů
Struktura a typy lékařských přístrojů X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektronické lékařské přístroje využití přístrojové techniky v medicíně diagnostické
Multimediální systémy
Multimediální systémy Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Literatura Havaldar P., Medioni G.: Multimedia Systems: Algorithms, Standards, and Industry Practices. Course
Matematická analýza pro informatiky I. Limita posloupnosti (I)
Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Rovnovážné modely v teorii portfolia
3. září 2013, Podlesí Obsah Portfolio a jeho charakteristiky Definice portfolia Výnosnost a riziko aktiv Výnosnost a riziko portfolia Klasická teorie portfolia Markowitzův model Tobinův model CAPM - model
Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra.
Perfektní lineární kódy Odpřednesenou látku naleznete v dodatku A skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: B6B01LAG 18.5.2016: Perfektní lineární kódy 1/18 Minulé přednášky 1 Detekce
Přednáška v rámci PhD. Studia
OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia L. Brančík UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci) analogových integrovaných
Vzdálenost jednoznačnosti a absolutně
Vzdálenost jednoznačnosti a absolutně bezpečné šifry Andrew Kozlík KA MFF UK Značení Pracujeme s šifrou (P, C, K, E, D), kde P je množina otevřených textů, C je množina šifrových textů, K je množina klíčů,
1. Statistická analýza dat Jak vznikají informace Rozložení dat
1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení. Jiří Málek
Modernizace a inovace výpočetní kapacity laboratoří ITE pro účely strojového učení Jiří Málek Cíl projektu Cíl: Zefektivnění vzdělávání na ITE* v oblasti strojového učení pomocí posílení dostupné výpočetní