SIGNÁLY A LINEÁRNÍ SYSTÉMY
|
|
- Olga Valentová
- před 6 lety
- Počet zobrazení:
Transkript
1 SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz
2 KDE A KDY SE BUDEME VÍDAT?
3 O ČEM TO BUDE? Princip zpracování dat Signál vs. časová řada (deterministická x náhodná data stacionarita, ergodicita, spojitý x diskrétní čas, vzorkování, kvantování vztah k charakteru, typu dat) Základní typy signálů spojitých i diskrétních, periodických a jednorázových, kauzalita harmonický, jednotkový impuls, skok, funkce Sinc, obdélníková funkce. Základní operace se signály (násobení konstantou, posun v čase, transformace času, inverze časové osy) Korelace (periodické funkce, stacionární a ergodické funkce) korelační funkce x korelační koeficient aplikace; křížová korelace, autokorelace, kovariance, korelační matice Konvoluce
4 O ČEM TO BUDE? Frekvenční spektrum Fourierova řada, Fourierova transformace Frekvenční spektrum DTFT, DFT, FFT; Vzorkování - vzorkovací teorém, překrývání spekter Systémy základní pojmy, linearita, stabilita, časová invariantnost, dynamika, kauzalita Popis spojitých lineárních systémů v obrazové a frekvenční oblasti (Laplacova transformace), popis lin. systémů v časové oblasti, stavová reprezentace, aplikace konvoluce Popis diskrétních lineárních systémů v obrazové (z transformace), frekvenční a časové oblasti, stavová reprezentace Spojování systémů sériové, paralelní, zpětnovazební zapojení
5 LITERATURA Holčík, J.: přednáškové prezentace webová stránka předmětu Holčík, J.: Úvod do systémů a signálů (Elektronické studijní texty) webová stránka předmětu Jiřina,M., Holčík, J.: Úvod do systémů a signálů (Elektronické studijní texty) webová stránka předmětu
6 LITERATURA Proakis J. G. Manolakis D. K. Digital Signal Processing (4th Edition), CRC; 2006 Kamen, E.W., Heck, B.S. Fundamentals of Signals and Systems Using the Web and Matlab (3rd Edition), Prentice Hall (2006) Lathi,B.P. Signal Processing and Linear Systems, Oxford Univ. Press, Oxford 1998 Carlson G.E. Signal and Linear System Analysis: with MATLAB, 2e, John Wiley & Sons, Inc., 1998, Oppenheim,A.V., Willsky, A.S., Hamid,S. Signals and Systems (2nd Edition) Prentice-Hall Signal Processing Series, Prentice Hall; 1996 Kalouptsidis N. Signal Processing Systems: Theory and Design. John Wiley & Sons, Inc., 1997
7 LITERATURA Chen C.T. Linear System Theory and Design (Oxford Series in Electrical and Computer Engineering) Oxford University Press, USA; 3rd ed Oppenheim A V., Schafer R W., Buck J R. Discrete-Time Signal Processing (2nd Edition) (Prentice-Hall Signal Processing Series), Prentice Hall; 1999 Brockwell,P.J., Davis,R.A.: Introduction to Time Series and Forecasting, 2nd edition, Springer; 2003 Engelberg, S. Random Signals and Noise: A Mathematical Introduction, CRC Press, Inc., 2007 Box,G.E.P., Jenkins, G.M., Reinsel, G.C. Time Series Analysis. Forecasting and Control. 4th Ed., Wiley Series in Probability and Statistics., Wiley Publ; 2008
8 Požadavky: ústní zkouška UKONČENÍ PŘEDMĚTU učená rozprava o některém z témat, která budou (byla) náplní předmětu
9 I. ZAČÍNÁME
10 ZÁKLADNÍ KONCEPT
11 ZÁKLADNÍ KONCEPT reálný objekt
12 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
13 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
14 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
15 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
16 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
17 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
18 ZÁKLADNÍ KONCEPT reálný objekt (zdroj informace)
19 ZÁKLADNÍ KONCEPT K čemu ta informace bude?
20 ZÁKLADNÍ KONCEPT abychom dokázali říct, co to je za objekt (rozpoznání, klasifikace, ); abychom dokázali posoudit jeho stav (O.K., hypertenze, epilepsie, exitus, úroveň chemického zamoření dané lokality, ); abychom dokázali předpovědět jeho budoucnost (lze léčit a vyléčit, ocenit finanční nároky léčení po dobu přežití, les do 20 let odumře, sociální složení obyvatelstva v daném časovém rozpětí, );
21 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT
22 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK
23 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK
24 ZÁKLADNÍ KONCEPT PŘÍČINNÝ DETERMINISTICKÝ VZTAH HODNOTÍCÍ VÝROK
25 ZÁKLADNÍ KONCEPT PŘÍČINNÝ DETERMINISTICKÝ VZTAH ZAMILOVANÝ GARFIELD
26 CÍL VŠECH MOŽNÝCH ANALÝZ ODHALIT TEN PŘÍČINNÝ DETERMINISTICKÝ VZTAH NAVZDORY VŠEMU TOMU, CO NÁM TO ODHALENÍ KAZÍ
27 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK
28 ZÁKLADNÍ KONCEPT Jak tu informaci zjistíme?
29 ZÁKLADNÍ KONCEPT Musíme něco změřit.
30 ZÁKLADNÍ KONCEPT Musíme něco změřit. A co?
31 ZÁKLADNÍ KONCEPT Musíme něco změřit. A co? To na začátku bohužel moc nevíme.
32 ZÁKLADNÍ KONCEPT Musíme něco změřit. A co? To bohužel moc nevíme.
33 ZÁKLADNÍ KONCEPT Musíme něco změřit. Za jakých podmínek?
34 ZÁKLADNÍ KONCEPT Musíme něco změřit. Za jakých podmínek? Pozorování experiment
35 POZOROVÁNÍ je založeno na pasivním sledování procesů a souvisejících skutečností, pokud možno v jejich přirozeném stavu, co nejméně ovlivněném pozorovatelem. Pozorování poskytuje informace o vnějších projevech a vztazích systému (tvar, rozměry, podobnost, fyzikální či chemické vlastnosti, časová následnost,...). Význam pozorování klesá v situacích, kdy nabývají na důležitosti příčiny pozorovaných jevů, příp. charakter a podstata uvnitř zkoumaného objektu.
36 EXPERIMENT vychází z aktivního přístupu ke zkoumání objektu. Spočívá na záměrně vyvolaných změnách podmínek existence a funkce daného objektu, které mají přimět zkoumaný objekt projevit se za různých, uměle navozených situací. Výchozím předpokladem pro uspořádání experimentu je formulace hypotézy o analyzovaném objektu.
37 EXPERIMENT Hypotézy a pak i následné experimenty, jsou dvojího typu: vyhledávací (heuristické) - co se stane, uděláme-li toto? ověřovací (verifikační) - stane se toto, když uděláme toto?
38 ZÁKLADNÍ KONCEPT Musíme něco změřit. A když něco změříme, co dostaneme?
39 ZÁKLADNÍ KONCEPT Musíme něco změřit. A když něco změříme, co dostaneme? Nějaká data, údaje,.
40 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK DATA
41 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA ZPRACOVÁNÍ
42 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA ZPRACOVÁNÍ
43 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA ZPRACOVÁNÍ
44 A Z ČEHO SE TA DATA SKLÁDAJÍ? nesou informaci o tom měřeném objektu (informace je nehmotná) na nějakém nosiči (hmotném to bývá nějaká hmotná fyzikální, chemická, biologická, veličina);
45 INFORMACE poznatek (znalost) týkající se jakýchkoliv objektů, např. faktů, událostí, věcí, procesů nebo myšlenek včetně pojmů, které mají v daném kontextu specifický význam (ISO/IEC :1993 Informační technologie část I: Základní pojmy ) název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. Proces přijímání a využívání informace je procesem našeho přizpůsobování k nahodilostem vnějšího prostředí a aktivního života v tomto prostředí (WIENER); poznatek, který omezuje nebo odstraňuje nejistotu týkající se výskytu určitého jevu z dané množiny možných jevů;!!! NEHMOTNÁ!!!
46 A Z ČEHO SE TA DATA SKLÁDAJÍ? nesou informaci o měřeném objektu (informace je nehmotná) na nějakém nosiči (hmotném to bývá nějaká hmotná fyzikální, chemická, biologická, veličina); nesou jednak užitečnou informaci, která se příčinně (deterministicky) váže k měřenému reálnému objektu (!!!!), jednak balast, který se na tu informaci připojil někde po cestě od objektu k měřicímu zařízení
47 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA (UŽITEČNÁ SLOŽKA + BALAST) ZPRACOVÁNÍ
48 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA (UŽITEČNÁ SLOŽKA + BALAST) ZPRACOVÁNÍ
49 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA (UŽITEČNÁ SLOŽKA + BALAST) ZPRACOVÁNÍ
50 A Z ČEHO SE TA DATA SKLÁDAJÍ? chyby (rušení, poruchy) zdroje pacient má i jiné orgány a ty se na různých pacientech v ekvivalentním pletou do výsledku vyšetření; stavu změříme nějaké jiné hodnoty interindividuální variabilita měříme něco, co vůbec měřit nechceme, z jednoho pacienta v různých nebo o čem nevíme, že pro nás nemá časech či za různých informační hodnotu podmínek získáme různé špatně si uspořádáme měření (vyšetření, výsledky - intraindividuální experiment); variabilita
51 A Z ČEHO SE TA DATA SKLÁDAJÍ? rušení v přenosové cestě špatně upevníme (umístíme, ) snímací senzor/elektrodu; do kabelu mezi pacientem a přístrojem se naindukuje rušení z vnějšího prostředí rušení v prostoru; při skladování dat dojde ke ztrátě údajů rušení v čase;
52 A Z ČEHO SE TA DATA SKLÁDAJÍ? chyby měřicího zařízení přístroj používá nevhodnou metodu měření přístroj používá nevhodný algoritmus zpracování změřených dat; je použit nevhodný přístroj;
53 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA (UŽITEČNÁ SLOŽKA + BALAST) ZPRACOVÁNÍ
54 ZÁKLADNÍ KONCEPT REÁLNÝ OBJEKT HODNOTÍCÍ VÝROK MĚŘENÍ DATA (UŽITEČNÁ SLOŽKA + BALAST) ZPRACOVÁNÍ
55 ZÁKLADNÍ SCHÉMA ZPRACOVÁNÍ DAT ZPRACOVÁNÍ PŘED ZPRACOVÁNÍ ANALÝZA KLASIFIKACE
56 ZÁKLADNÍ SCHÉMA ZPRACOVÁNÍ DAT ZPRACOVÁNÍ PŘED ZPRACOVÁNÍ ANALÝZA KLASIFIKACE UČENÍ VOLBA ELEMENTŮ PRO ANALÝZU NASTAVENÍ ROZHODOVACÍHO PRAVIDLA
57 ZÁKLADNÍ SCHÉMA ZPRACOVÁNÍ DAT ZPRACOVÁNÍ PŘED ZPRACOVÁNÍ ANALÝZA KLASIFIKACE UČENÍ VOLBA ELEMENTŮ PRO ANALÝZU NASTAVENÍ A OVĚŘENÍ ROZHODOVACÍHO PRAVIDLA
58 A Z ČEHO SE TA DATA SKLÁDAJÍ?
59 A Z ČEHO SE TA DATA SKLÁDAJÍ?
60 CHARAKTER DAT Anamnéza + výsledky základního vyšetření 52 letá pacientka: RA: matka kardiačka, zemřela v 78 letech na IM. AA: alergie na Ketazon a náplast. OA: obezita, 3 roky má hypertenzi, před 19 roky hluboká flebotromboza dolní končetiny po úraze Achillovy šlachy. GA: porody 0, interupce 0, antikoncepce 0, menses pravidelné. FA: Tenormin 100 1x1, Rhefluin 1x1, Enap 10 2x1, Lipanthyl 100 mg 1x1. NO: Pacientka je 14 dní dušná s progresí poslední tři dny. Je bez zvýšených teplot, nekašle. Má pálivé bolesti na hrudníku po styku s chladným vzduchem trvající asi 20 minut. Nyní je bez bolestí. Občas má křeče v lýtkách. Pro dušnost byla hospitalizována na int. oddělení. Obj. nález: pacientka obezní, TK 150/ /80, TF 120/min..80/min reg. Nález na hrudníku, břichu i DK bez patol.nálezu. TT 36,6 oc. RTG srdce a plic: nález v normě. KO: leukocyty: 9,7..5,0..5,7, jinak KO v normě. FW 3..10/1 hod. EKG: negat. TIII, V1-4. D-dimery: hladiny zvýšené. Antitrombin III 82,5%. Hraniční hodnoty proteinu C a proteinu S, rezistence na aktiv. protein C., antifosfolipidové protilátky neprokázány. Saturace Hb02: 0,912..0,942..0,867..0,869, ph 7,386..7,436..7,301..7,369. Biochem. vyš.: triacylglyceroly 2,5 mmol/l (zvýšená hladina), troponin I do 0,22 ug/ml (v normě). Sonografie venozního systému dolních končetin: bez známek flebotrombozy hlubokého žilního systému DKK. Echokardiografie: LK nezvětšená, EF asi 60%, lehká trikuspifální insuficience, nadhraniční velikost PK, známky lehké plicní hypertenze, bez průkazu trombů.
61 CHARAKTER DAT Po zakódování lze vyjádřit stav pacientky v určitém čase vektorem (strukturovaným záznamem) hodnot různých veličin a různého charakteru (číselná hodnota, výčtová hodnota, kód, logická hodnota, )
62 CHARAKTER DAT Po zakódování lze vyjádřit stav pacientky v určitém čase vektorem (strukturovaným záznamem) hodnot různých veličin a různého charakteru (číselná hodnota, výčtová hodnota, kód, logická hodnota, )
63 CHARAKTER DAT Po zakódování lze vyjádřit stav pacientky v určitém čase vektorem (strukturovaným záznamem) hodnot různých veličin a různého charakteru (číselná hodnota, výčtová hodnota, kód, logická hodnota, )
64 CHARAKTER DAT Po zakódování lze vyjádřit stav pacientky v určitém čase vektorem (strukturovaným záznamem) hodnot různých veličin a různého charakteru (číselná hodnota, výčtová hodnota, kód, logická hodnota, )
65 CHARAKTER DAT a co s daty jako je elektrokardiogram, resp. RTG snímek?
66 CHARAKTER DAT a co s daty jako je elektrokardiogram, resp. RTG snímek? V ČEM SE LIŠÍ?
67 CHARAKTER DAT a co s daty jako je elektrokardiogram, resp. RTG snímek? V ČEM SE LIŠÍ? vyjadřují změny stavu sledovaného objektu (jeho dynamiku) - v čase, prostoru
68 SIGNÁL - DEFINICE
69 CO JE TO SIGNÁL?
70 CO JE TO SIGNÁL?
71 CO JE TO SIGNÁL?
72 CO JE TO SIGNÁL?
73 CO JE TO SIGNÁL?
74 CO JE TO SIGNÁL? DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné materiální povahy, nesoucí informaci o stavu systému, který jej generuje.
75 CO JE TO SIGNÁL? DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné materiální povahy, nesoucí informaci o stavu systému, který jej generuje, a jeho dynamice.
76 CO JE TO SIGNÁL? DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné materiální povahy, nesoucí informaci o stavu systému, který jej generuje, a jeho dynamice. Je-li zdrojem informace živý organismus, pak hovoříme o biosignálech bez ohledu na podstatu nosiče informace.
77 ZPRACOVÁNÍ SIGNÁLU
78 ZPRACOVÁNÍ SIGNÁLU NOSIČ
79 ZPRACOVÁNÍ SIGNÁLU INFORMACE NOSIČ
80 ZPRACOVÁNÍ SIGNÁLU INFORMACE NOSIČ TO NECHME TECHNIKŮM (ELEKTRIKÁŘŮM, )
81 ZPRACOVÁNÍ SIGNÁLU INFORMACE ZPRACOVÁNÍ INFORMACE NOSIČ TO NECHME TECHNIKŮM (ELEKTRIKÁŘŮM, )
82 popis ZPRACOVÁNÍ INFORMACE
83 popis ZPRACOVÁNÍ INFORMACE analyticky (nějakou funkcí)
84 popis ZPRACOVÁNÍ INFORMACE analyticky (nějakou funkcí) posloupností hodnot
85 popis ZPRACOVÁNÍ INFORMACE analyticky (nějakou funkcí) posloupností hodnot!!! ČASOVÁ ŘADA!!!
86 popis ZPRACOVÁNÍ INFORMACE analyticky (nějakou funkcí) posloupností hodnot!!! ČASOVÁ ŘADA!!!
87 Definice (základní): ČASOVÁ ŘADA Časová řada je uspořádaná množina hodnot {y t :t=1,,n}, kde index t určuje čas, kdy byla hodnota y t určena. t
88 Definice (základní): ČASOVÁ ŘADA Časová řada je uspořádaná množina hodnot {y t :t=1,,n}, kde index t určuje čas, kdy byla hodnota y t určena. t Mnohé další modifikace: Časové okamžiky t jednotlivých pozorování nemusí být rovnoměrné {y(t i ):i=1,,n}. i Každá hodnota může mít akumulační (integrační) charakter za určité období než že by vyjadřovala okamžitý stav
89 Definice (základní): ČASOVÁ ŘADA Časová řada je uspořádaná množina hodnot {y t :t=1,,n}, kde index t určuje čas, kdy byla hodnota y t určena. t Mnohé další modifikace: Hodnoty mohou být rozšířeny o násobná měření (vývoj hmotnosti každého experimentálního zvířete v dané skupině) Každý skalár y t může být nahrazen vektorem p hodnot y t = (y 1t,,y pt )
90 ČASOVÁ ŘADA
91 ČASOVÁ ŘADA
92 VZORKOVÁNÍ SIGNÁLŮ s(nt)
93 ČASOVÁ ŘADA?
94 ČASOVÁ ŘADA Preference politických stran v ČR v období od 8/2004 do 3/2008
95 ČASOVÁ ŘADA Vývoj počtu pacientů v lázeňských zařízeních Pramen: Ústav zdravotnických informací a statistiky
96 ČASOVÁ ŘADA Vývoj počtu hospitalizací v lůžkových psychiatrických zařízeních (na osob) Pramen: Ústav zdravotnických informací a statistiky
97 ČASOVÁ ŘADA JAKÉ FENOMÉNY ROZPOZNÁVÁME V PRŮBĚHU ČASOVÉ ŘADY?
98 ČASOVÁ ŘADA Preference politických stran v ČR v období od 8/2004 do 3/2008
99 ČASOVÁ ŘADA JAKÉ FENOMÉNY ROZPOZNÁVÁME trend V PRŮBĚHU ČASOVÉ ŘADY? celkový, obecný sklon, směřování, vývojová tendence (ABZ.cz) {Y(t)} je (nenáhodná, deterministická?) funkce µ(t) = E[Y(t)], kde E[.] označuje očekávanou, resp. střední hodnotu; model časové řady Y(t) = µ(t) + U(t), kde µ(t) je trend a U(t) je (stacionární) náhodná funkce
100 ČASOVÁ ŘADA Preference politických stran v ČR v období od 8/2004 do 3/2008
101 ČASOVÁ ŘADA JAKÉ FENOMÉNY ROZPOZNÁVÁME trend oscilace V PRŮBĚHU ČASOVÉ ŘADY?
102 ČASOVÁ ŘADA Preference politických stran v ČR v období od 8/2004 do 3/2008
103 ČASOVÁ ŘADA JAKÉ FENOMÉNY ROZPOZNÁVÁME trend oscilace V PRŮBĚHU ČASOVÉ ŘADY? kolik oscilačních složek obsahuje a jaké mají kmitočty?
104 ČASOVÁ ŘADA JAKÉ FENOMÉNY ROZPOZNÁVÁME trend oscilace V PRŮBĚHU ČASOVÉ ŘADY? kolik oscilačních složek obsahuje a jaké mají kmitočty? jak často budeme odebírat vzorky?
105 OSCILACE
106 ČASOVÁ ŘADA Preference politických stran v ČR v období od 8/2004 do 3/2008
107 ČASOVÁ ŘADA JAKÉ FENOMÉNY ROZPOZNÁVÁME trend oscilace V PRŮBĚHU ČASOVÉ ŘADY? kolik oscilačních složek obsahuje a jaké mají kmitočty? jak často budeme odebírat vzorky? reakce na změnu podmínek
108 ČASOVÁ ŘADA Preference politických stran v ČR v období od 8/2004 do 3/2008
109 OSCILACE
110 ČASOVÉ ŘADY CO S NIMI? stručný popis jejích vlastností (pomocí několika některých souhrnných parametrů (statistik)) k popisu spíše funkce než jednoduchá hodnota, např. klouzavý průměr než střední hodnota; složky řady trend, sezónní změny, pomalé a rychlé změny, nepravidelné oscilace frekvenční analýza modelování průběhu pochopení procesů způsobujících vznik dat; pragmatický nástroj pro splnění výše uvedených cílů např. pomocí lineárních systémů autoregresivní (AR), integrační (I), s klouzavým průměrem (moving average MA)
111 ČASOVÉ ŘADY CO S NIMI? predikce budoucích hodnot velká část analytických metod pro časové řady; (Predikce (z lat. prae-, před, a dicere, říkat) znamená předpověď či prognózu, tvrzení o tom, co se stane nebo nestane v budoucnosti. Na rozdíl od věštění nebo hádání se slovo predikce obvykle užívá pro odhady, opřené o vědeckou hypotézu nebo teorii. srvn. forecasting monitorování průběhu a detekce významných změn - např. sledování funkce ledvin po transplantaci;
112 ČASOVÉ ŘADY ZÁKLADNÍ POJMY všechny časové řady mají prakticky konečný rozsah, ale pro jejich teoretický popis je obvykle užitečné zabývat se jimi jako s důsledkem nekonečného procesu nekonečné (náhodné) posloupnosti {Y i } i nebo (náhodné) funkce {Y(t)} z principu diskrétní proces; veličina navzorkovaná v určitých časových okamžicích - pravidelně; nepravidelně akumulace náhodné veličiny v určitém časovém intervalu Y t = t t τ X(s)ds
113 ČASOVÉ ŘADY ZÁKLADNÍ POJMY trend {Y(t)} je (nenáhodná, deterministická) funkce µ(t) = E[Y(t)], kde E[.] označuje očekávanou, resp. střední hodnotu; vzájemná závislost odráží skutečnost, že dvě náhodné proměnné Y(t) a Y(s) jsou statisticky závislé, při nejmenší pro některé hodnoty (s,t) pro s t (korelační funkce, kovarianční funkce, autokorelační funkce, autokovarianční funkce) stacionarita pravděpodobnostní struktura {Y(t)} nezávisí na počátku časové osy bílý šum; ergodicita
114 Co je to signál? SHRNUTÍ NA ZÁVĚR Jak tento pojem souvisí s pojmem informace, funkce, časová řada (posloupnost)? Co je to rušení, šum, variabilita. Jak vzniká? Trend, oscilační složky, odezva na specifické buzení
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz KDE A KDY SE BUDEME VÍDAT? O ČEM
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz KDE A KDY SE BUDEME VÍDAT? KDE A KDY SE BUDEME VÍDAT? přednášky: středa 8-10 hod., UKB, A29, 3NP, PC učebna RCX2 cvičení:
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické či jiné
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cziba.muni.cz II. SIGNÁLY ZÁKLADNÍ POJMY SIGNÁL - DEFINICE SIGNÁL - DEFINICE Signál je jev fyzikální, chemické, biologické, ekonomické
Úvod do zpracování signálů
1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ
ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM POJETÍ INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz 5. LETNÍ ŠKOLA MATEMATICKÉ BIOLOGIE ANALÝZA BIOLOGICKÝCH A KLINICKÝCH DAT V MEZIOBOROVÉM
1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15
Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.424.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XIV. ANALÝZA
Biofyzikální ústav LF MU Brno. jarní semestr 2011
pro obor Ošetřovatelská péče v gerontologii Biofyzikální ústav LF MU Brno jarní semestr 2011 Obsah letmý dotyk teorie systémů klasifikace a analýza biosignálů Co je signál? Co je biosignál? Co si počít
Časové řady, typy trendových funkcí a odhady trendů
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces
Časové řady, typy trendových funkcí a odhady trendů
Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové
Číslicové zpracování signálů a Fourierova analýza.
Číslicové zpracování signálů a Fourierova analýza www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Úvod a motivace 2. Data v časové a frekvenční oblasti 3. Fourierova analýza teoreticky 4. Fourierova analýza
Náhodné signály. Honza Černocký, ÚPGM
Náhodné signály Honza Černocký, ÚPGM Signály ve škole a v reálném světě Deterministické Rovnice Obrázek Algoritmus Kus kódu } Můžeme vypočítat Málo informace! Náhodné Nevíme přesně Pokaždé jiné Především
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v
Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti
Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY
Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY, ČASOVÉ ŘADY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady,
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz LITERATURA Holčík, J.: přednáškové prezentace Holčík, J.: Analýza a klasifikace signálů.
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky
A0M38SPP - Signálové procesory v praxi - přednáška 7 2 Motivace příklad použití lokace radarového echa Význam korelace Popis náhodných signálů číselné charakteristiky (momenty) Matematická definice korelační
Modelování a simulace Lukáš Otte
Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast
1. Základy teorie přenosu informací
1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných
Měření závislosti statistických dat
5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě
Transformace obrazu Josef Pelikán KSVI MFF UK Praha
Transformace obrazu 99725 Josef Pelikán KSVI MFF UK Praha email: Josef.Pelikan@mff.cuni.cz WWW: http://cgg.ms.mff.cuni.cz/~pepca/ Transformace 2D obrazu dekorelace dat potlačení závislosti jednotlivých
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY
SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)
7. Rozdělení pravděpodobnosti ve statistice
7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,
Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management jakosti"
Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management jakosti" školní rok 2013/2014 Integrované systémy managementu A 1. Koncepce a principy integrovaných
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015
Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31
Cvičná bakalářská zkouška, 1. varianta
jméno: studijní obor: PřF BIMAT počet listů(včetně tohoto): 1 2 3 4 5 celkem Cvičná bakalářská zkouška, 1. varianta 1. Matematická analýza Najdětelokálníextrémyfunkce f(x,y)=e 4(x y) x2 y 2. 2. Lineární
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně
Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy
Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita
Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové
Analýza lineárních regulačních systémů v časové doméně. V Modelice (ale i v Simulinku) máme blok TransfeFunction
Analýza lineárních regulačních systémů v časové doméně V Modelice (ale i v Simulinku) máme blok TransfeFunction Studijní materiály http://physiome.cz/atlas/sim/regulacesys/ Khoo: Physiological Control
Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů
Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle
Vlastnosti a modelování aditivního
Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),
fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot Heart Rate Variability) je jev, který
BIOLOGICKÉ A LÉKAŘSKÉ SIGNÁLY VI. VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU VARIABILITA SRDEČNÍHO RYTMU, tj. fluktuace jak dob trvání po sobě jdoucích srdečních cyklů, tak hodnot okamžité
KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni
KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
Tématické okruhy pro státní závěrečné zkoušky. Navazující magisterské studium. studijní obor "Management kvality"
Tématické okruhy pro státní závěrečné zkoušky Navazující magisterské studium studijní obor "Management kvality" školní rok 2016/2017 Integrované systémy managementu A 1. Koncepce a principy integrovaných
Základní metody číslicového zpracování signálu a obrazu část II.
A4M38AVS Aplikace vestavěných systémů Přednáška č. 8 Základní metody číslicového zpracování signálu a obrazu část II. Radek Sedláček, katedra měření, ČVUT FEL, 2015 Obsah přednášky Převzorkování decimace,
1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
Analýza a zpracování signálů
Analýza a zpracování ů Digital Signal Processing disciplína, která nám umožňuje nahradit (v případě že nezpracováváme vf y) obvody, dříve složené z rezistorů a kapacitorů, dvěma antialiasingovými filtry,
Úvod do medicínské informatiky pro Bc. studium. 6. přednáška
Metody zpracování biosignálů 6. přednáška 1 Biosignály Živé objekty produkují signály biologického původu. Tyto signály mohou být elektrické (např. elektrické potenciály vznikající při svalové činnosti),
Úvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů
A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky
Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně
Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí
EXPERIMENTÁLNÍ MECHANIKA 1. Jan Krystek
EXPERIMENTÁLNÍ MECHANIKA 1 2. přednáška Jan Krystek 27. září 2017 ZÁKLADY TEORIE EXPERIMENTU EXPERIMENT soustava cílevědomě řízených činností s určitou posloupností CÍL EXPERIMENTU získání objektivních
Algoritmy a struktury neuropočítačů ASN - P10. Aplikace UNS v biomedicíně
Aplikace UNS v biomedicíně aplikace v medicíně postup při zpracování úloh Aplikace UNS v medicíně Důvod: nalezení exaktnějších, levnějších a snadnějších metod určování diagnóz pro lékaře nalezení šetrnějších
doc. Dr. Ing. Elias TOMEH Elias Tomeh / Snímek 1
doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Frekvenční spektrum Dělení frekvenčního pásma (počet čar) Průměrování Časovou váhovou funkci Elias Tomeh / Snímek 2 Vzorkovací
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz @iba.muni.cz,, Kamenice 3, 4. patro, dv.č.44.44 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz XI. STABILITA
CW01 - Teorie měření a regulace
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
SIGNÁLY A LINEÁRNÍ SYSTÉMY
SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ
P7: Základy zpracování signálu
P7: Základy zpracování signálu Úvodem - Signál (lat. signum) bychom mohli definovat jako záměrný fyzikální jev, nesoucí informaci o nějaké události. - Signálem je rovněž funkce, která převádí nezávislou
analýzy dat v oboru Matematická biologie
INSTITUT BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Komplexní přístup k výuce analýzy dat v oboru Matematická biologie Tomáš Pavlík, Daniel Schwarz, Jiří Jarkovský,
Lékařská fakulta Masarykovy univerzity Brno. MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál / 35
Biosignál MUDr. Jaromír Šrámek Biofyzikální ústav Lékařská fakulta Masarykovy univerzity Brno 2012 MUDr. Jaromír Šrámek (BFÚ LF MU) Biosignál 2012 1 / 35 Obsah co nás dnes čeká... Opakování základních
A/D převodníky - parametry
A/D převodníky - parametry lineární kvantování -(kritériem je jednoduchost kvantovacího obvodu), parametry ADC : statické odstup signálu od kvantizačního šumu SQNR, efektivní počet bitů n ef, dynamický
PRINCIPY ZABEZPEČENÍ KVALITY
(c) David MILDE, 2013 PRINCIPY ZABEZPEČENÍ KVALITY POUŽÍVANÁ OPATŘENÍ QA/QC Interní opatření (uvnitř laboratoře): pravidelná analýza kontrolních vzorků a CRM, sledování slepých postupů a možných kontaminací,
1. Přednáška. Ing. Miroslav Šulai, MBA
N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy
Elektronická podpora výuky na ÚBMI
Závěrečná zpráva rozvojového projektu Elektronická podpora výuky na ÚBMI MŠMT č. 645 Odpovědný řešitel: Prof. Ing. Jiří Holčík, CSc. ČVUT v Praze - FBMI Kladno, leden 2006 Vyhodnocení splněných cílů a
Regulační diagramy (RD)
Regulační diagramy (RD) Control Charts Patří k základním nástrojům vnitřní QC laboratoře či výrobního procesu (grafická pomůcka). Pomocí RD lze dlouhodobě sledovat stabilitu (chemického) měřícího systému.
Úvod do analýzy časových řad
Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický
MATEMATICKÁ STATISTIKA - XP01MST
MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného
Signál v čase a jeho spektrum
Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě
4.1 Metoda horizontální a vertikální finanční analýzy
4. Extenzívní ukazatelé finanční analýzy 4.1 Metoda horizontální a vertikální finanční analýzy 4.1.1 Horizontální analýza (analýza vývojových trendů -AVT) AVT = časové změny ukazatelů (nejen absolutních)
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL
MĚŘENÍ, TYPY VELIČIN a TYPY ŠKÁL Matematika a stejně i matematická statistika a biometrie s námi hovoří řečí čísel. Musíme tedy vlastnosti nebo intenzitu vlastností jedinců změřit kvantifikovat. Měřením
STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7
Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru
Struktura a typy lékařských přístrojů. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů
Struktura a typy lékařských přístrojů X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Elektronické lékařské přístroje využití přístrojové techniky v medicíně diagnostické
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ
31SCS Speciální číslicové systémy Antialiasing
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE 2006/2007 31SCS Speciální číslicové systémy Antialiasing Vypracoval: Ivo Vágner Email: Vagnei1@seznam.cz 1/7 Převod analogového signálu na digitální Složité operace,
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky
MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
Chyby měření 210DPSM
Chyby měření 210DPSM Jan Zatloukal Stručný přehled Zdroje a druhy chyb Systematické chyby měření Náhodné chyby měření Spojité a diskrétní náhodné veličiny Normální rozdělení a jeho vlastnosti Odhad parametrů
Digitalizace převod AS DS (analogový diskrétní signál )
Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování
Aplikace T -prostorů při modelování kompozičních časových řad
Aplikace T -prostorů při modelování kompozičních časových řad P. Kynčlová 1,3 P. Filzmoser 1, K. Hron 2,3 1 Department of Statistics and Probability Theory Vienna University of Technology 2 Katedra matematické
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik
Elektronické obvody analýza a simulace
Elektronické obvody analýza a simulace Jiří Hospodka katedra Teorie obvodů, 804/B3 ČVUT FEL 4. října 2006 Jiří Hospodka (ČVUT FEL) Elektronické obvody analýza a simulace 4. října 2006 1 / 7 Charakteristika
ČESKÁ TECHNICKÁ NORMA
ČESKÁ TECHNICKÁ NORMA ICS 17.160 2006 Vibrace a rázy - Zpracování signálů - Část 1: Obecný úvod ČSN ISO 18431-1 01 1466 Říjen Mechanical vibration and shock - Signal processing - Part 1: General introduction
Regresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Předmět A3B31TES/Př. 13
Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace
Úvod do problematiky měření
1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek
Stavový model a Kalmanův filtr
Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace
1. Přednáška: Obecné Inf. + Signály a jejich reprezentace 1 Obecné informace Změna rozvrhů Docházka na cvičení 2 Literatura a podklady Základní učební texty : Prchal J., Šimák B.: Digitální zpracování
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH
DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských
Základní pojmy o signálech
Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz
NÁHODNÝ VEKTOR. 4. cvičení
NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.
Statistické vyhodnocování experimentálních dat. Mgr. Martin Čada, Ph.D.
Statistické vyhodnocování experimentálních dat Mgr. Martin Čada, Ph.D. - Ústav fyziky a biofyziky, PřF JU - E-mail: mcada@prf.jcu.cz - Tel.: 266052418 - Organizace výuky, zkouška, zápočet - Přednášky a
Rozprostřené spektrum. Multiplex a mnohonásobný přístup
Rozprostřené spektrum Multiplex a mnohonásobný přístup Multiplex Přenos více nezávislých informačních signálů jedním přenosovým prostředím (mezi dvěma body) Multiplexování MPX Vratný proces sdružování
3. Metody analýzy časových řad v klimatologii
3. Metody analýzy časových řad v klimatologii 3.1 Periodicita a cykličnost Klima je vyjádřeno různými prvky (např. teplota vzduchu, srážky, indexy), kolísajícími v prostoru a čase: {a, b, c, } = f (x,
Návrh frekvenčního filtru
Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude
2 Hlavní charakteristiky v analýze přežití
2 Hlavní charakteristiky v analýze přežití Předpokládané výstupy z výuky: 1. Student umí definovat funkci přežití, rizikovou funkci a kumulativní rizikovou funkci a zná funkční vazby mezi nimi 2. Student
5 Časové řady. Definice 16 Posloupnost náhodných veličin {X t, t T } nazveme slabě stacionární, pokud
5 Časové řady Časovou řadou rozumíme posloupnost reálných náhodných veličin X 1,..., X n, přičemž indexy t = 1,..., n interpretujeme jako časové okamžiky. Někdy však uvažujeme i nekonečné posloupnosti
U Úvod do modelování a simulace systémů
U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení