Modelování a simulace regulátorů a čidel

Rozměr: px
Začít zobrazení ze stránky:

Download "Modelování a simulace regulátorů a čidel"

Transkript

1 Modeloání a simulace regulátorů a čidel. Modeloání a simulace PI regulátoru Přenos PI regulátoru je yjádřen následujícím ztahem F( p) = ( + p ) p V Simulinu je tento blo obsažen nihoně prů. Bohužel použití PI regulátorů obodech eletronicých systémů je spojeno drtié ětšině apliací s tím, že regulátor pracuje určitých pásmech na omezení. Protože nestačí pouze omezit ýstupní signál (nitřní integrace by poračoala dále, což by mělo negatiní li na přechodné děje např. při eentuelní změně znaména žádané hodnoty), nelze na tyto apliace standardní blo PI regulátoru z nihony použít. Na obr. je znázorněno možné řešení, dy spolu s omezením ýstupu je proedeno omezení i integrační složy a to tím způsobem, že oamžiu omezení ýstupu celého regulátoru dojde přepnutí stupu integrátoru na nulu, což způsobí, že na jeho ýstupu bude onstantní hodnota (dojde zastaení integroání) a to až do oamžiu, dy omezení na ýstupu celého regulátoru pomine (při snížení regulační odchyly). in_ in_ Sum /r Constant Switch /s Integrator - Sum f(u) r omezeni out_ Gain Fcn Obr.. Simulační model PI regulátoru Přidáním deriační složy bychom jednoduše dostali PID regulátor. Popsaný model předstauje spojitý regulátor, resp. oamžiy ýpočtu jsou dány eliostí rou ýpočtu Simulinu.. Modeloání a simulace PSD regulátoru ento proporcionálně - sumačně - diferenční regulátor, pracující disrétní oblasti, je analogií PID regulátoru pracujícího oblasti spojité. Vstupní eličina: e... regulační odchyla (žádaná - sutečná hodnota) Výstupní eličina: y... ýstup z regulátoru Parametry: R [-] zesílení regulátoru [ms] zoroací perioda RI [ms]... integrační časoá onstanta regulátoru D [ms]... deriační časoá onstanta regulátoru om... absolutní hodnota symetricého omezení ýstupu ( ladné i záporné polaritě)

2 Poznáma: Vhodným zadáním parametrů můžeme PSD regulátor změnit na P, PS nebo PD regulátor. Činnost PSD regulátoru lze popsat diferenční ronicí (pro obdélníoou integraci) y y e e e D [ ] = = R + ei + ( ) RI i= de e, e - je regulační odchyla -tém a (-)-ém rou Na obr.. je ýojoý diagram blou PSD regulátoru. Jedná se o ideální regulátor s nuloou dobou ýpočtu (ýstup z blou je dispozici čase načtení stupu). Součástí blou je zoroač na stupu a taroač nultého řádu na ýstupu. Algoritmus blou roněž obsahuje omezoač obou polaritách. Poud ýstupní hodnota z blou dosáhne úroně omezení, ýstup se omezí a odpojí se stup do sumační složy regulátoru. Z t = suma = e = t = round t e - = e e = e y ( ) D = R e + e e + suma y om y = om sign(y ) suma = suma + e / RI Obr.. Výojoý diagram PSD regulátoru

3 Uáza simulace PS a PSD regulátoru Simulační model simuloaného PSD, resp. PS regulátoru je na obr. 3. Samotný blo PSD regulátoru odpoídající ýojoému diagramu na obr.. je obsažen e ytořeném m-file. Byla simuloána odeza PS, resp. PSD regulátoru na stupní signál dle obr. 4. Obr. 5. PS regulátor s parametry: R =,5, = ms, RI =5 ms, D = ms, om=. Obr. 6. PSD regulátor s parametry: R =,5, = ms, RI =5 ms, D =5 ms, om=. Obr. 7. PSD regulátor s parametry: R =,5, = ms, RI = ms, D = ms, om=. Cloc.5 r 5 ri Repeating Sequence omezení 5 MALAB Function PSD regulátor fpsd ystup stup PSD o Worspace d Obr. 3. Simulační model PSD regulátoru Obr. 4. Průběh stupního signálu Obr. 5. Odeza PS regulátoru Obr. 6. Odeza PSD regulátoru Obr. 7. Odeza PSD regulátoru (ětší RI, D ) 3

4 ČIDLA Pro běžné simulace obyle nahrazujeme čidla setračným členem s parametry: zesílením a časoou onstantou: F( p) = + p Zesílení je dáno poměrem ýstupního nízoúroňoého signálu e stupní, sutečné hodnotě snímané eličiny (yjádřené e fyziálních jednotách). Časoá onstanta je dána onrétním způsobem snímání dané eličiny (parazitní či filtrační časoá onstanta, li zoroání u číslicoých systémů atd.). Poud chceme model čidla zpřesnit, musíme řešení přistupoat dle sutečné, onrétní situace. V dalším textu je uáza řešení inrementálního čidla s uažoáním sutečného způsobu zoroání signálu. 3. Modeloání a simulace inrementálního čidla Blo slouží zísání informací o poloze a rychlosti, ta ja jsou yhodnoceny z inrementálního čidla. Vstupní eličina: θ m [rad]...mechanicý úhel natočení rotoru Výstupní eličiny: θ mic [rad nebo inr]...signál úměrný mechanicému úhlu natočení na ýstupu z inrementálního čidla Ω mic [rad/s nebo inr/s]...signál úměrný úhloé rychlosti na ýstupu z inrementálního čidla Parametry: I [imp/ot]... počet impulzů inrementálního čidla na otáču. Má-li např. samotné čidlo 4 imp/ot a táto hodnota se dále eletricy násobí čtyřmi, bude I = 496. IC [-]... zesílení blou: poud IC =, pa θ mic [rad], resp. Ω mic [rad/s] poud IC =I /(π), pa θ mic [inr], resp. Ω mic [inr/s] [ms]... zoroací perioda, tj. hodnota, s jaou se zoruje sta čítače. Výstupní signál o úhlu natočení θ mic zísáme tím, že stupní spojitý signál úhlu natočení θ m projde antoačem. ím zísáme údaj θ m o stau čítače (při IC =I /(π) - iz obr. 8. a) čítajícího impulzy z inrementálního čidla. ento signál se pa zoruje se zoroací periodou. Signál ze zoroače je pa taroán taroačem nultého řádu -iz obr. 9. a ýojoý diagram na obr.. Úhloou rychlost Ω mic zísáme dle obr. 9., tj. z atuálního a předchozího stau čítače a eliosti zoroací periody. 4

5 θ m θ m 4 8π/I 3 6π/I 4π/I π/i π 3π 5π 7π I I I I θ m π 3π 5π 7π I I I I θ m a) pro IC =I /(π) b) pro IC = Obr. 8. antoání signálu inrementálním čidle θ m θ m VVAČ VZOROVAČ VAROVAČ θ mic θ θ mic( ) mic( ) V VAROVAČ Ω mic Obr. 9. Vytoření ýstupních signálů z inrementálního čidla Z θ = I m π Iθ round I π t = round t θ - = θ θ = θ θ mic = θ Ω mic = (θ -θ - ) / Obr.. Výojoý diagram pro určení ýstupních eličin z inrementálního čidla 5

6 Poznáma: θ mic a Ω mic jsou modelu globální proměnné, taže až do přepsání zůstáají na půodní hodnotě. Uáza simulace inrementálního čidla Simulační model simuloaného inrementálního čidla je na obr.. Samotný blo inrementálního čidla odpoídající ýojoému diagramu na obr.. je obsažen e ytořeném m-file atioaném blou MALAB function. Byla simuloána odeza inrementálního čidla na stupní signál s onstantním úhloým zrychlením. Průběhy sutečných otáče, resp. polohy jsou na obr.., resp. 4., jím odpoídající signály z inrementálního čidla pa na obr. 3., resp. 5. Parametry inrementálního čidla: I =496 imp/ot, IC =, = ms. Pro zdůraznění charateru působení inrementálního čidla byl zolen elice rátý čas simulace ms. Cloc -zrychlení.5 Product sut. poloha sut. otacy Cloc3 incidlo Gain 496 I ic Cloc MALAB Function Inr. čidlo fincidlo Demux Demux poloha IC otacy IC o Worspace Obr.. Simulační model inrementálního čidla Obr.. Sutečné otáčy Ω m [rad/s] Obr. 3. Otáčy z inr. čidla Ω mic [rad/s] 6

7 Obr. 4. Sutečná poloha θ m [rad] Obr. 5. Poloha z inr. čidla θ mic [rad] 7

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i)

- Pokud máme na množině V zvoleno pevné očíslování vrcholů, můžeme váhovou funkci jednoznačně popsat. Symbolem ( i) DSM2 C 8 Problém neratší cesty Ohodnocený orientoaný graf: - Definice: Ohodnoceným orientoaným grafem na množině rcholů V = { 1, 2,, n} nazýáme obet G = V, w, de zobrazení w : V V R { } se nazýá áhoá funce

Více

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou: Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Spojité

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

zpracování signálů - Fourierova transformace, FFT Frekvenční

zpracování signálů - Fourierova transformace, FFT Frekvenční Digitální zpracování signálů - Fourierova transformace, FF Frevenční analýza 3. přednáša Jean Baptiste Joseph Fourier (768-830) Zálady experimentální mechaniy Frevenční analýza Proč se frevenční analýza

Více

Návrh vysokofrekvenčních linkových transformátorů

Návrh vysokofrekvenčních linkových transformátorů inové transformátory inové transformátory Při požadavu na transformaci impedancí v široém frevenčním pásmu, dy nelze obsáhnout požadovanou oblast mitočtů ani široopásmovými obvody, je třeba použít široopásmových

Více

20 - Číslicové a diskrétní řízení

20 - Číslicové a diskrétní řízení 20 - Číslicové a disrétní řízení Michael Šebe Automaticé řízení 2013 22-4-14 Analogové a číslicové řízení Proč číslicově? Snadno se přeprogramuje (srovnej s výměnou rezistorů/apacitorů v analogové řídicím

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:

Více

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE

SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE SCIENTIFIC PAPERS OF THE UNIVERSITY OF PARDUBICE Series B The Jan Perner Transport Faculty 5 (1999) ANALÝZA FUNKCE STEJNOSMĚRNÉHO MOTORU NAPÁJENÉHO ZE STŘÍDAVÉ SÍTĚ SIMULACÍ POMOCÍ PROGRAMU SPICE Jiří

Více

VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9

VYŠŠÍ ODBORNÁ ŠKOLA A STŘEDNÍ ŠKOLA SLABOPROUDÉ ELEKTROTECHNIKY Novovysočanská 48/280, Praha 9 1. Analogové měřicí přístroje Jsou přístroje, teré slouží měření různých eletricých veličin. Např. měření proudu, napětí a výonu. Pro měření těchto veličin nejčastěji používáme tyto soustavy:magnetoeletricá,

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Faulta mechatroniy a mezioborových inženýrsých studií ZPŮSOBY FREKVENČNÍHO ŘÍZENÍ ASYNCHRONNÍHO OTORU Z HLEDISKA DYNAIKY AUTOREFERÁT DISERTAČNÍ PRÁCE Liberec 6 Ing. Jiří

Více

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v

1) Zvolíme vztažný výkon; v tomto případě to může být libovolné číslo, například S v A1B15EN kraty Příklad č. 1 V soustaě na obrázku je označeném místě trojfázoý zkrat. rčete: a) počáteční rázoý zkratoý proud b) počáteční rázoý zkratoý ýkon c) nárazoý proud Řešení: 1) olíme ztažný ýkon;

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

KZPE semestrální projekt Zadání č. 1

KZPE semestrální projekt Zadání č. 1 Zadání č. 1 Navrhněte schéma zdroje napětí pro vstupní napětí 230V AC, který bude disponovat výstupními větvemi s napětím ±12V a 5V, kde každá větev musí být schopna dodat maximální proud 1A. Zdroj je

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu 4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační

Více

NAVRHOVÁNÍ A REALIZACE REGULÁTORŮ

NAVRHOVÁNÍ A REALIZACE REGULÁTORŮ Vysoá šola báňsá echnicá univerzita Ostrava NAVRHOVÁNÍ A REALIZACE REGULÁORŮ učební text Štěpán Ožana Ostrava 202 Recenze: prof. Dr. Ing. Miroslav Poorný Ing. Aleš Oujezdsý, Ph.D. Název: Navrhování a realizace

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Nastavení a ovládání Real-Time Toolboxu (v. 4.0.1) při práci s laboratorními úlohami Návod na cvičení Lukáš Hubka

Více

POŽADAVKY NA REGULACI

POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V RAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Základy řízení systémů cvičení 5 OŽADAVKY NA REGULACI etr Hušek (husek@control.felk.cvut.cz) Základními požadavky

Více

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č.

Mendelova zemědělská a lesnická univerzita Provozně ekonomická fakulta. Výpočet charakteristik ze tříděných údajů Statistika I. protokol č. Mendelova zemědělsá a lesnicá univerzita Provozně eonomicá faulta Výpočet charateristi ze tříděných údajů Statistia I. protool č. 2 Jan Grmela, 2. roční, Eonomicá informatia Zadání 130810, supina Středa

Více

Úvod do Kalmanova filtru

Úvod do Kalmanova filtru Kalmanův filtr = odhadovač stavu systému Úvod do Kalmanova filtru KF dává dohromady model systému a měření. Model systému použije tomu, aby odhadl, ja bude stav vypadat a poté stav porovná se sutečným

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

Obr.1 Princip Magnetoelektrické soustavy

Obr.1 Princip Magnetoelektrické soustavy rincipy měřicích soustav: 1. Magnetoeletricá (depreszý) 2. Eletrodynamicá 3. Induční 4. Feromagneticá 1.ANALOGOVÉ MĚŘICÍ ŘÍSTROJE Magnetoeletricá soustava: Založena na působení sil v magneticém poli permanentního

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

Typové příklady zapojení frekvenčních měničů TECO INVERTER 7300 CV. Verze: duben 2006

Typové příklady zapojení frekvenčních měničů TECO INVERTER 7300 CV. Verze: duben 2006 RELL, s.r.o., Centrum 7/, Tel./Fax/Zázn.: + SK-08 Dubnica nad áhom, Mobil: + 90 6 866 prevádzka: Strážovská 97/8, SK-08 ová Dubnica E-mail: prell@prell.sk www.prell.sk Typové příklady zapojení frekvenčních

Více

Regulace. Dvoustavová regulace

Regulace. Dvoustavová regulace Regulace Dvoustavová regulace Využívá se pro méně náročné aplikace. Z principu není možné dosáhnout nenulové regulační odchylky. Měřená hodnota charakteristickým způsobem kmitá kolem žádané hodnoty. Regulační

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač

Více

DIPLOMOVÁ PRÁCE 2008 Jiří Chuman

DIPLOMOVÁ PRÁCE 2008 Jiří Chuman ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ DIPLOMOVÁ PRÁCE 8 Jiří Chuman ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA ŘÍDÍCÍ TECHNIKY DIPLOMOVÁ PRÁCE Apliace

Více

Knihovna pro modelování procesů TXV čtvrté vydání září 2012 změny vyhrazeny

Knihovna pro modelování procesů TXV čtvrté vydání září 2012 změny vyhrazeny Knihovna pro modelování procesů TXV 003 44.01 čtvrté vydání září 2012 změny vyhrazeny 1 TXV 003 44.01 Historie změn Datum Vydání Popis změn červen 2008 1 První verze říjen 2008 2 Vygenerována nápověda

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru

Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Zapojení motoru Příloha A návod pro cvičení 1. SESTAVENÍ MODELU V PROSTŘEDÍ MATLAB SIMULINK Sestavte model real-time řízení v prostředí Matlab Simulink. 1.1. Zapojení motoru Začněte rozběhem motoru. Jeho otáčky se řídí

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ

KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ KNIHOVNA MODELŮ TECHNOLOGICKÝCH PROCESŮ Radim Pišan, František Gazdoš Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně Nad stráněmi 45, 760 05 Zlín Abstrakt V článku je představena knihovna

Více

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček

Návrh a simulace zkušební stolice olejového čerpadla. Martin Krajíček Návrh a simulace zkušební stolice olejového čerpadla Autor: Vedoucí diplomové práce: Martin Krajíček Prof. Michael Valášek 1 Cíle práce 1. Vytvoření specifikace zařízení 2. Návrh zařízení včetně hydraulického

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Postup stanovení cen za přepravu plynu. + CBK pi. + FG pi. ) + SD pi

Postup stanovení cen za přepravu plynu. + CBK pi. + FG pi. ) + SD pi Postup stanoení cen za přeprau plynu Příloha č. 10 k yhlášce č. 150/2007 Sb. Poolené celkoé tržby PT pi Kč proozoatele přepraní soustay jsou stanoeny ztahem PT pi = PV Upi + NCP pi (PZT pi + FG pi ) +

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

Regulátor tlaku G1/8, NW 2,5. Katalogový list 5.96.002-1CZ 241

Regulátor tlaku G1/8, NW 2,5. Katalogový list 5.96.002-1CZ 241 AP5D00GY0X Technické změny vyhrazeny. eličiny podle DI 9 Údaje o tlaku přetlak Konstrukce membránový regulátor tlaku s PIEZO pilotním signálem a pneumatickou a elektronickou zpětnou vazbou Směr průtoku

Více

Řízení modelu letadla pomocí PLC Mitsubishi

Řízení modelu letadla pomocí PLC Mitsubishi Řízení modelu letadla pomocí PLC Mitsubishi Jakub Nosek TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Porovnání diskrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci

Porovnání diskrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci Porovnání disrétního spojitého regulátoru při přímovazební a zpětnovazební regulaci Comparison of discrete-time and continuous-time controller at feedforward and feedbac control Miroslav Kirchner Baalářsá

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

Číslicový Voltmetr s ICL7107

Číslicový Voltmetr s ICL7107 České vysoké učení technické v Praze Fakulta elektrotechnická Analogové předzpracování signálu a jeho digitalizace Číslicový Voltmetr s ICL7107 Ondřej Tomíška Petr Česák Petr Ornst 2002/2003 ZADÁNÍ: 1)

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1

POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1 POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1 (zimní semestr 2012/2013, kompletní verze, 2. 11. 2012) Téma 1 / Úloha 1: (zesilovač napětí s ideálním operačním zesilovačem) Úkolem je navrhnout dva různé

Více

Dynamika vozidla Hnací a dynamická charakteristika vozidla

Dynamika vozidla Hnací a dynamická charakteristika vozidla Dynamika ozidla Hnací a dynamická charakteristika ozidla Zpracoal: Pael BRABEC Pracoiště: VM Tento materiál znikl jako součást projektu In-TECH, který je spoluinancoán Eropským sociálním ondem a státním

Více

MOTORY A ŘÍZENÍ POHONŮ MAXON verze 1.5 ( ) Základní parametry řídicích jednotek rychlosti pro motory DC a EC. maxon

MOTORY A ŘÍZENÍ POHONŮ MAXON verze 1.5 ( ) Základní parametry řídicích jednotek rychlosti pro motory DC a EC. maxon Základní parametry řídicích jednotek pro motory DC a EC maxon výtah z dokumentu MOTORY A ŘÍZENÍ POHONŮ Verze 1.5 (25. 3. 2008) UZIMEX PRAHA, spol. s r.o. 1/6 Základní parametry řídicích jednotek DC Vybavení

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1

Projekt - Voltmetr. Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha. A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Projekt - Voltmetr Přednáška 3 - část A3B38MMP, 2015 J. Fischer kat. měření, ČVUT - FEL, Praha A3B38MMP, 2015, J.Fischer, kat. měření, ČVUT - FEL 1 Náplň Projekt Voltmetr Princip převodu Obvodové řešení

Více

Ě Ý Í Č í ří í Ř ř ř ří é í í í Ž ř é ř é č ů í é é ž č é č é ž í ů é č í é é ž í í Ž Ž é ú í ř é é Íí ř ů é ž č ů ú í ů ů ú é í í č í í é ř é ů ů í é ř é í ů ž í Í é Í Ř ř ů ř ů ž í é í č í č í í ří í

Více

Model helikoptéry H1

Model helikoptéry H1 Model helikoptéry H Jan Nedvěd nedvej@fel.cvut.cz Hodnoty a rovnice, které jsou zde uvedeny, byly naměřeny a odvozeny pro model vrtulníku H umístěného v laboratoři č. 26 v budově Elektrotechnické fakulty

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

1 Smíšené digitálně-analogové simulace

1 Smíšené digitálně-analogové simulace 1 Smíšené digitálně-analogové simulace Cílem cvičení je osvojení práce s analogově-digitálními obvody a komplexní realizací modelu součástky na základě blokového schématu. Cíle cvičení Integrující AD převodník

Více

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra. @091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba

Více

1.3.7 Rovnoměrný pohyb po kružnici II

1.3.7 Rovnoměrný pohyb po kružnici II ..7 Ronoměný pohyb po kužnici II Předpoklady: 6 Pedagogická poznámka: Obsah hodiny je hodně nadnesený. Pokud necháte žáky počítat samostatně, yjde na dě hodiny. Úodní ozbo nedopoučuji příliš uychloat.

Více

2. STAVBA PARTPROGRAMU

2. STAVBA PARTPROGRAMU Stavba partprogramu 2 2. STAVBA PARTPROGRAMU 2.1 Slovo partprogramu 2.1.1 Stavba slova Elementárním stavebním prvem partprogramu je tzv. slovo (instruce programu). Každé slovo sestává z písmene adresy

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar Bakalářská práce 2015 1 2 3 Prohlášení Prohlašuji: Tuto práci jsem vypracoval

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Zpětná vazba a linearita zesílení

Zpětná vazba a linearita zesílení Zpětná vazba Zpětná vazba přivádí část výstupního signálu zpět na vstup. Kladná zp. vazba způsobuje nestabilitu, používá se vyjímečně. Záporná zp. vazba (zmenšení vstupního signálu o část výstupního) omezuje

Více

Kinetická teorie plynu

Kinetická teorie plynu Kineticá teorie plnu Kineticá teorie plnu, terá prní poloině 9.století doázala úspěšně spojit lasicou fenoenologicou terodnaiu s echaniou, poažuje pln za soustau elého počtu nepatrných hotných částic oleul,

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

HAZARDY V LOGICKÝCH SYSTÉMECH

HAZARDY V LOGICKÝCH SYSTÉMECH HAZARDY V LOGICKÝCH SYSTÉMECH 1. FUNKČNÍ HAZARD : Při změně vstupního stavu vstupních proměnných, kdy se bude měnit více jak jedna proměnná - v reálné praxi však současná změna nenastává a ke změnám hodnot

Více

SPECIFIC UTILIZATION OF MICROSOFT VISUAL BASIC FOR APPLICATION WITH PRINCIPLES OF SYSTEM MODELING. Tomáš BAROT

SPECIFIC UTILIZATION OF MICROSOFT VISUAL BASIC FOR APPLICATION WITH PRINCIPLES OF SYSTEM MODELING. Tomáš BAROT OTHER ARTICLES SPECIFIC UTILIZATION OF MICROSOFT VISUAL BASIC FOR APPLICATION WITH PRINCIPLES OF SYSTEM MODELING Tomáš BAROT Abstract: The article is focused on utilization of programming language Microsoft

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

1.5.7 Zákon zachování mechanické energie I

1.5.7 Zákon zachování mechanické energie I .5.7 Záon zacoání mecanicé energie I Předolady: 506 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα. Předmět, terý se oybuje ryclostí má ineticou energii E = m. Předmět, terý se nacází e ýšce nad ladinou

Více

Využití expertního systému při odhadu vlastností výrobků

Využití expertního systému při odhadu vlastností výrobků Vužití epertního sstému při odhadu vlastností výrobů ibor Žá Abstrat. Článe se zabývá možností ja vužít fuzz epertní sstém pro popis vlastností výrobu. Důvodem tohoto přístupu je možnost vužití vágních

Více

22. Mechanické a elektromagnetické kmity

22. Mechanické a elektromagnetické kmity . Mechanicé a eletroagneticé ity. Mechanicé ity Oscilátor tleso, teré je schoné itat, (itání zsobuje síla ružnosti, nebo tíhová síla, i itání se eriodicy ní otenciální energie oscilátoru v energii ineticou

Více

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ

REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ REGULACE ČINNOSTI ELEKTRICKÝCH ZAŘÍZENÍ Úvod Záporná zpěná vazba Úloha reguláoru Druhy reguláorů Seřízení reguláoru Snímaní informací o echnologickém procesu ELES11-1 Úvod Ovládání je řízení, při kerém

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

DUM 02 téma: Spojitá regulace - výklad

DUM 02 téma: Spojitá regulace - výklad DUM 02 téma: Spojitá regulace - výklad ze sady: 03 Regulátor ze šablony: 01 Automatizační technika I Určeno pro 4. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika Vzdělávací

Více

Operační zesilovač (dále OZ)

Operační zesilovač (dále OZ) http://www.coptkm.cz/ Operační zesilovač (dále OZ) OZ má složité vnitřní zapojení a byl původně vyvinut pro analogové počítače, kde měl zpracovávat základní matematické operace. V současné době je jeho

Více

2. Základní teorie regulace / Regulace ve vytápění

2. Základní teorie regulace / Regulace ve vytápění Regulace v technice prostředí (staveb) (2161087 + 2161109) 2. Základní teorie regulace / Regulace ve vytápění 9. 3. 2016 a 16. 3. 2016 Ing. Jindřich Boháč Regulace v technice prostředí Ing. Jindřich Boháč

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Defektoskopie 2010, 10. až , Plzeň. Josef BAJER Karel HÁJEK. Univerzita obrany Brno Katedra elektrotechniky

Defektoskopie 2010, 10. až , Plzeň. Josef BAJER Karel HÁJEK. Univerzita obrany Brno Katedra elektrotechniky Defektoskopie 010, 10. až 1. 11. 010, Plzeň Josef BAJER Karel HÁJEK Univerzita obrany Brno Katedra elektrotechniky OBSAH Úvod Varianty realizované pomocí operačních zesilovačů (OZ) Rezistory pro eliminaci

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

Signálové a mezisystémové převodníky

Signálové a mezisystémové převodníky Signálové a mezisystémové převodníky Tyto převodníky slouží pro generování jednotného nebo unifikovaného signálu z přirozených signálů vznikajících v čidlech. Často jsou nazývány vysílači příslušné fyzikální

Více