4.1 Řešení základních typů diferenciálních rovnic 1.řádu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4.1 Řešení základních typů diferenciálních rovnic 1.řádu"

Transkript

1 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po integraci získáme řešení rovnice ve tvaru ( ) = C / kde C je konstanta a ( 0) resp. ( 0 + ). Řešením dané úloh je funkce z daná rovnicí z ( ) = / (0 + ) Určete všechna řešení diferenciální rovnice + = 4. Nejdříve najdeme řešení homogenní rovnice + = 0. () Po separaci proměnných v rovnici () a po integraci je ( ) = Ce R C je konstanta. Řešení nehomogenní rovnice určíme ve tvaru ( ) = u( ) e () Kde u() je neznámá funkce kterou najdeme dosadíme-li z () do rovnice : u e ue + ue = 4. (4) Z rovnice (4) vpočteme u( ) = 4 e d + K u = 4e a po integraci dostaneme kde K je konstanta. Je te u( ) = e + K a všechna řešení rovnice jsou určena rovnicí ( ) = Ke + R.

2 4..44 Určete všechna řešení rovnice d + = 0 ( ). Rovnici lze zapsat ve tvaru nehomogenní lineární diferenciální rovnice prvního řádu vzhledem k proměnné : d = () za předpokladu že 0. Dosazením = 0 do rovnice ověříme že funkce ( ) = 0 R je triviálním řešením této rovnice. Netriviální řešení rovnice určíme řešením rovnice (). Nejdříve najdeme řešení homogenní rovnice d = 0. Po separaci proměnných a po integraci dostaneme ( ) = C kde C je konstanta a ( 0) resp. ( 0+ ). Řešení rovnice () určíme ve tvaru ( ) = u( ) kde u() je neznámá funkce kterou najdeme dosadíme-li do rovnice (): du +. u u = Pro 0 dostaneme podmínku du / = a te u ( ) = + K kde K je konstanta. Všechna řešení rovnice jsou určena rovnicemi ( ) = K + R ( ) = 0 R Určete integrální křivku diferenciální rovnice ( + ) = d procházející bodem M [ ]. Rovnici lze pro 0 zapsat ve tvaru d =. () Funkce ( ) = 0 je řešením rovnice ale nevhovuje dané počáteční podmínce. Rovnice () je nehomogenní lineární diferenciální rovnicí prvního řádu vzhledem k proměnné. Nejdříve najdeme řešení homogenní rovnice

3 d = 0. () Po separaci proměnných a po integraci dostaneme řešení rovnice () ve tvaru ( ) = C kde C je konstanta a ( 0) resp. ( 0+ ). Řešení rovnice () te hledáme ve tvaru ( ) = u( ). Dosadíme-li do rovnice () musí platit u + u u = a te pro 0 je u ( ) = + K kde K je konstanta. Řešení rovnice () jsou určena rovnicí ( ) = K + 0. Všechna řešení rovnice jsou určena rovnicemi ( ) = K + R a ( ) = 0 R. Z množin integrálních křivek určených těmito rovnicemi najdeme integrální křivku procházející bodem M [ ]. Musí být splněna rovnice = K + a te K = 0. Hledanou integrální křivkou rovnice je parabola s rovnicí = Určete všechna řešení diferenciální rovnice d dt = t cos + sin ( ). Rovnice dt = t cos + sin( ) () d Je nehomogenní lineární diferenciální rovnicí prvního řádu vzhledem k proměnné t. Nejdříve určíme řešení homogenní rovnice dt t cos = 0. d () Po separaci proměnných v rovnici () a po integraci dostaneme za předpokladu že t 0 řešení rovnice (): sin t ( ) = Ce kde C je konstanta a R Řešení nehomogenní rovnice () hledáme ve tvaru sin t ( ) = u( ) e přičemž musí platit sin sin u e + u cos e u cos = sin( ). Je te u = sin ( ) u( ) = e sin sin cos e sin d + K kde K je konstanta. Po integraci dostaneme

4 u( ) = sin ( + sin ) e + K. Řešení rovnice je určeno implicitně rovnicí t = Ke sin ( + sin ) Určete řešení z() diferenciální rovnice ( ) + = Které vhovuje počáteční podmínce z ( ) = /. Funkce p ( ) = = q( ) jsou definované a spojité na intervalu + ) D je zajištěna eistence a jednoznačnost řeše- leží v oblasti D eistuje právě v libovolném bodě oblasti = ( 0 + ) ( + ) ní Cauchov úloh pro rovnici. Protože bod [ / ] jedno řešení dané úloh. 0 a te Určíme nejdříve řešení rovnice. Řešíme-li homogenní rovnici + ( ) = 0 separaci proměnných a po integraci dostaneme řešení ve tvaru konstanta. Řešení rovnice hledáme ve tvaru platit / ( ) = Ce / pak po kde C je ( ) = u( ) e přičemž pro funkci u() musí u e / u / / ( ) e + u( ) e = neboli u = e /. Po integraci získáme funkci u ve tvaru u( ) = 9 / ( ) e + K kde K je konstanta. Všechna řešení rovnice jsou určena rovnicí ( ) = Ke / ). Pro funkci z která je řešením dané Cauchov úloh musí te platit z( ) = Ke z = Ke / / = z čehož plne že K = 0. Řešením dané úloh je funkce

5 9 z ( ) = 0 + ) Určete řešení z() Cauchov úloh pro rovnici e = s počáteční podmínkou z( 0) = 4. Funkce p ( ) = q( ) = e jsou definované a spojité na intervalu ( + ). Je te zajištěna eistence a jednoznačnost řešení Cauchov úloh pro libovolnou počáteční podmínku. Řešení rovnice budeme hledat ve tvaru ( ) = h( ) g( ). Dosadíme-li za a za = h g + hg do rovnice dostaneme diferenciální rovnici h g + hg hg = e neboli ( g g) e. h g + h = () Funkci g zvolíme tak ab druhý člen na levé straně rovnice () bl roven nule tj. tak ab splňovala rovnici g g = 0. () Rovnice() je diferenciální rovnicí se separovatelnými proměnnými jejímž řešením je např. funkce g ( ) = e (zvolili jsme integrační konstantu rovnou jedné). Dosadíme-li g ( ) = e do rovnice () dostaneme opět diferenciální rovnici se separovatelnými proměnnými pro neznámou funkci h: h e = e. Řešením rovnice (4) jsou všechn funkce h ( ) = + C Všechna řešení rovnice jsou te určena rovnicí kde C je konstanta. ( + C) e ( ) = R. Řešení z Cauchov úloh má splňovat počáteční podmínku ( 0) = 4 z čehož plne že C = = 4. Řešení z je te určeno rovnicí ( + ) e 4 z( ) = R.

6 4..49 Určete řešení z() Cauchov úloh pro rovnici + = q( ) kde 0 pro ( ) q ( ) = pro + ) při počáteční podmínce z( 0) =. Snadno ověříme že řešení dané úloh eistuje a je jediné. Protože počáteční hodnota = 0 leží v intervalu ( ) určíme nejdříve v tomto intervalu řešení Cauchov úloh pro rovnici z + = 0 ( ) ( ). s počáteční podmínkou z 0 = Řešením této úloh je funkce ( ) = z e ( ). Na intervalu + ) je pravá strana rovnice definována funkcí q ( ) =. Řešíme te dále rovnici + = ( ) na intervalu + ) s počáteční podmínkou kterou získáme z podmínk spojitosti řešení z na intervalu ( + ). Označíme-li z řešení rovnice ( ) na intervalu + ) musí platit z () = z (). Protože z () = e řešíme rovnici ( ) s počáteční podmínkou z () = e. Řešení rovnice hledáme ve tvaru = hg. Po dosazení do této rovnice dostaneme ( ) ( g + g) =. h g + h Položíme-li činitele g + g rovného nule dostaneme stejnou rovnici jako je rovnice ( ). Za funkci g lze zvolit g( ) = e. Z rovnice () pak plne že h = ( ) e a te h 4 ( ) = e + C. z = e : Konstantu C určíme z počáteční podmínk ( ) z 4 () = Ce + = e. Z poslední rovnice vpočteme C = ( 4 + e ).. Pro řešení z dané úloh platí pro 4 z ( ) = z ( ) ( ) a z ( ) = z ( ) pro + ). Funkce z ( ) je te určena rovnicemi

7 ( ) z e = 4 ( 4 + e ) e + 4 pro ( ) + ) Určete řešení z( ) w( ) Cauchov úloh pro rovnici = + při počáteční podmínce: a) z ( ) = b) w ( 0) =. Postačující podmínk eistence a jednoznačnosti řešení rovnice + = () ( ) jsou splněn na oblastech = ( ) ( + ) D = ( 0) ( + ) D = ( 0 + ) ( + ). (bod [ ] D ) nikoli však v případě b) (bod [ ] D D D a Máme te zajištěnou eistenci a jednoznačnost řešení v případě a) 0 neleží v žádné oblasti D ). V případě b) úloha nemusí mít řešení. Řešení rovnice () budeme hledat ve tvaru = gh. Pak je g h + hg gh = ( + ) neboli g h + h g g = () ( + ) Funkci g zvolíme tak ab splňovala rovnici g g = 0. (4) ( + ) Po separaci proměnných v rovnici (4) je dg g = d ( +) a po integraci (zvolíme integrační konstantu rovnou jedné) získáme funkci g ( ) = /( + ). h = + / a po integraci Dosadíme-li za g do rovnice () dostaneme diferenciální rovnici ( ) je h ( ) = + ln + C kde C je konstanta a 0. Všechna řešení rovnice jsou určena rovnicí

8 C ( ) = + ( + ln ) Řešením Cauchov úloh je v případě a) funkce z ( ) = ( + ln ) ( 0+ ). + Konstantu C = jsme určili z rovnice z ( ) = C + =. V případě za b) nemá Cauchov úloha řešení neboť pro = 0 není funkce ln definována Určete řešení z( ) w( ) Cauchov úloh pro rovnici tg = cos při počáteční podmínce a) z ( 0) = ; b) w ( π ) =. Eistence a jednoznačnost řešení Cauchov úloh pro rovnici je zajištěna na oblastech π π D k = ( k ) ( k + ) ( + ) k Z. Bod [ 0 ] leží v oblasti D 0 bod [ π ] leží v oblasti D te řešení z a w eistují a jsou jediná. Řešení rovnice hledáme ve tvaru = gh přičemž platí h g + h( g gtg) =. () cos Funkci g určíme tak ab splňovala rovnici g gtg = 0. Po separaci proměnných a integraci vbereme funkci g( ) = / cos (integrační konstantu jsme zvolili rovnou jedné). Po dosazení do rovnice () dostaneme pro funkci h tuto podmínku: h = cos cos π π a te h ( ) = + C pro ( k ) ( k + ) kde k je celé číslo. Na těchto intervalech jsou definována řešení rovnice rovnicí + C ( ) =. cos

9 Z daných počátečních podmínek vpočteme hodnot konstant C : a) C = b) C = -π -. Řešení Cauchov úloh v případě a) je určeno rovnicí + π π z( ) = cos v případě b) rovnicí w( ) = π cos π π Určete řešení z() Cauchov úloh pro rovnici ( ) + = Při počáteční podmínce z(0) =. Rovnici upravíme na tvar + = ±. () Protože v okolí bodu [ ] 0 jsou splněn postačující podmínk eistence a jednoznačnosti řešení Cauchov úloh pro rovnici () je zajištěna eistence a jednoznačnost řešení dané úloh pro rovnici. Řešení rovnice () hledáme ve tvaru = gh. Dosazením do rovnice () dostaneme podmínku pro funkce g h ve tvaru h g + h g + g =. () Funkci g zvolíme tak ab splňovala rovnici g + g 0 = ±. = (zvolili jsme integrační konstantu rovnou jedné). Dosadíme-li za g do rovnice () dostaneme rovnici Po separaci proměnných a po integraci vbereme funkci g) ) ( ) h = ( ) ( ) a po integraci rovnici h ( ) = + C ( ). ( )

10 Řešení rovnice je určeno rovnicí ( ) = + C ( ) ( ). Řešením dané Cauchov úloh je funkce z( ) = + ( ) ( ) Řešte rovnici + = e. Rovnici vnásobíme funkcí µ a dostaneme µ + µ = µ e. () Funkci µ zvolíme tak ab d d ( µ ) = µ + µ ( ) Z čehož plne že µ musí být řešením rovnice µ = µ. Můžeme te zvolit µ = e a rovnici () zapíšeme ve tvaru d d ( e ) e. = () Po integraci rovnice () dostaneme e e = + C kde C je konstanta a po vnásobení funkcí e lze řešení rovnice zapsat ve tvaru ( ) = e + Ce R Řešte rovnici + ln = ( ). Rovnici lze zapsat ve tvaru d = ln () což je lineární rovnice prvního řádu vzhledem k proměnné. Rovnici () vnásobíme funkcí µ a dostaneme ( )

11 d µ ( ) µ ( ) = µ ( ) ln. () Funkci µ ( ) zvolíme tak ab d d ( µ ( ) ) = µ ( ) µ ( ). µ musí být řešením rovnice µ = µ. Zvolíme te µ = e Pak rovnice () má tvar To znamená že ( ) d ( e ) = e ln a po integraci dostaneme ( ). e = e ln + C kde C je konstanta. Řešení rovnice je určeno implicitně rovnicí + = e e ln Ce Najděte obecné řešení rovnice cos = e sin sin kπ k + π k = Na intervalu ( ( ) )... cos Funkce p( ) = g( ) = e sin jsou na daném intervalu spojité. Rovnice bez pravé sin stran má tvar cos = 0 sin a na tomto intervalu má řešení = sin. Nahradíme-li konstantu C funkcí α ( ) máme = α sin () ( ) a dosadíme-li do obdržíme pro α ( ) diferenciální rovnici α ( ) = e dostaneme α( ) = e + C a te jejíž integrací je obecné řešení rovnice. = ( e + C) sin

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ DIPLOMOVÁ PRÁCE Diplomant: Vedoucí diplomové práce: Zdeněk ŽELEZNÝ RNDr. Libuše Samková,

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

GONIOMETRICKÉ FUNKCE

GONIOMETRICKÉ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině

Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Jméno: Třída: Spolupracovali: Datum: Teplota: Tlak: Vlhkost: Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Teoretický úvod: Rovnoměrně zrychlený pohyb Rovnoměrně zrychlený pohyb je pohyb,

Více

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24.

Neurčité rovnice. In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Neurčité rovnice 4. Nejjednodušší rovnice neurčité 2. stupně In: Jan Vyšín (author): Neurčité rovnice. (Czech). Praha: Jednota československých matematiků a fyziků, 1949. pp. 21--24. Persistent URL: http://dml.cz/dmlcz/402869

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Kapitola 1: Lineární prostor

Kapitola 1: Lineární prostor Lineární prostor Kapitola 1: Lineární prostor Chcete-li ukončit prohlížení stiskněte klávesu Esc. Chcete-li pokračovat stiskněte klávesu Enter.. p.1/15 Lineární prostor Lineární prostoralineární podprostor

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

Celá a necelá část reálného čísla

Celá a necelá část reálného čísla UNIVERZITA KARLOVA V PRAZE PEDAGOGICKÁ FAKULTA Katedra matematiky a didaktiky matematiky Celá a necelá část reálného čísla Bakalářská práce Autor: Vedoucí práce: Vladimír Bílek Prof. RNDr. Jarmila Novotná,

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Fakulta strojního inženýrství VUT v Brně 5. června 9 Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Sbírka řešených příkladů k předmětu Matematika II pro profesní a kombinovanou

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více