A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

Rozměr: px
Začít zobrazení ze stránky:

Download "A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku"

Transkript

1 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram Plasticita je pak schopnost tuhých těles nabývat za působení vnějších sil trvalé, nevratné deformace nazývají se plastické deformace. DŮLEŽITÉ VZORCE: - smluvní napětí: = - relativní prodloužení: F A Δl = l E - Hookeův zákon: = - celkové přetvoření: cel = el + pl Obr. 1.1: mluvní pracovní diagram měkké oceli (výrazná mez kluzu) - pozn.: velikost průřezu se v průběhu zatěžování mění a proto hodnoty napětí nejsou skutečné, ale smluvní P B C A D pl cel A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti p D přetržení zkušebního vzorku Deformační proces tělesa, při němž vznikají a rozvíjejí se plastické deformace tělesa, nazýváme plastickým přetvářením.

2 mluvní diagram vede mylně k představě, že oblast P-D pracovního diagramu leží již mimo technické využití. Ve skutečnosti je řada technologických operací prováděna za bodem P, tedy v oblasti krčku. Trochu historie: Plastické přetváření je známo od bronzové doby, ale teorie plasticity je poměrně mladou vědní disciplínou Tresue předložil závěry svých pokusů o trvalém přetváření tuhých těles 1871 aint Venant publikoval práci o plastických deformacích Teorie plasticity: a) umožňuje efektivně využít vlastností materiálů b) řeší určování konkrétní únosnosti konstrukčních částí c) řeší problémy technologických procesů tváření (efektivnost využití zařízení, pomůže při správné volbě nástrojů a pracovního režimu) Teorie plasticity se rozvíjí ve dvou směrech: 1) fyzikální směr teoretické studium vlastností elementárních částic (vychází z fyziky pevné fáze), umožňuje stanovit základní zákonitosti, které určují mechanické vlastnosti tuhých těles v celém oboru přetváření 2) matematicko-mechanický směr vychází z experimentálně zjištěných mechanických vlastností materiálů, navazuje na teorii pružnosti a rozšiřuje ji při analýze napjatosti a přetvoření během různých podmínek působení vnějších sil a účinků. Obr. 1.2: Ocel obvyklých jakostí (třídy 1 nebo 11) [MPa] p=38 k=24 e=21 ú=2 Proč NE síla a absolutní prodloužení v pracovním diagramu: Ve zkušební tyči působí tahová síla po celé délce tyče, takže prodloužení Δl je úměrné počáteční délce tyče l. deformace materiálu, která je nezávislá na délce tyče je udána poměrným prodloužením (přetvořením) = Δl l

3 Účinek síly se v tyči rozkládá po celé ploše průřezu A, takže mírou namáhání materiálu není síla, ale mechanické napětí ΔF =, ΔA určené podílem síly a plochy průřezu, v němž síla působí. Kvalita materiálu není narušena a velikost skutečného napětí je dána F =, Ak kde F okamžitá hodnota síly A k okamžitá velikost plochy průřezu. K poruše dochází při nejvyšší hodnotě skutečného napětí FD D =, AD která přesahuje hodnotu skutečného i smluvního napětí na smluvní mezi pevnosti. Následkem změny tvaru zúžením je napjatost v krčku trojosá a o poruše rozhodují všechna 3 hlavní napětí. Obr. 1.3: mluvní pracovní diagram houževnatého materiálu C P p cel=,5 pl=,2 (,2%) - nemá výraznou mez kluzu vysokopevnostní oceli, termomechanicky zpracované konstrukční oceli - úmluvou je zavedena mez kluzu pomocí napětí, které způsobí trvalou deformaci pl =,2 ( K2 ) nebo celkovou deformaci cel =,5 ( t5 ). Protože u oceli je pracovní diagram pro tah i tlak souměrný podle počátku, uvádí se pouze část pro tah. U některých stavebních materiálů se meze v tlaku podstatně liší od mezí v tahu, např. beton.

4 Obr. 1.4: Pracovní diagram betonu tah + p=3 porušení v tahu tlak - porušení v tlaku p=2 Při odtěžování (snižování napětí) za mezí kluzu A a opětovném zatěžování vytváří pracovní diagram hysterezní smyčku P. K tomuto vlivu hystereze zpravidla nepřihlížíme a předpokládáme, že odtěžování a opětovné zatěžování probíhá lineárně pružně. Obr. 1.5: Hysterezní smyčka s A Ky P Dále výsledky zkoušek často ukazují, že po předchozím tahovém zatěžování tělesa nad mez kluzu se tlaková mez plasticity snižuje Bauschingerův efekt.

5 Obr. 1.6: Bauschingerův efekt A s A' - cs ' '' Obvykle předpokládáme tzv. ideální Bauschingerův efekt, že mez plasticity v tlaku se sníží o stejnou velikost, o jakou se zvýšila mez plasticity při tahovém zatěžování. R = 2 R R. ycs y ys Při uplatnění ideálního Bauschingerova efektu hovoříme o kinematickém zpevnění materiálu. Bauschingerův efekt se uplatní při cyklickém zatěžování. Obr. 1.7: Ideální Bauschingerův efekt Δ 2 s cs - '' Δ

6 Pro malé deformace (zhruba do meze kluzu) není změna průřezu významná, velikosti skutečných hodnot a průběhy obou diagramů (smluvního a skutečného) se neliší. Za mezí kluzu se však oba průběhy odlišují, zvláště za smluvní mezí pevnosti. Obr. 1.8: kutečný pracovní diagram houževnatého materiálu =F/A spl sd pl pl el celk - pozn.: nastane-li lom při malých deformacích, hovoříme o křehkém lomu na rozdíl od plastického 1.2 Příčné napětí a Poissonovo číslo oučasně s podélným prodloužením při namáhání tyče v tahu se mění i její příčné rozměry (dobře pozorovatelné u gumy). Obr. 1.9 Namáhání na tah b b F tah + l l Δl

7 - hodnota poměrného příčného zkrácení je kladná Obr. 1.1 Namáhání na tlak b b F tlak - l l Δl - záporné znaménko poměrného příčného zkrácení odpovídá síle, která ho vyvolává Poměrné příčné zkrácení Δb η = Δb = b b. b Pro tlak i tah v pracovním diagramu platí η = μ, kde μ je konstanta úměrnosti (Poissonovo číslo), závisí na druhu materiálu, její hodnota souvisí s tím, jak těleso při namáhání tahem a tlakem mění objem. Mějme hranol s počátečním objemem V = a b. c Tahová síla rovnoběžná s hranou a způsobí poměrné prodloužení a = a + a = a ( 1+ ), na hranách b, c nastane poměrné zkrácení η = μ, proto b = b ηb = 1 μ pro malá plyne: V V b ( ) c = c ηc = c ( 1 μ ) = a ( ) ( ) 2 1+ b 1 μ 2 ( + )( 1 μ ) = 1+ V = abc c 2 2 [ 1 ] ( )( 1 μ + μ ) V = V V [ ] 2 [( + )( 1 2μ )] = V [ 1 2μ + ] = V [ 1+ ( 1 2μ) ] 1 Z odvozené závislosti plyne, že μ max <,5, neboť objem tělesa se buď zvětšuje (tah) nebo zmenšuje. Hodnoty pro kov: μ=,3, pro =,1 je ΔV=,4V (zvětšení objemu).

8 1.3 Aproximace pracovních diagramů Výpočty v teorii plasticity vyžadují analytickou závislost napětí na přetvoření. Přesné funkce vyjadřující průběh pracovního diagramu jsou velmi složité. Proto se používá aproximace průběhu pracovního diagramu. Obr. 1.11: Aproximace skutečného pracovního diagramu lomenou přímkou, pružně plastický materiál s lineárním zpevněním s pl el a) <R y d platí = E, modul pružnosti v tahu d b) >R y d platí = E z, modul zpevnění. d Bude-li E z = pro s >> pl lze podle Prandtla provést aproximaci pomocí pracovního diagramu pro ideálně pružněplastický materiál. Obr. 1.12: Pracovní diagram pro ideálně pružněplastický materiál pl el

9 Jiná aproximace se řídí vztahem: m = A, kde A, m se určí dle potřeb řešené úlohy, obvykle se parabola vede 2 body nebo lze vycházet z požadavku rovnosti poměrných přetvárných prací skutečného a aproximovaného diagramu. m Obr. 1.13: Aproximace pracovního diagramu pomocí vztahu = A =A m Další idealizace pracovních diagramů: Obr. 1.14: Aproximace pracovního diagramu pro tuhoplastický materiál s lineárním zpevněním s B pl

10 Obr. 1.15: Pracovní diagram pro ideálně tuhoplastický materiál pl Celková deformace lze rozložit: = +. cel el pl Z jednoosého namáhání tahového zkušebního vzorku za mezí plasticity lze získat závislost = H ( pl ). Obr. 1.16: K odvození vztahu = H ( pl ) (eq) eq=h(eq,pl) d tečna H' 1 =H(pl) 1 Hs dpl pl pl (eq,pl) Konstitutivní vztahy vyjadřujeme v teorii plasticity 2 hlavními způsoby: 1) teorie deformací Popisuje vztahy mezi konečnými hodnotami napětí a deformace. Například pro jednoosou napjatost materiálu se zpevněním lze napsat: = + cel el = E el pl

11 pl =, sečnový modul plasticity H cel = + E H 1 1 cel = + E H Obr K odvození předchozích vzorců pl cel el 2) teorie přetváření Formuluje vzájemné vztahy mezi přírůstky napětí a deformace. Například přírůstek podélné deformace při osovém tahu vyjadřuje vztah: 1 1 d = + d E H d H =, tečnový model plasticity. d pl Experimentálně získané závislosti při jednoosé napjatosti se v teorii plasticity často transformují na obecnou napjatost prostřednictvím ekvivalentního napětí eq a ekvivalentní plastické deformace eq,pl.

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl?

Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Pružnost, pevnost, tvrdost, houževnatost. Jaký je v tom rozdíl? Zkušební stroj pro zkoušky mechanických vlastností materiálů na Ústavu fyziky materiálů AV ČR, v. v. i. Pružnost (elasticita) Z fyzikálního

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ

DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ Úvod PLASTICITA DVA ZÁKLADNÍ PROBLÉMY PLASTICITY KOVŮ I. Návrh konstrukce z "mezního stavu Zahrnuje relativně malá plastická přetvoření často stejného řádu jako jsou souběžná elastická přetvoření. Analýza

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah

Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů Pevnostní zkouška statická na tah Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Inovace a zkvalitnění výuky prostřednictvím ICT Kontrola a měření strojních součástí a jejich polotovarů

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I.

DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. DESTRUKTIVNÍ ZKOUŠKY SVARŮ I. Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám -

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Nejpoužívanější podmínky plasticity

Nejpoužívanější podmínky plasticity Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

6 ZKOUŠENÍ STAVEBNÍ OCELI

6 ZKOUŠENÍ STAVEBNÍ OCELI 6 ZKOUŠENÍ TAVEBNÍ OCELI 6.1 URČENÍ DRUHU BETONÁŘKÉ VÝZTUŽE DLE POVRCHOVÝCH ÚPRAV 6.1.1 Podstata zkoušky Různé typy betonářské výztuže se liší nejen povrchovou úpravou, ale i různými pevnostmi a charakteristickými

Více

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:

Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení: BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky

Více

Aktuální trendy v oblasti modelování

Aktuální trendy v oblasti modelování Aktuální trendy v oblasti modelování Vladimír Červenka Radomír Pukl Červenka Consulting, Praha 1 Modelování betonové a železobetonové konstrukce - tunelové (definitivní) ostění Metoda konečných prvků,

Více

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů

Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu

Zkoušení ztvrdlého betonu Objemová hmotnost ztvrdlého betonu Objemová hmotnost ztvrdlého betonu ČSN EN 12390-7 Podstata zkoušky Stanoví se objem a hmotnost zkušebního tělesa ze ztvrdlého betonu a vypočítá se objemová hmotnost. Metoda stanovuje objemovou hmotnost

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.7/2.2./28.9 Metoda konečných prvků Základy konstitutivního modelování (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc.

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů

Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů Nauka o materiálu Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které lze získat

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl

Více

POLOTOVARY VYRÁBĚNÉ TVÁŘENÍM ZA TEPLA

POLOTOVARY VYRÁBĚNÉ TVÁŘENÍM ZA TEPLA POLOTOVARY VYRÁBĚNÉ TVÁŘENÍM ZA TEPLA Obsah: 1) Teorie tváření 2) Druhy mřížek 3) Vady mřížek 4) Mechanismus plastické deformace 5) Vliv teploty na plastickou deformaci 6) Způsoby ohřevu materiálu 7) Stroje

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu

Více

FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR

FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR Education, Research, Innovation FEM ANALYSIS OF HOSE SPRNIG CLAMP DEFORMATION BEHAVIOUR FEM ANALÝZA DEFORMAČNÍHO CHOVÁNÍ HADICOVÉ SPONY Pavel HRONEK 1+2, Ctibor ŠTÁDLER 2, 1 Úvod Bohuslav MAŠEK 2, Zdeněk

Více

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu.

5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. 5. Únava Zatížení při únavě, Wöhlerův přístup a lomová mechanika, únosnost, vliv vrubů, kumulace poškození, přístup podle Eurokódu. K poškození únavou dochází při zatížení výrazně proměnném s časem. spolehlivost

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Adhezní síly v kompozitech

Adhezní síly v kompozitech Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Zkoušení kompozitních materiálů Ivan Jeřábek Odbor letadel FS ČVUT v Praze 1 Zkoušen ení kompozitních materiálů Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

Modelování a aproximace v biomechanice

Modelování a aproximace v biomechanice Modelování a aproximace v biomechanice Během většiny lidské aktivity působí v jednom okamžiku víc než jedna skupina svalů. Je-li úkolem analyzovat síly působící v kloubech a svalech během určité lidské

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Ing.Jiřina Strnadová Předmět:Fyzika Praha a EU Investujeme do vaší budoucnosti 1 Obsah Teoretický úvod... 3 Rozdělení pevných látek... 3 Mechanické vlastnosti pevných

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Hodnocení vlastností folií z polyethylenu (PE)

Hodnocení vlastností folií z polyethylenu (PE) Laboratorní cvičení z předmětu "Kontrolní a zkušební metody" Hodnocení vlastností folií z polyethylenu (PE) Zadání: Na základě výsledků tahové zkoušky podle norem ČSN EN ISO 527-1 a ČSN EN ISO 527-3 analyzujte

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová

Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se

Více

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A5. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A5. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A5 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Vlastnosti betonu a výztuže při zvýšených

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU

BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU MECHANICKÉ VLASTNOSTI BIOLOGICKÝCH MATERIÁLŮ Viskoelasticita, nehomogenita, anizotropie, adaptabilita Základní parametry: hmotnost + elasticita (akumulace

Více

Technologické procesy (Tváření)

Technologické procesy (Tváření) Otázky a odpovědi Technologické procesy (Tváření) 1) Co je to plasticita kovů Schopnost zůstat neporušený po deformaci 2) Jak vzniká plastická deformace Nad mezi kluzu 3) Co jsou to dislokace Porucha krystalové

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Beton. Be - ton je složkový (kompozitový) materiál

Beton. Be - ton je složkový (kompozitový) materiál Fakulta stavební VŠB TUO Be - ton je složkový (kompozitový) materiál Prvky betonových konstrukcí vlastnosti materiálů, pracovní diagramy, spolupůsobení betonu a výztuže Nejznámějším míchaným nápojem je

Více

Výztužné oceli a jejich spolupůsobení s betonem

Výztužné oceli a jejich spolupůsobení s betonem Výztužné oceli a jejich spolupůsobení s betonem Na vyztužování betonových konstrukcí používáme: a) výztuž betonářskou definovanou jako vyztuž nevyvozující předpětí v betonu. Vyrábí se v různých tvarech

Více

3 Návrhové hodnoty materiálových vlastností

3 Návrhové hodnoty materiálových vlastností 3 Návrhové hodnoty materiálových vlastností Eurokód 5 společně s ostatními eurokódy neuvádí žádné hodnoty pevnostních a tuhostních vlastností materiálů. Tyto hodnoty se určují podle příslušných zkušebních

Více

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI

Katedra textilních materiálů ENÍ TEXTILIÍ PŘEDNÁŠKA 7 MECHANICKÉ VLASTNOSTI PŘEDNÁŠKA 7 Definice: Mechanické vlastnosti materiálů - odezva na mechanické působení od vnějších sil: 1. na tah 2. na tlak 3. na ohyb 4. na krut 5. střih F F F MK F x F F F MK 1. 2. 3. 4. 5. Druhy namáhání

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 1: VELIČINY A JEDNOTKY Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ

VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ VZOROVÝ PŘÍKLAD NÁVRHU MOSTU Z PREFABRIKOVANÝCH NOSNÍKŮ ZADÁNÍ Navrhněte most z prefabrikovaných předepnutých nosníků IST. Délka nosné konstrukce mostu je 30m, kategorie komunikace na mostě je S 11,5/90.

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI 1. cvičení ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI Podmínky pro uznání části Konstrukce aktivní účast ve cvičeních, předložení výpočtu zadaných příkladů. Pomůcky pro práci ve cvičeních psací potřeby a kalkulačka.

Více

Výpočet skořepiny tlakové nádoby.

Výpočet skořepiny tlakové nádoby. Václav Slaný BS design Bystřice nad Pernštejnem 1 Výpočet skořepiny tlakové nádoby. Úvod Indukční průtokoměry mají ve své podstatě svařovanou konstrukci základního tělesa. Její pevnost se musí posuzovat

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Zapojení odporových tenzometrů

Zapojení odporových tenzometrů Zapojení odporových tenzometrů Zadání 1) Seznamte se s konstrukcí a použitím lineárních fóliových tenzometrů. 2) Proveďte měření na fóliových tenzometrech zapojených do můstku. 3) Zjistěte rovnici regresní

Více

Zkoušky vlastností technických materiálů

Zkoušky vlastností technických materiálů Zkoušky vlastností technických materiálů Stálé zvyšování výkonu strojů a snižování jejich hmotnosti klade vysoké požadavky na jakost hutního materiálu. Se zvyšováním nároků na materiál je nerozlučně spjato

Více

Prvky betonových konstrukcí BL01 5. přednáška

Prvky betonových konstrukcí BL01 5. přednáška Prvky betonových konstrukcí BL01 5. přednáška Dimenzování průřezů namáhaných posouvající silou. Chování a modelování prvků před a po vzniku trhlin, způsob porušení. Prvky bez smykové výztuže. Prvky se

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Jednoduchá metoda pro návrh ocelobetonového stropu

Jednoduchá metoda pro návrh ocelobetonového stropu Jednoduchá metoda pro návrh Jan BEDNÁŘ František WALD, Tomáš JÁNA, Olivier VASSART, Bin ZHAO Software pro požární návrh konstrukcí 9. února 011 Obsah prezentace Chování za požáru Jednoduchá metoda pro

Více

2. Molekulová stavba pevných látek

2. Molekulová stavba pevných látek 2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se

Více

Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.

Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45. Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.0029 Statické zkoušky (pevnost, tvrdost) Dynamické zkoušky (cyklické,

Více

1.1.1 Hodnocení plechů s povlaky [13, 23]

1.1.1 Hodnocení plechů s povlaky [13, 23] 1.1.1 Hodnocení plechů s povlaky [13, 23] Hodnocení povlakovaných plechů musí být komplexní a k určování vlastností základního materiálu přistupuje ještě hodnocení vlastností povlaku v závislosti na jeho

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

TERMOMECHANICKÉ VLASTNOSTI

TERMOMECHANICKÉ VLASTNOSTI TERMOMECHANICKÉ VLASTNOSTI ŽÁROBETONŮ (ŽB) Jiří Hamáček, Jaroslav Kutzendörfer VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav skla a keramiky & ŽÁROHMOTY, spol. s r.o. Třemošná VŠCHT, Praha 2008 TERMOMECHANICKÉ

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY

Výroba tablet. Inženýrství chemicko-farmaceutických výrob. Lisování tablet. POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY Lisování tablet Výroba tablet GRANULÁT POMOCNÉ LÁTKY (kluzné látky, rozvolňovadla) LÉČIVÉ LÁTKY POMOCNÉ LÁTKY plniva, suchá pojiva, kluzné látky, rozvolňovadla tabletování z granulátu homogenizace TABLETOVINA

Více