Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti
|
|
- Šimon Malý
- před 8 lety
- Počet zobrazení:
Transkript
1 Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze tímto bodem vést. Dá se dokázat, že obecné napětí v libovolném řezu vedeném jistým bodem C lze vypočítat ze známých hodnot obecných napětí ve třech vzájemně kolmých rezech, vedených tímto bodem. Pro popis je účelné použít kartézský souřadnicový systém, jehož osy leží v průsečnicích těchto rovin. Obecná napětí budeme označovat písmenem podle normály plochy, ve které působí, tedy např. v plošce v rovině yz, kolmé k ose x, působí obecné napětí fx. Každé obecné napětí, které svírá s příslušnou plochou obecný úhel, lze rozložit do směru os kartézského souřadnicového systému: f x = σ x i + τ xy j + τ xz k = τ yx σ x i + σ y j + τ yz k f y = τ zx i + τ zy j + σ z k f z Napjatost v bodě C (napětí v přední a zadní stěně elementu nejsou zakreslena) Parametry σ jsou normálová napětí, parametry τ smyková napětí (první písmeno jejich indexu značí směr normály roviny, ve které napětí působí, a druhé směr působení smykového napětí). Tato napětí lze uspořádat do čtvercové matice, která v daném kartézském souř. systému reprezentuje tenzor napětí Tσ. σ x τ xy τ xz T σ = ( τ yx τ zx σ y τ zy τ yz ) σ z Napjatost v bodě tělesa je jednoznačně určena tenzorem napětí Tσ. Z momentových podmínek k bodu C:
2 M Cz = 0: [(τ xy + τ xy )dydz] dx 2 [(τ yx + τ yx)dxdz] dy 2 = 0 (τ xy + τ xy) (τ yx + τ yx) = 0 Pro napětí v protilehlých stěnách elementu platí, že jsou přibližně stejně velká, tedy: τ xy τ xy a τ yx τ yx, a proto τ xy = τ yx. Analogicky pro momentové podmínky k osám y a x dostaneme: τ yz = τ zy a τ xz = τ zx. Věta o sdruženosti smykových napětí: Smyková napětí působící ve vzájemně kolmých elementárních řezech kolmo k jejich průsečnici jsou stejně velká a orientovaná buď k průsečnici, nebo od ní. Stav napětí je tedy charakterizován právě 6 nezávislými složkami symetrického tenzoru napětí Tσ. Napjatost v bodě tělesa je popsána tenzorem napětí v tomto bode a muže být stanovena v závislosti na zatížení tělesa, jeho tvaru a materiálových vlastnostech a poloze bodu v tělese. Napjatost tělesa je množina napjatostí ve všech bodech tělesa. Je určena tenzorovým polem, tj. množinou tenzoru napětí pro všechny body tělesa. Závisí na zatížení tělesa, jeho tvaru a materiálových vlastnostech. Hlavní souřadnicový systém Pro každý tenzor lze najít takový souřadnicový systém, ve kterém jsou mimodiagonální složky tenzoru nulové. Tento souřadnicový systém se nazývá hlavní souřadnicový systém, roviny tohoto systému jsou tzv. hlavní roviny. V hlavních rovinách tenzoru napětí tedy nepůsobí žádná smyková napětí. Normálová napětí v těchto rovinách působí, nazývají se hlavní napětí a značí se σ1, σ2, σ3. Platí konvence značení: σ 1 σ 2 σ 3 Hlavní napětí: Hlavní napětí je normálové napětí v takové rovině, v níž jsou smyková napětí rovna nule (tj. obecné napětí v tomto řezu je kolmé k tomuto řezu (f ρ = σ ρ )). Hlavní napětí lze určit řešením charakteristické rovnice tenzoru napětí: σ i 3 I 1 σ i 2 + I 2 σ i I 3 = 0 kde veličiny I1, I2, I3 jsou invarianty tenzoru napětí. Spočítat je lze jako: I 1 = σ x + σ y + σ z τ xy I 2 = σ x τ xy σ + σ y τ yz y τ yz σ + σ x z τ xz τ xz σ z σ x τ xy τ xz I 3 = τ yx τ zx σ y τ zy τ yz σ z
3 Určení napětí v obecné rovině Obecné napětí v rovině ρ, určené vektorem normály n ρ, který má v hlavním souřadnicovém systému složky α1, α2, α3 (směrové kosiny), je vektor f ρ, který má složky Řez elementární krychle rovinou tzv. elementární čtyřstěn f ρ1 = σ 1 α 1 f ρ2 = σ 2 α 2 f ρ3 = σ 3 α 3 Obecné napětí lze rozložit do normálového napětí σρ a smykového napětí τρ. Velikosti obecného napětí a normálového a smykového napětí určíme jako: f ρ = σ 1 2 α σ 2 2 α σ 3 2 α 3 2 σ ρ = f ρ n ρ = σ 1 α σ 2 α σ 3 α 3 τ ρ = f 2 ρ σ2 ρ Grafické znázornění napjatosti Tenzory napětí lze graficky znázornit v Mohrově rovině pomocí tzv. Mohrových kružnic. Více k zobrazování tenzorů napětí v Mohrově rovině a zároveň různé typy napjatostí a jejich obrazy v Mohrově rovině najdete v učebním textu online na adrese: (kapitola 16) a ve skriptech Pružnost, pevnost 1 na str Mezní stav pružnosti Mezní stav pružnosti tělesa je takový jeho stav, při jehož překročení vznikají v tělese plastické deformace. Mezní stav pružnosti je charakterizován výpočtovou mezí kluzu σk. Pro posouzení mezního stavu pružnosti musíme formulovat podmínku plasticity. Ta má pro jednoosou napjatost tvar σ = σ K a pro obecnou trojosou napjatost musí mít podobu F(T σ ) = σ K. Z rozsáhlých experimentů vyplývá, že mezní stav pružnosti je určen velikostí smykových napětí τρk v jistém řezu ρk. Podmínka plasticity tedy musí mít tvar τ ρk = τ MK, kde τmk je materiálová charakteristika. Podle volby řezu dostáváme různé podmínky plasticity: 1. Podmínka plasticity max τ Předpokládá, že řezem ρk je řez, ve kterém působí maximální smykové napětí τmax.
4 Má tedy tvar pro obecnou napjatost pro jednoosou napjatost τ max = σ 1 σ 3 = τ 2 MK τ max = σ 1 2 = σ K 2 = τ MK Cílem je posoudit vznik mezního stavu pružnosti při obecné napjatosti na základě zkoušek prováděných při jednoosé tahové napjatosti. Je tedy nutné obě podmínky porovnat: τ MK = σ 1 σ 3 2 = σ K 2 σ 1 σ 3 = σ K Redukované napětí: Redukované napětí je napětí fiktivní jednoosé tahové napjatosti přiřazené napjatosti obecné tak, že prostá bezpečnost vůči vyšetřovanému meznímu stavu je stejná. σ red = σ 1 σ 3 k K = σ K σ red 2. Podmínka plasticity HMH Předpokládá, že řezem ρk je tzv. oktaedrická rovina (je to rovina, jejíž normála svírá se všemi osami kartézského souřadnicového systému stejný úhel). Smykové napětí v oktaedrické rovině určíme jako pro obecnou napjatost pro jednoosou napjatost τ o = 1 3 (σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 1 σ 3 ) 2 = τ MK τ o = 2 3 σ K = τ MK Pokud opět porovnáme obě napjatosti, dostaneme podmínku ve tvaru: 1 2 [(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 1 σ 3 ) 2 ] = σ K a redukované napětí pro tuto podmínku je: σ red = 1 2 [(σ 1 σ 2 ) 2 + (σ 2 σ 3 ) 2 + (σ 1 σ 3 ) 2 ] Grafické znázornění podmínek plasticity Pro grafické znázornění podmínek plasticity se zavádí tzv. Haighův prostor. Souřadnicové osy tohoto prostoru jsou osami hlavních napětí. Podmínka plasticity je zde znázorněna plochou plasticity a zatěžování je znázorněno křivkou, tzv. zatěžovací dráhou. Mezní stav nastane v místě, kde zatěžovací dráha protne plochu plasticity.
5 Schématické znázornění Haighova prostoru, zatěžovací dráhy a mezní plochy plasticity. Graficky znázornit podmínky plasticity lze v haighově prostoru, v oktaedrické rovině a v Mohrově rovině viz následující obrázky. Znázornění podmínky plasticity max τ v Haighově prostoru (a), oktaedrické rovině (b) a Mohrově rovině (c) Znázornění podmínky plasticity HMH v Haighově prostoru (a), oktaedrické rovině (b) a Mohrově rovině (c) Vyhledejte si sami: Na tyto otázky si odpovědi vyhledejte v dostupné literatuře především ve skriptech PP1. Odpovědi se mnou pak můžete konzultovat. 1. Odvození vztahů pro smykové napětí v oktaedrické rovině. 2. Odvození vztahů pro redukované napětí pro prutovou napjatost.
6 3. Proč podmínky plasticity tvoří Haighově prostoru zrovna šestiboký hranol a válec? 4. Jaký je kvantitativní rozdíl mezi podmínkami HMH a max τ? Která je konzervativnější? 5. Jak se definuje prostá bezpečnost? Použité zdroje Toto stručné shrnutí cvičení zdaleka není úplné a má sloužit pouze jako přehled probíraného. Bylo zpracováno s použitím dostupných zdrojů uvedených níže. [1] JANÍČEK, P., E. ONDRÁČEK, J. VRBKA a J. BURŠA. Mechanika těles: Pružnost a pevnost I. 3., přeprac. vyd. Brno: CERM, 2004, 287 s. ISBN X. [2] HORNÍKOVÁ, J. Pružnost a pevnost: Interaktivní učební text [online]. 1. vyd. Brno: CERM, 2003 [cit ]. ISBN Dostupné z:
16. Matematický popis napjatosti
p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti
4. Napjatost v bodě tělesa
p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.
Analýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
Obecný Hookeův zákon a rovinná napjatost
Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou
7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá
Cvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
Pružnost a pevnost I
Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická
vztažný systém obecné napětí předchozí OBSAH další
p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.
obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test
Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled
Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (
Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o
FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA Bakalářské studium, 4. ročník Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.
Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011
OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:
Napěťový vektor 3d. Díky Wikipedia za obrázek. n n n
Míry napětí Napěťový vektor 3d n n2 2 n,. n n n Zatížené těleso rozdělíme myšleným řezem na dvě části. Na malou plošku v okolí materiálového bodu P působí napěťový vektor (n) (n, x, t), který je spojitou
Nejpoužívanější podmínky plasticity
Nejpoužívanější podmínky plasticity Materiály bez vnitřního tření (např. kovy): Trescova Misesova Materiály s vnitřním třením (beton, horniny, zeminy): Mohrova-Coulombova, Rankinova Druckerova-Pragerova
7. Základní formulace lineární PP
p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje
písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice
Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta
Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)
Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek
Technologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 5. Deformačně-napěťové pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v
6.1 Shrnutí základních poznatků
6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice
12. Prostý krut Definice
p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí
Momenty setrvačnosti a deviační momenty
Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují
POŽADAVKY KE ZKOUŠCE Z PP I
POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)
MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY 3D MODELY TENZORU NAPJATOSTI 3D MODELS OF STRESS TENSOR
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING 3D MODELY
3.2 Základy pevnosti materiálu. Ing. Pavel Bělov
3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je
Rovinná a prostorová napjatost
Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových
Nelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
Rozdíly mezi MKP a MHP, oblasti jejich využití.
Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí
10. Elasto-plastická lomová mechanika
(J-integrál) Únava a lomová mechanika J-integrál je zobecněním hnací síly trhliny a umožňuje použití i v případech plastické deformace většího rozsahu: d J = A U da ( ) A práce vnějších sil působících
Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace
Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace
y ds, z T = 1 z ds, kde S = S
Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných
PRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1
Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů
FAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Kombinované namáhání prutů s aplikací mezních podmínek pro monotónní zatěžování.
Cvičení Kmbinvané namáhání prutů s aplikací mezních pdmínek pr mntónní zatěžvání. Prutvá napjatst V bdech prutu má napjatst zvláštní charakter značuje se jak prutvá a je určena jedním nrmálvým σ a jedním
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Porušení hornin. J. Pruška MH 7. přednáška 1
Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost
Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
Z hlediska pružnosti a pevnosti si lze stav napjatosti
S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který
7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
Pružnost a pevnost R. Halama/L. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek
Pružnost a pevnost R. Halama/. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek Text byl vytvořen v rámci realizace projektu Matematika pro inženýry. století (reg. č. CZ..07/..00/07.0), na
Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek
Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332),
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Vícerozměrné úlohy pružnosti
Přednáška 07 Rovinná napjatost nosné stěny Rovinná deformace Hlavní napětí Mohrova kružnice Metoda konečných prvků pro rovinnou napjatost Laméovy rovnice Příklady Copyright (c) 011 Vít Šmilauer Czech Technical
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
2.5 Rovnováha rovinné soustavy sil
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice
Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu
Přednáška 08 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův ákon Příklad emní tlak v klidu Copyright (c) 2011 Vít Šmilauer Cech Technical University in
ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ
7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní
b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti
1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita
Kap. 3 Makromechanika kompozitních materiálů
Kap. Makromechanika kompozitních materiálů Informační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky FS ČVU v Praze. listopadu 7 Základní pojmy a vztahy Notace
1 Ohyb desek - mindlinovské řešení
1 OHYB DESEK - MINDLINOVSKÉ ŘEŠENÍ 1 1 Ohyb desek - mindlinovské řešení Kinematika přemístění Posun w se po tloušťce desky mění málo (vzhledem k hodnotě průhybu) w(x, y, z) = w(x, y) Normály ke střednicové
b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0
Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:
Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
Rovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
3. Mezní stav křehké pevnosti. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Mezní stav křehké pevnosti Při monotónním zatěžování tělesa může dojít k nepředvídanému porušení křehkým lomem. Poškození houževnaté oceli při různých způsobech namáhání Poškození
Literatura. Inženýrství chemicko-farmaceutických výrob. Sypké hmoty Doprava a skladování. Inženýrství chemicko-farmaceutických výrob
Sypké hmoty Doprava a skladování Literatura 1 Skladování sypkých látek V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V zásobnících (silech) velké objemy
Literatura. Skladování sypkých látek. Režim spotřeby skladové zásoby. Tok prášku. Vliv vlastností prášku na jeho tok
Literatura Sypké hmoty Doprava a skladování Skladování sypkých látek Režim spotřeby skladové zásoby V kontejnerech menší objemy zpracování a logistika na úrovni malých šarží dlouhodobější skladování V
PRUŽNOST A PLASTICITA
PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená
b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm
b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.
ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady
Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ
Kulová plocha, koule, množiny bodů
Kulová plocha, koule, množiny bodů 1.Metodou souřadnic vyšetřete množinu všech bodů X roviny, které mají stejnou vzdálenost od dvou rovnoběžek p, q ležících v rovině. Zvolím p...osa x y =, q... y = 4,
FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.
PRŮŘEZOVÉ CHARAKTERISTIKY
. cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,
NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.
Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty
Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický
Skořepinové konstrukce. tloušťka stěny h a, b, c
Skořepinové konstrukce skořepina střední plocha a b tloušťka stěny h a, b, c c Různorodé technické aplikace skořepinových konstrukcí Mezní stavy skořepinových konstrukcí Ztráta stability zhroucení konstrukce
3.2. ANALYTICKÁ GEOMETRIE ROVINY
3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
6. ANALYTICKÁ GEOMETRIE
Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných
Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
Přednáška 08. Obecná trojosá napjatost
Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace
Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w
Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
150 KAPITOLA 7. STĚNA ROVINNÁ NAPJATOST
150 KAPITOLA 7. STĚNA ROVINNÁ NAPJATOST pořádku, protože toto napětí vzniká na ploškách s normálou x, tj. na svislých ploškách, které v daném případě neleží na hranici stěny, ale oddělují elementární dílky
Téma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59
Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a
Statika 1. Úvod & Soustavy sil. Miroslav Vokáč 22. února ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč.
1. přednáška Úvod & Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 22. února 2016 Konzultační hodiny Ing. Miroslav Vokáč, Ph.D. Kloknerův ústav, ČVUT v Praze Šolínova 7 166 08
1.13 Klasifikace kvadrik
5 KAPITOLA 1. KVADRIKY JAKO PLOCHY. STUPNĚ 1.13 Klasifikace kvadrik V této části provedeme klasifikaci kvadrik. Vyšetříme všechny případy, které mohou různou volbou koeficientů v rovnici kvadriky a 11