OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

Save this PDF as:

Rozměr: px
Začít zobrazení ze stránky:

Download "OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011"

Transkript

1 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako: Součást z uhlíkové oceli, která se poruší po N = cyklech vykazuje: Součinitel asymetrie cyklu R je definován jako poměr: U symetricky střídavého zátěžného cyklu je vztah mezi amplitudou kmitu a střední hodnotou: Vliv středního napětí při cyklickém zatížení vyjadřuje diagram: Vliv předpětí při cyklickém zatížení vyjadřuje diagram: Mez únavy je na Wöhlerově křivce definována jako velikost: Wöhlerova křivka je definována jako: Wöhlerova křivka je definována jako spojnice bodů reprezentujících porušení zkušebních vzorků v prostoru: Mez únavy vzorku s vrubem se určí za pomoci součinitele vrubu (vliv opracování povrchu a velikosti neuvažujte) jako: Mez únavy vzorku s vrubem se určí za pomoci součinitele velikosti (vliv opracovaní povrchu a vrubu neuvažujte) jako: Mez únavy vzorku s vrubem se určí za pomoci součinitele opracování povrchu (vliv velikosti a vrubu neuvažujte) jako: - 1 -

2 Sbíhavost v Haighově diagramu lze vyjádřit jako: Maimální přípustný míjivý kmit je zobrazen ve Smithově diagramu jako: U míjivého zátěžného kmitu je vztah mezi amplitudou kmitu a střední hodnotou: Jaká je poloha neutrálné osy vzhledem ke stopě ohybového momentu v případě rovinného ohybu? Jaká je napjatost při prostorovém (šikmém) ohybu? S uvažováním 1D osového napětí je kmit na obrázku: Amplitudové napětí a střední napětí lze s využitím dolního a horního napětí vyjádřit jako: Proč je výhodné rozložit vektor ohybového momentu do směrů hlavních centrálních os? Jak se naleznou hlavní centrální osy průřezu? Jak se určí poloha neutrální osy při prostorovém ohybu? - -

3 Kde je v průřezu při ohybu nejvíce namáhané místo? o je to kritická síla při vzpěru? Jak je velikost kritického napětí při vzpěru závislá na štíhlosti prutu ve vztahu dle Eulera? Je při vzpěru ohybový moment funkcí průhybu? Jak je velikost kritické síly při vzpěru závislá na délce prutu ve vztahu dle Eulera? Jak je velikost kritické síly při vzpěru závislá na E ve vztahu dle Eulera? Kdy dochází k prostorovému (šikmému) ohybu? Jaká je poloha vektoru ohybového momentu vzhledem ke stopě momentu? Lze vektor ohybového momentu rozložit do směrů hlavních centrálních os? Jaká je poloha vektoru ohybového momentu vzhledem ke stopě momentu? Jaká je poloha neutrální osy vzhledem ke stopě ohybového momentu v případě rovinného ohybu? Kdy mluvíme o namáhání vzpěrem? Jak se nalezne stopa ohybového momentu v daném řezu? Jaká je napjatost při kombinace tah prostorový ohyb? Jak se stanoví průhybová čára při prostorovém (šikmém) ohybu? Kdy dochází k prostorovému (šikmému) ohybu? Jaká je napjatost při prostorovém (šikmém) ohybu dlouhého tenkého nosníku (zanedbává se vliv posouvající síly)? Při namáhání konstantním ohybovým momentem (viz obrázek) bez posouvající síly má průhybová křivka dle Bernoulliovy hypotézy tvar: Jak je velikost kritické síly při vzpěru ve vztahu dle Eulera závislá na minimálním kvadratickém momentu J? Čím je omezena platnost Eulerových vzorců pro kritickou sílu? - 3 -

4 Střednice nosníku je: Je dán profil s hlavními centrálními osami a jejich kvadratickými momenty J 1 a J. Průřezové moduly v ohybu kolem těchto os jsou W o1 a W o. Výsledný vnitřní silový účinek od ohybového napětí na průřez na obrázku splňuje: Nosník na obrázku je: Nosník na obrázku je: Nosník na obrázku je: - 4 -

5 Neutrálná plocha je: Nechť F je osamělá síla, M osamělá dvojice a q spojité zatížení. Fyzikální jednotky těchto účinků jsou: Nosník na obrázku je namáhán: Neutrálná osa u rovinného ohybu: Nosník na obrázku je namáhán: V daném profilu symetrickém podle osy y působí ohybový moment M o o velikosti M o. Nosník je zhotoven z materiálu o různých mezích pevnosti σ Pt v tahu a σ Pd v tlaku. Pevnostní podmínka pro daný profil zní: - 5 -

6 - 6 - Řešením úplné diferenciální rovnice průhybové čáry J E q v o = IV nosníku na obrázku získáme: 1 J E q v o = III, 1 J E q v o = II, J E q v o = I, J E q v o = I Integrační konstanty 1,, 3 a 4 stanovíme řešením soustavy: Osy y a z jsou hlavní kvadratické osy průřezu ρ. Při zatížení silou F podle obrázku je maimální ohybové napětí v bodě: Z případů na obrázku představují rovinný (prostý) ohyb: Stanovte průběh T() zadaného nosníku:

7 Stanovte průběh T() zadaného nosníku: Stanovte průběh M o () zadaného nosníku: Stanovte průběh T() zadaného nosníku: Stanovte průběh T() zadaného nosníku: Stanovte průběh M o () zadaného nosníku: Stanovte průběh M o () zadaného nosníku: Stanovte průběh M o () zadaného nosníku: - 7 -

8 Osy y a z jsou hlavní kvadratické osy průřezu ρ. Při zatížení silou F podle obrázku odpovídá ohybovému napětí průběh: Osa y je osou symetrie profilu ρ a s osou z, která je nositelkou vektoru ohybového momentu M o se protíná v jeho těžišti T. J z a J y jsou kvadratické momenty profilu k těmto osám. Neutrálná plocha ψ prochází osou a: Kvadratické momenty profilů (i), (ii) a (iii) k hlavní centrální ose z jsou dány vztahy: Průřezové moduly v ohybu profilů (i), (ii) a (iii) k hlavní centrální ose z jsou dány vztahy: - 8 -

9 Nosík je zatížen silami F 1, F,..., F n a dvojicemi M 1, M,..., M m.. Mohrův integrál pro průhyb v bodě A ve tvaru l 1 v A = M o ( ) mo ( ) d E J je odvozen tak, že: 0 Jaký je deviační moment D yz k hlavním centrálním osám? o rozhoduje o tom, kterými kvadranty prochází osa J min? Nosník na obrázku je zatížen silou F a dvojicí M. Známe průhyby v F (), resp. v M (), ohybová napětí σ of (), resp. σ om (), posouvající síly T F (), resp. T M () a deformační energie U F, resp. U M od jednotlivých účinků F, resp. M o působících samostatně. Který z uvedených vztahů pro získání celkového průhybu v(), ohybového napětí σ o (), posouvající síly T() a deformační energie U NEPLATÍ? Jak se změní kvadratické momenty obdélníkového průřezu J z1 a J z, změní-li se rozměry ve směru z m-krát a ve směru y n-krát (osy prochází těžištěm)? Kdy Mohrova kružnice pro kvadratické momenty průřezu degeneruje v bod na ose J? Který z následujících stavů odpovídá hlavním centrálním osám průřezu? Může být kvadratický moment záporný? Kvadratické momenty k hlavním centrálním osám průřezu určíme podle vztahu: Jaká je výsledná tuhost k c při sériovém řazení dvou pružin s tuhostí k 1 a k? Jaká je výsledná tuhost k c při paralelním řazení dvou pružin s tuhostí k 1 a k? Který vztah pro kvadratické momenty J 1 a J reálného průřezu nemůže nastat? Definujte matematickým zápisem polární kvadratický moment průřezu: - 9 -

10 Jaký je vztah mezi kvadratickými momenty průřezu k osám podle obrázku: Jaký je vztah mezi kvadratickými momenty ke dvěma k sobě kolmým osám a momentem polárním k jejich průsečíku? Který z následujících vztahů platí obecně pro těžiště průřezu? Jaký je deviační moment k osám symetrie souměrným obrazcům? Jaká je deformační energie U, akumulovaná ve válcové pružině těsně navinuté z drátu o délce l s malým úhlem stoupání a velkým D/d (průměr vinutí ku průměru drátu), namáhané osovou silou F: Podmínka tuhosti při krutu je: Jaká je hodnota deformační energie při krutu? Definujte matematickým zápisem deviační moment průřezu k osám y a z:

11 Který matematický zápis definuje kvadratické momenty průřezu k osám y a z: Jaká je deformační podmínka pro řešení staticky neurčité soustavy dvou trubek dle obrázku, namáhaných krutem? Válcová těsně vinutá pružina s malým úhlem stoupání má velký poměr D/d (průměr vinutí ku průměru drátu). Označte pevnostní podmínku pro tuto pružinu: Válcová těsně vinutá pružina s malým úhlem stoupání má velký poměr D/d (průměr vinutí ku průměru drátu). Jakými momentovými účinky je namáhán drát pružiny a který z nich převažuje: Zvětšujeme-li průměr hřídele při daném M K, klesá rychleji napětí τ nebo úhel zkroucení ϕ? Platí astiglianova věta i pro krut? Pokud ano, zapište ji: Kde je maimální napětí τ a jak se vypočítá? Lze u trubky počítat výsledný průřezový modul jako rozdíl průřezových modulů velkého a malého kruhu? Jaká je při kroucení tyče kruhového průřezu závislost smykového napětí v daném řezu na obecném poloměru? Jak se vypočítá poměrný úhel zkroucení ϑ a jakou má jednotku? Který ze vztahů vyjadřuje redukované napětí σ red podle hypotézy Trescovy (τ MAX ): Máme-li hlavní napětí označená indey 1, a 3 platí: Rozšířený Hookův zákon tvoří celkem: Který ze vztahů vyjadřuje redukované napětí σ red podle energetické hypotézy (HMH): Který ze vztahů vyjadřuje redukované napětí σ red podle Mohrovy hypotézy:

12 Který ze vztahů vyjadřuje redukované napětí σ red podle hypotézy σ MAX : Vztah mezi dovoleným smykovým napětím τ D a dovoleným tahovým napětím σ D podle Trescovy hypotézy (τ MAX ) je: Napjatost nazývaná čistý (prostý) smyk má Mohrovy kružnice: V tyči namáhané tahem vzniká maimální smykové napětí pro: Rozšířený Hookův zákon vyjadřuje: Všechny Mohrovy kružnice degenerovaly v bod. Jedná se o: Pro napjatost zadanou třemi hlavními napětími σ 1 > σ > σ 3 platí: Poměr modulů pružnosti v tahu E a smyku G v závislosti na Poissonově čísle µ je: Obecná prostorová napjatost je definována: Orientace úhlů v Mohrově diagramu a ve skutečnosti: Napjatost nazývaná čistý (prostý) tah má Mohrovy kružnice: Vztah τ y = τ y = τ z můžeme psát protože: Obecná prostorová napjatost má: elková deformační energie U ocelové tyče namáhané osovou silou je: Velikost poloměru Mohrovy kružnice pro rovinu -y v Mohrově diagramu σ-τ je dána vztahem: V hlavní rovině: Která z napjatostí je rovinná: - 1 -

13 Bod na Mohrově kružnici určuje: Střed Mohrovy kružnice v Mohrově diagramu σ-τ je dán: Jaká je podle Laplaceovy teorie napjatost v plášti tenkostěnné uzavřené válcové nádoby, namáhané vnitřním přetlakem? U tenkostěnné tlakové nádoby je podle Laplaceovy teorie radiální napětí: Výsledný vnitřní silový účinek určovaný metodou řezu je obecně dán: Napjatost tenkostěnné tlakové nádoby závisí na: Hustota deformační energie v daném místě při zadané napjatosti je: elková deformační energie U ocelové tyče namáhané krouticím momentem je: elková deformační energie U ocelové tyče namáhané ohybovým momentem je: Hustota deformační energie v daném místě při zadané napjatosti je: Lze použít astiglianovu větu pro určení posuvu místa, v němž vnější síla nepůsobí? K čemu slouží astiglianova věta? Kolik deformačních podmínek je nutno užít při řešení staticky neurčité úlohy?

14 Pokud u staticky určité soustavy změníme tuhosti jednotlivých členů, změní se reakce? Vznikají u staticky neurčité soustavy napětí od ohřátí? Jaký je rozdíl mezi skořepinovou a membránovou napjatostí? Kdy je úloha staticky neurčitá? o je to Poissonovo číslo? o rozumíme při tahu - tlaku pojmem prut stálé (stejné) pevnosti? Jak se vypočítá poměrná změna objemu? Zvolte správný tvar Hookova zákona: Čemu je rovna deformační energie U při jednoosé napjatosti? o udává poddajnost prutu a jaký má rozměr? V kterém případě lze pro stanovení deformační energie tělesa užít vztahu U = λv? l Za jakých podmínek lze vyjádřit deformaci tyče pomocí vztahu ε =? o udává tuhost prutu a jaký má rozměr? Jaké největší hodnoty může nabýt Poissonovo číslo? o je hustota deformační energie λ? o je modul pružnosti v tahu? Čím nahrazujeme hodnotu meze kluzu u materiálů s nevýraznou mezí kluzu? l o

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů Jedenácté cvičení bude vysvětlovat tuto problematiku: Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3. obsah 1 Obsah Zde je uveden přehled jednotlivých kapitol a podkapitol interaktivního učebního textu Pružnost a pevnost. Na tomto CD jsou kapitoly uloženy v samostatných souborech, jejichž název je v rámečku

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

1. Úvod do pružnosti a pevnosti

1. Úvod do pružnosti a pevnosti 1. Úvod do pružnosti a pevnosti Mechanika je nejstarší vědní obor a její nedílnou součástí je nauka o pružnosti a pevnosti. Pružností nazýváme schopnost pevných těles získat po odstranění vnějších účinků

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti

b) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti 1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita

Více

Ztráta stability tenkých přímých prutů - vzpěr

Ztráta stability tenkých přímých prutů - vzpěr Ztráta stability tenkých přímých prutů - vzpěr Motivace štíhlé pruty namáhané tlakem mohou vybočit ze svého původně přímého tvaru a může dojít ke ztrátě stability a zhroucení konstrukce dříve, než je dosaženo

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem. Namáhání krutem Uvažujme přímý prut neměnného kruhového průřezu (Obr.2), popřípadě trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek : Prut namáhaný kroutícím momentem.

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 11 Fakulta strojního inženýrství VUT v Brně Ústav konstruování KONSTRUOVÁNÍ STROJŮ strojní součásti Přednáška 11 Mechanické pružiny http://www.victorpest.com/ I am never content until I have constructed a

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

Kapitola vstupních parametrů

Kapitola vstupních parametrů Předepjatý šroubový spoj i ii? 1.0 1.1 1.2 1.3 1.4 1.5 Výpočet bez chyb. Informace o projektu Zatížení spoje, základní parametry výpočtu. Jednotky výpočtu Režim zatížení, typ spoje Provedení šroubového

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59

TAH-TLAK. Autoři: F. Plánička, M. Zajíček, V. Adámek R A F=0 R A = F=1500N. (1) 0.59 Autoři:. Plánička, M. Zajíček, V. Adámek 1.3 Řešené příklady Příklad 1: U prutu čtvercového průřezu o straně h vyrobeného zedvoumateriálů,kterýjezatížensilou azměnou teploty T (viz obr. 1) vyšetřete a

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Navrhování konstrukcí z korozivzdorných ocelí

Navrhování konstrukcí z korozivzdorných ocelí Navrhování konstrukcí z korozivzdorných ocelí Marek Šorf Seminář Navrhování konstrukcí z korozivzdorných ocelí 27. září 2017 ČVUT Praha 1 Obsah 1. část Ing. Marek Šorf Rozdíl oproti navrhování konstrukcí

Více

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Mohrova kružnice pro rovinnou napjatost Kritéria pevnosti (pro rovinnou napjatost) Příklady MOHROVA KRUŽNICE PRO ROVINNOU NAPJATOST Rovinná, neboli dvojosá

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )

Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Střední průmyslová škola strojírenská a azyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky CZ.1.07/1.5.00/34.1003

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2

Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2 Určete plochu, statické momenty a souřadnice těžiště. Plocha je určena přímkami z=0, y= aaparabolou z= y2 a. a=100mm. Příklad 102 Určete kvadratické momenty průřezu tvaru rovnoramenného trojúhelníkakosám

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ Ústav mechaniky, biomechaniky a mechatroniky Odbor pružnosti a pevnosti Program pro analýzu napjatosti a deformaci hřídelů Studentská práce Jan Pecháček

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A3 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice

Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice. Geometrické rovnice Přednáška 1 Základy matematické teorie pružnosti Tenzor napětí a tenzor deformace Statické (Cauchyho) rovnice Rozšířený Hookův zákon Geometrické rovnice Ondřej Jiroušek Ústav mechaniky a materiálů Fakulta

Více

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty

Kˇriv e pruty Martin Fiˇser Martin Fiˇ ser Kˇ riv e pruty Obsah Dimenzování křivého tenkého prutu zde Deformace v daném místě prutu zde Castiglianova věta zde Dimenzování křivého tenkého prutu Mějme obecný křivý prut z homogeního izotropního materiálu. Obrázek:

Více

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013

Steinerova věta a průřezové moduly. Znění a použití Steinerovy věty. Určeno pro druhý ročník strojírenství M/01. Vytvořeno červen 2013 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Steinerova

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

Porušení hornin. J. Pruška MH 7. přednáška 1

Porušení hornin. J. Pruška MH 7. přednáška 1 Porušení hornin Předpoklady pro popis mechanických vlastností hornin napjatost masivu je včase a prostoru proměnná nespojitosti jsou určeny pevnostními charakteristikami prostředí horniny ovlivňuje rychlost

Více

Křivé pruty. Kapitola Úvod

Křivé pruty. Kapitola Úvod Kapitola Křivé pruty. Úvod Zakřivené elementy konstrukcí, u kterých, stejně jako u přímých prutů, převládá jeden rozměr,senazývajíkřivýmipruty.mohoubýtstatickyurčité(obr..a,b,c,d), nebostatickyneurčité(obr..a,b,c,d).

Více

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení

Více

Předpjaté stavební konstrukce

Předpjaté stavební konstrukce Předpjaté stavební konstrukce Mezní stavy únosnosti Mezní únosnost prvků namáhaných osovou silou a ohybem předpoklady řešení základní předpínací síla ohybová únosnost obecná metoda Prvky namáhané smykem

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera Obsah přednášek 1. Stabilita stěn, nosníky třídy 4.. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM

NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM NÁVRH VÝZTUŽE ŽELEZOBETONOVÉHO VAZNÍKU S MALÝM OTVOREM Předmět: Vypracoval: Modelování a vyztužování betonových konstrukcí ČVUT v Praze, Fakulta stavební Katedra betonových a zděných konstrukcí Thákurova

Více

Dynamická pevnost a životnost Cvičení

Dynamická pevnost a životnost Cvičení DPŽ - vičení Dynamiá pevnost a životnost Cvičení Milan Růžiča, Josef Jurena, Martin Nesláde, Jan Papuga mehania.fs.vut.z milan.ruzia@fs.vut.z DPŽ - vičení Cvičení Dynamiá pevnost a životnost Milan Růžiča,

Více

Pružnost a pevnost R. Halama/L. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek

Pružnost a pevnost R. Halama/L. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek Pružnost a pevnost R. Halama/. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek Text byl vytvořen v rámci realizace projektu Matematika pro inženýry. století (reg. č. CZ..07/..00/07.0), na

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk,

Prvky betonových konstrukcí BL01 6 přednáška. Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Prvky betonových konstrukcí BL01 6 přednáška Dimenzování průřezů namáhaných posouvající silou prvky se smykovou výztuží, Podélný smyk, Způsoby porušení prvků se smykovou výztuží Smyková výztuž přispívá

Více

Betonové konstrukce (S)

Betonové konstrukce (S) Betonové konstrukce (S) Přednáška 5 Obsah Mezní únosnost prvků namáhaných osovou silou a ohybem, stav dekomprese, počáteční napjatost průřezu. Prvky namáhané smykem a kroucením, analýza napjatosti (pružná,

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Platnost Bernoulli Navierovy hypotézy

Platnost Bernoulli Navierovy hypotézy Přednáška 03 Diferenciální rovnice ohybu prutu Platnost Bernoulli Navierovy hypotézy Schwedlerovy věty Rovnováha na segmentech prutu Clebschova metoda integrace Příklady Copyright (c) 011 Vít Šmilauer

Více

Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek

Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332),

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

Pevnostní vlastnosti

Pevnostní vlastnosti Pevnostní vlastnosti J. Pruška MH 3. přednáška 1 Pevnost v prostém tlaku na opracovaných vzorcích Jedná se o mezní napětí při porušení zkušebního tělesa za jednoosého tlakového namáhání F R = mez d A pevnost

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více