Diplomová práce Vyuţití pohádek v hodinách matematiky na 1. stupni ZŠ

Rozměr: px
Začít zobrazení ze stránky:

Download "Diplomová práce Vyuţití pohádek v hodinách matematiky na 1. stupni ZŠ"

Transkript

1 Univerzita Jana Evangelisty Purkyně Pedagogická fakulta Katedra matematiky a ICT Diplomová práce Vyuţití pohádek v hodinách matematiky na 1. stupni ZŠ Vypracovala: Kristýna Sedláčková, Učitelství pro 1. stupeň ZŠ a speciální pedagogika Vedoucí práce: prof. RNDr. Jan Melichar, CSc. Místo a rok odevzdání: Ústí nad Labem, 2014

2 Prohlášení Prohlašuji, ţe jsem předloţenou diplomovou práci s názvem Vyuţití pohádek v hodinách matematiky na 1. stupni ZŠ vypracovala samostatně s pouţitím úplného výčtu citací informačních pramenů uvedených v seznamu, který je součástí této práce. V Ústí nad Labem dne: Kristýna Sedláčková

3 Poděkování Za cenné rady a připomínky při vypracování této práce děkuji panu prof. RNDr. Janu Melicharovi, CSc. Za obětavou pomoc při zpracování podkladů a získání informací děkuji třídním učitelům prvního stupně a ředitelce, Základní školy Sady pionýrů v Lovosicích, paní Mgr. Jarmile Višňovcové. Kristýna Sedláčková

4 Anotace Cílem diplomové práce bylo motivovat vzdělávací oblast Matematika a její aplikace pohádkou a ukázat moţnosti praktického vyuţití pohádek v hodinách matematiky na prvním stupni základní školy. Inspirací k práci byly především matematické pohádky od pana Marka Veselého, ke kterým byla vyuţita i vlastnoručně vyrobená metodická pomůcka v podobě modelu hradu se třemi hlavními motivačními pohádkami. Vyuţití pohádek v hodinách matematiky bylo realizováno při projektové a frontální výuce. Ke kaţdé matematické pohádce byl vytvořen pracovní list. Matematické pohádky s pracovními listy a metodickou pomůcku modelu hradu mohou slouţit jako materiál pro učitele. Práce je doplněna i o tvůrčí činnost ţáků, kteří po vypočtení matematických příkladů dokončili děj pohádky či vytvořili vlastní matematickou pohádku. Abstrakt The aim of master thesis was to motivate an educational area of Mathematics and its applications by fairytales to demonstrate options for convenient using of fairytale in Mathematics lessons in a primary school. As an inspiration of a thesis were mainly fairytales written by Marek Vesely, to which was also used handmade methodological tool in the form of castle with three main motivational fairytales. Application of fairytales in Mathematics was realised during project-based and frontal teaching. Working sheet was prepared for every single fairytale. Mathematic fairytales with worksheets and shape castle model can be used as a material for the teachers. This master thesis is completed also with creative activities of students, who upon completion of math problems completed a fairytales or invented their own fairytale.

5 Klíčová slova motivace, pohádka, didaktika matematiky, konstruktivismus, didaktická pomůcka Key words motivation, fairy tale, didactics of mathematics, constructivism, didactic aid

6 OBSAH 1 ÚVOD TEORETICKÁ ČÁST Charakteristika mladšího školního věku Motivace ţáků ve výuce matematiky Teorie pohádky Matematické pohádky Didaktika matematiky Matematika a její aplikace v RVP ZV (1. 5. ročník) ŠVP ZŠ Sady pionýrů Lovosice Matematika (1. 5. ročník) Konstruktivismus Didaktický konstruktivismus Desatero konstruktivismu Konstruktivistické přístupy k vyučování matematiky Komplexní výukové metody Projektová výuka PRAKTICKO VÝZKUMNÁ ČÁST Náměty matematických pohádek a jejich vyuţití ve výuce Popis práce s vlastnoručně vyrobenou pomůckou

7 3.3 Charakteristika zkoumaného vzorku Realizace ŠVP Tvůrčí činnost ţáků ZÁVĚR SEZNAM POUŢITÉ LITERATURY PŘÍLOHY

8 1 ÚVOD Při rozhovoru s dítětem v předškolním věku o tom, čím chce být, aţ vyroste, nám nejeden předškolák odpoví: králem, rytířem, princeznou, kouzelníkem atd. Některé děti se takové myšlenky dokonce drţí po vstupu na základní školu. Proč tento zaţitý poznatek nevyuţít při výuce méně oblíbených předmětů, jako je například matematika? I nelibou činnost lze spojit s něčím zábavným. Pro děti je hned po hře nejčastější zábavou sledování pohádek. V některých světlých případech stále čtení pohádek. Spojíme-li tyto dva faktory dohromady, vznikne nám zábavné vzdělávací téma: matematické pohádky. Do nedávna byla často opomíjena dětská tvořivost, improvizace a motivace. Příkladem větší motivace ţáků je vyuţití pohádek v hodinách matematiky na prvním stupni základní školy. Cílem mé diplomové práce je motivovat vzdělávací oblast Matematika a její aplikace pohádkou, a ukázat moţnosti praktického vyuţití pohádek v hodinách matematiky na prvním stupni základní školy. Práce je rozdělena na část teoretickou a prakticko výzkumnou. V teoretické části je popsána charakteristika mladšího školního věku a motivace ţáků ve výuce matematiky, teorie pohádky jako takové a matematické pohádky, konstruktivizmus a z komplexních výukových metod projektová výuka. Také se zabývá didaktikou matematiky dle Rámcově vzdělávacího programu a Školního vzdělávacího programu základní školy, na které byla realizována i projektová výuka. Inspiraci pro prakticko výzkumnou část jsem čerpala z matematických pohádek převáţně od pana Marka Veselého. Prakticko výzkumná část obsahuje náměty matematických pohádek a popis práce s vlastnoručně vyrobenou didaktickou pomůckou, která je doprovázena třemi hlavními motivačními pohádkami, ke kterým je ideální vyuţít i pohádkový kostým. Náměty pohádek v podobě pracovních listů a didaktickou pomůcku lze vyuţít při výuce matematiky na prvním stupni základní školy. Dále prakticko výzkumná část popisuje charakteristiku zkoumaného vzorku, realizaci výuky matematických pohádek a na závěr i samotnou tvůrčí činnost ţáků v podobě dokončení děje pohádky či vytvoření vlastní matematické pohádky. 8

9 2 TEORETICKÁ ČÁST 2.1 Charakteristika mladšího školního věku Vágnerová (2000, s. 148) popisuje mladší školní věk, jako raný školní věk, který trvá od nástupu do školy, tj. přibliţně od 6-7 let do 8 aţ 9 let. Je charakteristický změnou ţivotní situace a různými vývojovými změnami, které se projevují především ve vztahu ke škole. Langmeier, Krejčířová (2006, s. 117) hovoří o mladším školním období, kterým označujeme zpravidla dobu od 6 7 let, kdy dítě vstupuje do školy, do let, kdy začínají prvé známky pohlavního dospívání i s průvodními psychickými projevy. Někdy se mluví prostě jen o školním věku, ale povinná školní docházka trvá ještě i v období pubescence, které pak můţeme nazývat také starším školním věkem. Jiţ od samého počátku školní docházky nastává u dítěte změna ve způsobu jeho uvaţování. V tomto období je ţák na úrovni konkrétních logických operací. Svoji realitu neopouští, ovšem při uvaţování dává přednost základním zákonům logiky. Dítě jiţ není vázané na jedno hledisko. Uvědomuje si jádro skutečnosti a nenechá se ovlivnit jednotlivými přeměnami. Schopnost a dovednost posuzovat realitu z více hledisek se projevuje i při hodnocení sebe a svého okolí. Pro ţáka v mladším školním věku je typický realistický přístup, který ho vede k uznávání skutečnosti, ale nepřemýšlí nad jinými moţnostmi. Sloţitou a zároveň přirozenou rolí dítěte je role školáka. Ve škole děti podléhají určitému očekávání, které je s touto rolí spjato. Především se to týká vzorného chování a dodrţování určitých norem. Za plnění svých úkolů a následných výsledků je ţák kladně či negativně hodnocen. Svoji známku by si měl řádně zaslouţit. Další roli, kterou ţák získává, je spoluţák. Spoluţáci jsou sobě rovnocennými partneři, kteří se vzájemně srovnávají. Kaţdý ţák vyţaduje pozitivní hodnocení i u svých vrstevníků. Tím poté ve skupině dosahuje uspokojivé pozice. Kromě rolí školák přijímá i novou autoritu, autoritu učitele. Postavení dítěte v rodině můţe být ovlivněno nástupem do školy. Totoţnost školáka je významnou součástí rodiny. Rodiče, matka a otec, jsou dítěti vzorem. Mají určité 9

10 chování a jsou zdrojem jistoty a bezpečí. Pro dobrý vývoj dítěte je ideální úplná funkční rodina. Pokud se rodina rozpadne, ztrácí tak dítě moţnosti, jak získávat většinu kladných zkušeností. Pokud má dítě sourozence, pak i ten vytváří v jeho ţivotě jistou stabilitu. Ve vztahu se sourozenci dítě pochytí mnoho dovedností a prostředků, které vyuţije mezi svými vrstevníky k lepší socializaci. Mezi tzv. socializační prostředky patří i média. Je obecně známo, ţe děti v tomto věku dnes dávají přednost vizuálním médiím před čteným příběhem. Právě vizuálně prezentovaný příběh vnímá dítě v mladším školním věku intenzivněji, jelikoţ se více podobá skutečnosti. Nejhůře se média podepisují na verbálním myšlení a řeči. Děti méně čtou a nerozumí tak některým slovům, rčením a metaforám. Motivací ke čtení by pro ně měla být dětská fantazie a tvořivost, které lze prosadit právě při čteném příběhu, se kterým se dále dá ještě pracovat. Rodiče by měli dohlíţet na to, která média jejich děti preferují. Atraktivní a významné věci pro dítě pak často dětský divák napodobuje. Opravdovou hrozbou v médiích je násilí. U dítěte můţe vyvolat podnět k podobnému chování. Na první pohled se můţe zdát, ţe toto období není nijak zajímavé a změny osobnosti dítěte nijak převratné. Langmeier, Krejčířová (2006, s. 118) ale uvádí, ţe vývoj pokračuje trvale a plynule a dítě dosahuje ve všech směrech výrazných pokroků, které jsou pro jeho budoucnost často rozhodující. 2.2 Motivace ţáků ve výuce matematiky Ţák získá poznatkovou strukturu, pokud je sám aktivní a snaţí se, chce se učit a získávat nové informace, zajímá se o učení a je k tomu motivován. Motivace je předpokladem zahájení procesu učení, představuje jeho úspěšný start. Můţe mít různé formy: od vhodně vedené diskuse o zajímavé problematice k dobře poloţené otázce či formulaci problému, k diskusi o ţivotní strategii, aţ např. k zajímavé úloze či podnětné hře (Hejný, Kuřina, 2001, s. 105). Motivace je ve vyučovacím procesu faktorem, který můţe sniţovat napětí mezi poţadavky danými osnovami a vybavením osobnosti ţáka. Výzkumy ukazují, ţe více neţ 10

11 polovina ţáků s problémy při učení by mohla dosahovat lepších výsledků, kdyby tito ţáci měli pozitivní motivaci ke škole a práci ve vyučování (Coufalová, 2006, s. 13). Škola není místo, kde by dítě mělo získat co nejvíce vědomostí a přitom se vůbec nenamáhat. Koncept školy hrou spíše ţádá, aby škola vyuţívala spontánní objevovací schopnosti dítěte, a tak je k námaze motivovala, ne však, aby je námahy ušetřila. Škola bez námahy a píle není ţádoucí: především ve škole si dítě můţe vštípit základní kulturu úsilí, která je v naší civilizace potřebná. Poţadovat výkon a to výkon smysluplný je jednou ze základních funkcí školy (Hejný, Kuřina, 2001, s. 105). Dělení teoretických přístupů k motivaci dle Lokšové, Lokši (1999): behaviorální, které chápou jako zdroj motivace snahu vyhnout se nepříjemným důsledkům chování nebo dosáhnout důsledků příjemných, humanistické, které zdůrazňují snahu jedince o překročení současného stavu, uskutečnění jeho vývojových moţností, kognitivní, které zdůrazňují význam poznávacích procesů pro chování člověka. Dle Coufalové (2006) je motivace ovlivněna také věkem ţáka. Vzniká pak motivace: vnější tzv. primární, převládá na počátku školní docházky, vnitřní tzv. učební, vytváří se později. Ovlivněno vhodně zvolenými učebními činnostmi, nastupuje při nárůstu samostatnosti a zodpovědnosti ţáků. Chceme-li, aby dítě bylo pozorné a naplnilo svoji potřebu poznání, měli bychom co nejdříve uspokojit jeho zájmy, aby si nevšímalo okolí. Děti mají většinou rozsáhlou oblast motivace. Můţou jimi být například domácí zvířata, sporty, technika, příroda atd. Při spolupráci nebo v diskusi můţeme ţáky a jejich zmatený, neuspořádaný, poznávací proces s citem a pochopením usměrnit. Děti obvykle napodobují činnosti někoho jiného, nejčastěji dospělého. Právě při nápodobě získávají spoustu zkušeností a prvků z lidského poznání. Jak uvádí Bruner (1965), pro učení je nejpříznivější optimální úroveň vzbuzené pozornosti někde mezi lhostejností a aktivitou. Činnost vypěstovaná soutěţivostí někdy neponechává čas na přemýšlení, hodnocení a zobecňování, zatímco nadměrný pořádek, při 11

12 němţ je kaţdý ţák pasivní, plodí nudu a krajní apatii. Bruner popisuje, jak lze vzbuzovat zájem dítěte o svět pojmů. Měli bychom přispět k zesilování vnitřního zájmu o probírané učivo u dětí. Vštěpovat ţákům smysl pro objevování. Převádět to, co chceme sdělit, na myšlenkové formy vlastní dítěti. Smyslem toho je, aby se u dítěte rozvíjel zájem o to, čemu se učí, a současně s tím i příslušný soubor postojů a hodnot v intelektuální činnosti vůbec. Ideální vnitřní motivací v hodinách matematiky jsou pro ţáky příběhy. Potřeba poznávat matematiku se bohuţel u ţáků vyskytuje minimálně. Nejčastější formou motivace v hodinách matematiky je získání dobré známky či zalíbení se učiteli. Ovšem existují motivační činitelé, kteří mohou záporně ovlivnit výkon ţáka. Můţe jím být například pocit nudy, neuţitečnosti daného učiva nebo strach z určitého předmětu. Proto je důleţité činnosti, úkoly a metody v hodinách obměňovat, aby i nejméně úspěšní ţáci měli šanci na získání dobré známky či pochvaly. 2.3 Teorie pohádky Jedná se o jeden z nejstarších epických ţánrů, který se šířil mezi národy pomocí lidové slovesnosti. Kaţdá kultura má dnes své pohádky, kdy dobro vítězí nad zlem a pohádkový svět je zde spravedlivější. Zajímavé je, ţe pohádkový příběh nebyl původně určen dětským posluchačům, jak je tomu v současné literatuře, ale spíše dospělým. Ovšem své přívrţence si najde v kaţdé generaci. V pohádce se můţeme zaposlouchat do fantastických, smyšlených příběhů se šťastným koncem a moudrým ponaučením. Tyto příběhy nejsou vázány na konkrétní čas, prostor ani situaci. Postupem času se ve světě spustila migrace pohádek, která způsobila, ţe si dnes můţeme přečíst například Šípkovou Růţenku či Popelku od různých světových autorů v mnoha jejich proměnách. Pohádky nám vyprávějí různé fantastické příběhy. Nejznámějšími jsou tzv. kouzelné pohádky, v nichţ rozdělujeme postavy na kladné a záporné. Hlavními hrdiny mohou být také zvířecí postavy. Ty se objevují v tzv. pohádkách zvířecích, jejichţ děj bývá mravně poučný a připomínají tak bajku. Dalšími pohádkami jsou tzv. legendární, kde vystupují biblické postavy, jako je například Jeţíš Kristus. Posledním typem jsou tzv. realistické pohádky. Ty poukazují na kaţdodenní ţivot a problémy obyčejných lidí. 12

13 Pohádková obrazovost má pozitivní vliv na dětské myšlení a to zejména na představivost, generalizaci a rozvoj abstraktního myšlení dítěte. Pohádky u dětí vyvolávají emoce, jako jsou strach, láska, náklonnost, odpor, mateřský postoj i nadřazenost. Pohádkový příběh, který dítě k sobě bezprostředně vztahuje, tak má nezaměnitelnou funkci nejen rozvojovou, ale i socializační. Ze sociologického pohledu je pohádka čistou formou objektivace idejí, norem, hodnot a symbolů ţivota určitého společenství, tzn. jeho kulturního paradigmatu. Odráţí v psané podobě jazyka vzorce chování jako závazné imperativy, jako ověřená schémata (Homolová, 2008, s. 8). Pohádky v sobě nesou bájné představy lidstva, nadčasové životní pravdy, zejména věčnou touhu po naplnění dobra a víru v kouzelnou moc slova. (Čeňková, 2006, s. 107) Děti mladšího školního věku rozumí pohádkovému světu. Je důleţité, aby čtení pohádek pokračovalo i v dalších generacích. Pomocí pestrých ilustrací v pohádkových knihách se vyvíjí dětská osobnost a poslechem příběhů se učí komunikovat, poznávat slova a jejich význam. Dítě je motivováno, rozvíjí se jeho fantazie, představivost a myšlení. Ve škole jsou ţáci pomocí pohádkových úkolů vedeni k samostatné tvůrčí činnosti. Pohádky obohacují dětskou duši, bez nich zůstanou dětské duše neohebné a citově chudé. Pohádky jsou bezprostředně výživné jako mléko, jsou jemné a milé, sladké a sytící jako med a nepodléhají světské tíži. (Bratři Grimmové) 2.4 Matematické pohádky Veselý (2006) uvádí, ţe matematické pohádky jsou běţné slovní úlohy, které mají jednu zvláštnost: na rozdíl od jiných slovních úloh, jsou tyto zabaleny v atraktivním obalu, který jim dává určitou přitaţlivost a tím motivuje děti k řešení matematických úkolů. Slovní úlohy jsou takové početní úlohy, ve kterých je souvislost mezi danými a hledanými čísly vyjádřena slovní formulací a v nichž je třeba na základě vhodné úvahy 13

14 zjistit, jaké početní výkony je třeba provést s danými čísly, abychom došli k číslům, která máme vypočítat. 1 Matematické pohádky lze tedy definovat jako matematické úlohy s netradičním a pro děti velmi zajímavým textem, jejichţ cílem je ţáky motivovat. Slovní úlohy jsou pro rozvoj logického myšlení důleţité, ale pro ţáky bohuţel ne moc oblíbené. Pohádky jsou zde skvěle zvolenou motivací a to nejen pro děti v mladším školním věku. Jelikoţ si pohádky naleznou zalíbení v kaţdé generaci, jsou jimi motivováni v hodinách matematiky i starší ţáci. Zadání matematických pohádek a sloţitost příkladů upravujeme dle daného ročníku. Pohádky lze také vyuţít i v různých etapách vyučovacího procesu: například při opakování dané látky nebo při zábavné pohybové chvilce. Ţáci tak ve svých hodinách matematiky zaţijí příjemné zpestření. Hodiny matematiky lze pojmout i hravou formou. Matematika nemusí být pro ţáky pouze nudným a neoblíbeným předmětem. Formou zábavy a her si ţáci zopakují učivo, upevní matematické dovednosti a znalosti, ale také se psychicky uvolní. Pomocí her tak podporují růst svých intelektuálních schopností, rozvoj paměti, abstraktního i logického myšlení, tvořivosti atd. Zábavná matematika tak poskytuje dovednosti a znalosti nutné pro orientaci v běţném ţivotě. Získané poznatky a dovednosti lze vyuţít v oboru ekonomiky, techniky či v přírodovědeckých oborech. Perný popisuje matematické pohádky jako matematické úlohy, které jsou podané netradičním způsobem. 2 Ve své typologii rozděluje matematické pohádky takto: 1. dětské říkanky doplněné dalšími verši s jednou či více matematickými úlohami, například: Polámal se mraveneček, ví to celá obora. O půlnoci zavolali mravenčího doktora. (Cesta k mraveništi trvá 105 minut v bezvětří. Víte, v kolik hodin doktor mravenečka ošetří?), 3 1 Studijní opora: MELICHAR, J. Slovní úlohy v učivu matematiky 1. stupně základní školy 2 Studijní opora: PERNÝ, J. Matematické pohádky 3 Studijní opora: ČERVENÁ, P. Mravenečkova pohádka 14

15 2. běţně známá pohádka, kde ţáci díky plnění úkolů pomáhají k dobrému konci pohádky, například: Byla jednou jedna dívenka jménem Maruška. Ta ţila jen se svoji maminkou ve staré chalupě. Jednoho dne musela Maruška na jahody. A zde máme první úkol: (Maruška vstala v půl 6. Poté se 10 minut myla a oblékala, čtvrt hodiny chystala snídani, 15 minut jedla a jednu hodinu krmila domácí zvířata. V kolik hodin odešla do lesa?), 4 3. vymyšlené pohádky s matematickou terminologií v textu, které lze rozdělit do dalších dvou podtypů: a) pomocí pohádky zde vysvětlujeme, zavádíme či procvičujeme určitý matematický pojem, například: Jednoho dne napadla Osově souměrné království v rovině zlá a nenasytná osoţravá přímka, která geometrickým útvarům v království začala krást osy souměrnosti. Nakonec se objevil cizí udatný princ, který s touto přímkou dal do boje. Vţdy, kdyţ mu nenasytná přímka sebrala osu souměrnosti, nabídl ji další. Měl jich tolik, ţe to přímka vzdala a odešla pryč z království. (Jakým rovinným geometrickým útvarem byl udatný princ?), 5 b) vyúsťuje v zadání matematické úlohy, například: Ţil byl král Ořezávátko, který měl tři syny, Kvádra, Kouloně a Válečka. Kdyţ synové vyrostli, král Ořezávátko se svou paní Pentilkou se rozhodli, ţe předají vládu a kruţítko tomu princi, který si najde princeznu s věnem. Toto věno musí být dohromady s princovým obydlím nejblíţe objemu královského paláce, ten je m 3. Princ Kvádr měl dům ve tvaru kvádru, který měl půdorys o stranách 50 a 120 m a výšku 44 m. Kouloň nemohl mít dům na kopci, vyhovoval mu totiţ zámek ve tvaru koule o průměru 80 m. Princ Váleček si vzal od kaţdého trochu. Měl válcový dům s půdorysem o průměru 160 princových kroků, jeţ byly 80 centimetrové. Od podlahy ke střeše to bylo 22 m. Zanedlouho přišly princům vzkazy z okolních království od princezny Jehlanky, Hranolky a Kuţelky. Rázná 4 Studijní opora: SASKOVÁ, K. Hrnečku vař! 5 Studijní opora: BUREŠOVÁ, J. O nenasytné osoţravé přímce 15

16 Jehlanka vzkazovala, ţe věnem dostane šperkovnici ve tvaru jehlanu s trojúhelníkovou podstavou vysokého 6 m. Strana trojúhelníkové podstavy byla tři metry a výška k ní dva metry. Překrásná Hranolka vzkázala, ţe věnem dostane hranolovité bludiště s půdorysem o obsahu 420 m 2 a výškou 2,5 metru. Kuţelka měla věnem dostat zlatou věţ tvaru kuţele s poloměrem 14 m a výškou 26 m. (Který princ se stal králem? Která princezna byla ta šťastná?). 6 Dále pak můţeme rozlišit ještě další podtypy matematických pohádek: - vzájemně od sebe izolované úlohy v pohádce, - úlohy, které spolu souvisí, - komplexní úlohy. Dle Perného je moţno úlohy členit také podle toho, jakou matematickou disciplínou se zabývají. Zda aritmetikou, algebrou či geometrií, ale i kombinatorikou nebo pravděpodobností apod Didaktika matematiky Didaktika matematiky je vědecká disciplína zkoumající zákonitosti vyučování matematice v souladu s cíli vyučování určenými společností. Vyučování matematice je zde objektem zkoumání didaktiky matematiky. Z toho důvodu také didaktika matematiky spadá pod pedagogické vědy. Pomocí této vědní disciplíny se matematice vyučují děti od předškolního věku aţ po studenty vysokých škol. Kromě názvu didaktika matematiky se pro tuto disciplínu pouţívají i jiné termíny: teorie vyučování matematice, pedagogika matematiky, metodika vyučování matematice. Nejčastěji se didaktika matematiky zabývá dvěma problémy: a) problém obsahu vyučování (klademe si otázku Co učit? ), b) problém vyučovacích metod (klademe si otázku Jak učit? ). 6 Studijní opora: HORÁLEK, F. O objemném království 7 Studijní opora: PERNÝ, J. Matematické pohádky 16

17 Matematika označuje určitou myšlenkovou činnost nebo teorii, která je právě výsledkem této činnosti. Lze také říci, ţe vyučování matematice je vyučování matematické činnosti. Vyučovací proces pak chápeme jako řízení, které je prováděné učitelem s pouţitím řady pomocných prostředků, například: učebnice, názorné pomůcky, technické prostředky výuky. Dělení vyučovacího procesu: cíle vyučování ( Proč učíme? ), objekt vyučování ( Koho učíme? ), obsah vyučování ( Čemu učíme? ), metody vyučování ( Jak učíme? ). Učitelé by měli dbát na svoji přípravu. Bohuţel, ne všichni vyučují to, co sami umí. Pak je předávání vědomostí kamenem úrazu. Učitel by měl své ţáky zároveň vychovávat, pokud se na výchově dítěte dostatečně nepodílí rodina. Dokonce i společnost vychovává kaţdého jedince. Je tedy evidentní, ţe osobnost učitele, odborná připravenost, pedagogické umění a jeho ušlechtilost zde hrají velkou roli. Především by měl kaţdý učitel u ţáků vzbuzovat důvěru. Vyučující si také musí zvolit vhodné metody, které pouţije k předávání určitého obsahu konkrétnímu objektu vyučování. Jeho úkolem je zpracovávat informace obdrţené z osnov, vědecké, učební a metodické literatury. Můţeme říci, ţe učitel má mnoho povolání: herec, reţisér, scénárista. Poté ţák tyto informace obdrţené od učitele, z učebnice či jiných zdrojů zpracovává a na poţádání učitele poskytuje informaci o kvalitě osvojené učební látky a dosaţeném rozvoji myšlenkové činnosti. Ve vyučovacím procesu probíhá přenos informací dvěma směry: od učitele k ţákovi a od ţáka k učiteli. 8 Děti se s matematikou, konkrétně s čísly, seznamují jiţ v předškolním věku formou komunikace pomocí mateřského jazyka. Zároveň se k těmto prvním zkušenostem přidávají další. Mohou to být záţitky z domácího rodinného prostředí, her nebo z dětského světa v mateřské škole, ve které se seznámí s několika kvantitativními pojmy. U ţáků prvního stupně, zejména pak prvního ročníku, je důleţité dbát na práci s čísly spojené s realitou, s konkrétní situací. Jsou to čísla vázaná k určitému předmětu, se kterým jsou ţáci denně 8 Vycházela jsem z přednášek od pana prof. RNDr. Jana Melichara, CSc. 17

18 v kontaktu. Poznávací proces probíhá u ţáků individuálně a tím se pak liší jejich početní gramotnost. Největší rozdíly mezi ţáky bývají v prvním ročníku. Zde je práce učitele velmi náročná. Naráz pracuje s ţáky, kteří v hodinách matematiky stále potřebují konkrétní model a s těmi, kteří vyřeší úlohu nejprve abstraktně a poté aţ vše dokreslují Matematika a její aplikace v RVP ZV (1. 5. ročník) Ve školním roce 2007/2008 vstoupil v platnost Rámcový vzdělávací program (dále jen RVP) jako kurikulární dokument, který vymezuje závazné rámce vzdělá vání pro jeho jednotlivé etapy - předškolní, základní a střední vzdělávání. RVP vychází z nové strategie vzdělávání, která zdůrazňuje klíčové kompetence, jejich provázanost se vzdělávacím obsahem a uplatnění získaných vědomostí a dovedností v praktickém ţivotě. Tento dokument bude nadále inovován podle měnících se potřeb společnosti, zkušeností učitelů se školními vzdělávacími programy i podle měnících se potřeb a zájmů ţáků. RVP je veřejný dokument a přístupný pro pedagogickou i nepedagogickou veřejnost. Dle RVP (2007) je vzdělávací oblast Matematika a její aplikace v základním vzdělávání zaloţena především na aktivních činnostech, které jsou typické pro práci s matematickými objekty a pro uţití matematiky v reálných situacích. Poskytuje vědomosti a dovednosti potřebné v praktickém ţivotě a umoţňuje tak získávat matematickou gramotnost. Ţáci si postupně osvojují některé pojmy, algoritmy, terminologii, symboliku a způsoby jejich uţití. Vzdělávací obsah vzdělávacího oboru Matematika a její aplikace je rozdělen na čtyři tematické okruhy: 9 1. Číslo a početní operace na 1. stupni ŢŠ, Očekávané výstupy - 1. období Ţák: pouţívá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků, 9 Rámcový vzdělávací program pro základní vzdělávání VÚP. In Metodický portál RVP [online]. Dostupné: [cit ]. 18

19 čte, zapisuje a porovnává přirozená čísla do 1 000, uţívá a zapisuje vztah rovnosti a nerovnosti, uţívá lineární uspořádání; zobrazí číslo na číselné ose, provádí zpaměti jednoduché početní operace s přirozenými čísly, řeší a tvoří úlohy, ve kterých aplikuje a modeluje osvojené početní operace. Očekávané výstupy - 2. období Ţák: vyuţívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení, provádí písemné početní operace v oboru přirozených čísel, zaokrouhluje přirozená čísla, provádí odhady a kontroluje výsledky početních operací v oboru přirozených čísel, řeší a tvoří úlohy, ve kterých aplikuje osvojené početní operace v celém oboru přirozených čísel. Učivo: obor přirozených čísel, zápis čísla v desítkové soustavě, číselná osa, násobilka, vlastnosti početních operací s přirozenými čísly, písemné algoritmy početních operací. 2. Závislosti, vztahy a práce s daty na 1. stupni ZŠ, Očekávané výstupy - 1. období Ţák: orientuje se v čase, provádí jednoduché převody jednotek času, popisuje jednoduché závislosti z praktického ţivota, doplňuje tabulky, schémata, posloupnosti čísel. 19

20 Očekávané výstupy - 2. období Ţák: vyhledává, sbírá a třídí data, čte a sestavuje jednoduché tabulky a diagramy. Učivo: závislosti a jejich vlastnosti, diagramy, grafy, tabulky, jízdní řády. 3. Geometrie v rovině a v prostoru na 1. stupni ZŠ, Očekávané výstupy - 1. období Ţák: rozezná, pojmenuje, vymodeluje a popíše základní rovinné útvary a jednoduchá tělesa; nachází v realitě jejich reprezentaci, porovnává velikost útvarů, měří a odhaduje délku úsečky, rozezná a modeluje jednoduché souměrné útvary v rovině. Očekávané výstupy - 2. období Ţák: narýsuje a znázorní základní rovinné útvary (čtverec, obdélník, trojúhelník, kruţnici); uţívá jednoduché konstrukce, sčítá a odčítá graficky úsečky; určí délku lomené čáry, obvod mnohoúhelníku sečtením délek jeho stran, sestrojí rovnoběţky a kolmice, určí obsah obrazce pomocí čtvercové sítě a uţívá základní jednotky obsahu, rozpozná a znázorní ve čtvercové síti jednoduché osově souměrné útvary a určí osu souměrnosti útvaru překládáním papíru. 20

21 Učivo: základní útvary v rovině lomená čára, přímka, polopřímka, úsečka, čtverec, kruţnice, obdélník, trojúhelník, kruh, čtyřúhelník, mnohoúhelník, základní útvary v prostoru kvádr, krychle, jehlan, koule, kuţel, válec, délka úsečky; jednotky délky a jejich převody, obvod a obsah obrazce, vzájemná poloha dvou přímek v rovině, osově souměrné útvary. 4. Nestandardní aplikační úlohy a problémy na 1. stupni ZŠ, Očekávané výstupy - 2. období Ţák: řeší jednoduché praktické slovní úlohy a problémy, jejichţ řešení je do značné míry, nezávislé na obvyklých postupech a algoritmech školské matematiky. Učivo: slovní úlohy, číselné a obrázkové řady, magické čtverce, prostorová představivost. Dále RVP (2007) popisuje cílové zaměření této vzdělávací oblasti, kdy vede ţáka k: vyuţívání matematických poznatků a dovedností v praktických činnostech odhady, měření a porovnávání velikostí a vzdáleností, orientace, rozvíjení paměti ţáků prostřednictvím numerických výpočtů a osvojováním si nezbytných matematických vzorců a algoritmů, rozvíjení kombinatorického a logického myšlení, ke kritickému usuzování, srozumitelné a věcné argumentaci prostřednictvím řešení matematických problémů, 21

22 rozvíjení abstraktního a exaktního myšlení osvojováním si a vyuţíváním základních matematických pojmů a vztahů, k poznávání jejich charakteristických vlastností a na základě těchto vlastností k určování a zařazování pojmů, vytváření zásoby matematických nástrojů (početních operací, algoritmů, metod řešení úloh) a k efektivnímu vyuţívání osvojeného matematického aparátu, vnímání sloţitosti reálného světa a jeho porozumění; k rozvíjení zkušenosti s matematickým modelováním (matematizací reálných situací), k vyhodnocování matematického modelu a hranic jeho pouţití; k poznání, ţe realita je sloţitější neţ její matematický model, ţe daný model můţe být vhodný pro různorodé situace, jedna situace můţe být vyjádřena různými modely, provádění rozboru problému a plánu řešení, odhadování výsledků, volbě správného postupu k vyřešení problému a vyhodnocování správnosti výsledku vzhledem k podmínkám úlohy nebo problému, přesnému a stručnému vyjadřování uţíváním matematického jazyka včetně symboliky, prováděním rozborů a zápisů při řešení úloh a ke zdokonalování grafického projevu, rozvíjení spolupráce při řešení problémových a aplikovaných úloh vyjadřujících situace z běţného ţivota a následně k vyuţití získaného řešení v praxi; k poznávání moţností matematiky a skutečnosti, ţe k výsledku lze dospět různými způsoby, rozvíjení důvěry ve vlastní schopnosti a moţnosti při řešení úloh, k soustavné sebekontrole při kaţdém kroku postupu řešení, k rozvíjení systematičnosti, vytrvalosti a přesnosti, k vytváření dovednosti vyslovovat hypotézy na základě zkušenosti nebo pokusu a k jejich ověřování nebo vyvracení pomocí protipříkladů ŠVP ZŠ Sady pionýrů Lovosice Matematika (1. 5. ročník) Na Rámcový vzdělávací program (dále jen RVP) navazuje Školní vzdělávací program (dále jen ŠVP), který si kaţdá škola vytváří sama tak, aby dle RVP respektovala vzdělávací cíle, klíčové kompetence a vyhověla poţadavkům v efektivním vzdělávání 10 Rámcový vzdělávací program pro základní vzdělávání VÚP. In Metodický portál RVP [online]. Dostupné: [cit ]. 22

MATEMATIKA. 1. 5. ročník

MATEMATIKA. 1. 5. ročník Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel : počítání do dvaceti - číslice

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků Rozezná, pojmenuje, vymodeluje a popíše základní rovinné

Více

Očekávané výstupy z RVP Učivo Přesahy a vazby

Očekávané výstupy z RVP Učivo Přesahy a vazby Matematika - 1. ročník Používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků obor přirozených čísel: počítání do dvaceti - číslice

Více

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 6. úprava 26.8.2013 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1 ÚPRAVY UČEBNÍHO PLÁNU A VYUČOVACÍHO PŘEDMĚTU MATEMATIKA Projednáno pedagogickou radou dne: 26. 8. 2013 Schválila ředitelka

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 4. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace využívá při pamětném a písemném počítání komutativnost a asociativnost sčítání a násobení

Více

UČEBNÍ OSNOVY ZÁKLADNÍ ŠKOLA P. BEZRUČE, TŘINEC

UČEBNÍ OSNOVY ZÁKLADNÍ ŠKOLA P. BEZRUČE, TŘINEC UČEBNÍ OSNOVY ZÁKLADNÍ ŠKOLA P. BEZRUČE, TŘINEC Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 132 Matematika a její aplikace Matematika 2. období 4. ročník Učební texty : Alter

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: MATEMATIKA Ročník: 4. Časová dotace: 4 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Provádí písemné početní operace Zaokrouhluje přirozená čísla, provádí odhady a kontroluje

Více

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata)

Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Příloha č. 4 Matematika Ročník: 4. Očekávané výstupy z RVP Školní výstupy Učivo Přesahy (průřezová témata) Číslo a početní operace - využívá při pamětném i písemném počítání komutativnost a asociativnost

Více

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1.

6.1 I.stupeň. Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA. Charakteristika vyučovacího předmětu 1. 6.1 I.stupeň Vzdělávací oblast: Matematika a její aplikace 6.1.3. Vyučovací předmět: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací obsah je rozdělen na čtyři tematické okruhy : čísla

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Martina Fujavová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Martina Fujavová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Martina Fujavová Vyučovací předmět Matematika je na prvním stupni zařazen v 1. - 5. ročníku, a to

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 5. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace Využívá při pamětném i písemném počítání komutativnost a asociativnost sčítání a násobení

Více

Charakteristika předmětu Matematika

Charakteristika předmětu Matematika Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika předmětu Matematika Vyučovací předmět matematika se vyučuje jako samostatný

Více

Vyučovací předmět / ročník: Matematika / 4. Učivo

Vyučovací předmět / ročník: Matematika / 4. Učivo Vzdělávací oblast: Matematika a její aplikace Výstupy žáka Vyučovací předmět / ročník: Matematika / 4. ČÍSLO A POČETNÍ OPERACE Zpracoval: Mgr. Dana Štěpánová orientuje se v posloupnosti přirozených čísel

Více

Matematika úprava platná od 1. 9. 2009

Matematika úprava platná od 1. 9. 2009 Matematika úprava platná od 1. 9. 2009 Charakteristika vyučovacího předmětu Obsah vzdělávací oblasti Matematika a její aplikace se realizuje v předmětu Matematika po celou dobu školní docházky. Na 1. stupni

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

MATEMATIKA II. období (4. 5. ročník)

MATEMATIKA II. období (4. 5. ročník) MATEMATIKA II. období (4. 5. ročník) Charakteristika předmětu Při vyučování matematice v druhém období základního vzdělávání při probírání určitého učiva: - využíváme matematické poznatky a dovednosti

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

Vyučovací předmět probíhá ve všech ročnících. V 1. ročníku se vyučují 4 hodiny matematiky týdně, v 2. 5. ročníku po 5 hodinách.

Vyučovací předmět probíhá ve všech ročnících. V 1. ročníku se vyučují 4 hodiny matematiky týdně, v 2. 5. ročníku po 5 hodinách. 5.2 Oblast: Předmět: Matematika 5.2.1 Obor: Charakteristika předmětu matematika 1. stupeň Matematika tvoří základ vzdělávacího působení v základní škole. Vede žáky k získávání matematických pojmů, algoritmů,

Více

Ukázka zpracování učebních osnov vybraných předmětů. Škola Jaroslava Ježka základní škola pro zrakově postižené

Ukázka zpracování učebních osnov vybraných předmětů. Škola Jaroslava Ježka základní škola pro zrakově postižené Ukázka zpracování učebních osnov vybraných předmětů Škola Jaroslava Ježka základní škola pro zrakově postižené Škola má deset ročníků, 1.stupeň tvoří 1. až 6., 2.stupeň 7. až 10.ročník. V charakteristice

Více

Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice

Předmět: Matematika. Pojem rovina Rovinné útvary a jejich konstrukce Délka úsečky, jednotky délky a jejich převody. Rovnoběžky, různoběžky, kolmice a její aplikace čte, zapisuje a porovnává přirozená čísla do 1 000, užívá a zapisuje vztah rovnosti a nerovnosti 3. užívá lineární uspořádání, zobrazí čísla na číselné ose 8. zaokrouhluje přirozená čísla,

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Sčítá a odčítá v oboru 0 6. Numerace v oboru 0 6 Manipulace s předměty, třídění

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

6.5 Matematika 1.stupeň

6.5 Matematika 1.stupeň VZDĚLÁVACÍ OBLAST : VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: Matematika a její aplikace Matematika 6.5 Matematika 1.stupeň CHARAKTERISTIKA PŘEDMĚTU: Vyučovací předmět matematika je předmět, který poskytuje

Více

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru

2. LMP SP 3. LMP SP + 2. LMP NSP. operace. Závislosti, vztahy a práce s daty. Závislosti, vztahy a práce s daty. v prostoru ŠVP LMP Charakteristika vyučovacího předmětu Matematika Obsahové, časové a organizační vymezení vyučovacího předmětu Matematika Vzdělávací obsah předmětu Matematika je utvořen vzdělávacím obsahem vzdělávacího

Více

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová

Tematický plán učiva. Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová Tematický plán učiva Předmět : Matematika a její aplikace Školní rok : 2012-2013 Třída-ročník : 4. Vyučující : Věra Ondrová 1. Používá čtení a psaní v číselném oboru 0 1 000 000. 2. Rozumí lineárnímu uspořádání

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Strategie pro naplnění klíčových kompetencí v 1. 3. ročníku

Strategie pro naplnění klíčových kompetencí v 1. 3. ročníku Matematika 1. st. Charakteristika předmětu Časová dotace předmětu je v prvním ročníku 4 hodiny týdně, ve druhém až pátém po 5 hodinách týdně. Předmět matematika a její aplikace je rozdělen na čtyři tématické

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Matematika a její aplikace Matematika- 1.období

Matematika a její aplikace Matematika- 1.období Vzdělávací oblast : Vyučovací předmět : Matematika a její aplikace Matematika- 1.období Charakteristika předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace,

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Práce s čísly do 1 000 000 Žák: ČaPO: počítá do 1 000 000 - počítá po statisících, desetitisících,tisících ČaPO: pracuje s číselnou osou - čte, zapíše a zobrazí

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Sčítání a odčítání s přechodem přes desítku Žák: ČaPO: sčítá a odčítá v oboru do 20-ti s přechodem přes desítku - sčítání a odčítání v oboru přirozených čísel

Více

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků

Matematika. Charakteristika vyučovacího předmětu. Výchovné a vzdělávací strategie pro rozvíjení klíčových kompetencí žáků Vzdělávací obor: Matematika a její aplikace Obsahové, časové a organizační vymezení Matematika Charakteristika vyučovacího předmětu 1.-2. ročník 4 hodiny týdně 3.-5. ročník 5 hodin týdně Vzdělávací obsah

Více

A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu

A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Vyučovací předmět: MATEMATIKA A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Předmět Matematika je v základním vzdělávání založen především na aktivních činnostech,

Více

Vzdělávací obor matematika - obsah

Vzdělávací obor matematika - obsah Vzdělávací obor matematika - obsah 1. ročník Kompetence k učení, k řešení problémů, komunikativní, sociální a personální, občanské a pracovní 1. ČÍSLO A 1.Žák používá přirozená čísla k modelování Přirozená

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

5.2. MATEMATIKA A JEJÍ APLIKACE. 5.2.1 Matematika 1. stupeň

5.2. MATEMATIKA A JEJÍ APLIKACE. 5.2.1 Matematika 1. stupeň 5.2. MATEMATIKA A JEJÍ APLIKACE Vzdělávací oblast Matematika a její aplikace je v základním vzdělávání založena především na aktivních činnostech, které jsou typické pro práci s matematickými objekty a

Více

MATEMATIKA. Charakteristika vyučovacího předmětu 1. stupeň: Obsahové, časové a organizační vymezení: Předmětem prolínají průřezová témata:

MATEMATIKA. Charakteristika vyučovacího předmětu 1. stupeň: Obsahové, časové a organizační vymezení: Předmětem prolínají průřezová témata: MATEMATIKA Charakteristika vyučovacího předmětu 1. stupeň: Matematika poskytuje vědomosti a dovednosti potřebné v praktickém životě a umožňuje tak získávat matematickou gramotnost. Žáci získávají početní

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Český jazyk, Výtvarná výchova, Pracovní vyučování. Prv - (2. ročník): Čas Aj - (3.a 4.ročník): Čas

Český jazyk, Výtvarná výchova, Pracovní vyučování. Prv - (2. ročník): Čas Aj - (3.a 4.ročník): Čas 1.1.1. MATEMATIKA I. ST. - ve znění dodatku č.37 - platný od 1.9.2012, č.22 Etická výchova - platný od 1.9.2010, Standardů platných od 1.9.2013 a změn v RVP ZV platných od 1.9.2013 Charakteristika vyučovacího

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata,

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, 5.1.2.2 Vzdělávací obsah vyučovacího předmětu Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět : Matematika Ročník: 1. Výstup Učivo Průřezová témata, Zná číslice 1 až 20, umí je napsat a

Více

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky

Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Vzdělávací obor: Matematika a její aplikace 1. ročník Měsíc Tematický okruh Učivo Očekávané výstupy Poznámky Září Obor přirozených čísel Počítá předměty v daném souboru do 5 Vytváří soubory s daným počtem

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

MATEMATIKA A JEJÍ APLIKACE

MATEMATIKA A JEJÍ APLIKACE 138 Vzdělávací oblast: Vyučovací předmět: MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 1. stupeň CHARAKTERISTIKA PŘEDMĚTU Obsahové, časové a organizační vymezení UČEBNÍ PLÁN PŘEDMĚTU Ročník 0 1 2 3 4 5 6 7 8

Více

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně Výuka Matematiky je postavena na rozvíjení vlastních zkušeností žáků a na jejich přirozeném zájmu, přirozené schopnosti vnímat, pozorovat a experimentovat. Žáci se matematiku učí řešením úloh a činnostmi,

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, I. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, I. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, I. stupeň 1/ Charakteristika vyučovacího předmětu a) obsahové vymezení předmětu Předmět Matematika je koncipován na základě

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Číselná řada a osa, trojciferná čísla v oboru do 1000 Žák: ČaPO: čte a píše trojciferná čísla ČaPO: vytvoří daný soubor s daným počtem prvků do 100 ČaPO: znázorní

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

TEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV

TEMATICKÝ,časový PLÁN vyučovací předmět : matematika ročník: 5. Školní rok_2014/2015 vyučující: Lenka Šťovíčková. Zařazená průřezová témata OSV OSV Školní rok_2014/2015 vyučující: Lenka Šťovíčková Září Opakuje početní výkony a uplatňuje komutativní, asociativní a distributivní zákon v praxi. G.:narýsuje přímku, polopřímku, kolmici, rovnoběžky, různoběžky.

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Vyučovací předmět Matematika se vyučuje jako samostatný předmět ve všech ročnících: v 1. ročníku 4 hodiny týdně ve

Více

Vzdělávací oblast Matematika a její aplikace MATEMATIKA Cíle vzdělávací oblasti Charakteristika výuky

Vzdělávací oblast Matematika a její aplikace  MATEMATIKA Cíle vzdělávací oblasti Charakteristika výuky Vzdělávací oblast Vzdělávací obor Vyučovací předmět Matematika a její aplikace Matematika a její aplikace MATEMATIKA Cíle vzdělávací oblasti Osvojovat si základní matematické pojmy na základě aktivních

Více

Základní škola Moravský Beroun, okres Olomouc

Základní škola Moravský Beroun, okres Olomouc Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři

Více

5.2. Vzdělávací oblast: Matematika a její aplikace

5.2. Vzdělávací oblast: Matematika a její aplikace 5.2. 5.2.1. Matematika pro 1. stupeň Charakteristika vzdělávací oblasti Vzdělávací oblast Matematika a její aplikace je v základním vzdělávání založena především na aktivních činnostech, které jsou typické

Více

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy Část V. Osnovy I. stupeň KAPITOLA 5. - MATEMATIKA Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor - vyučovací předmět: Matematika a její aplikace Matematika 1. CHARAKTERISTIKA VYUČOVACÍHO

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM - Základní škola Velká Jesenice

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM - Základní škola Velká Jesenice ŠKOLNÍ VZDĚLÁVACÍ PROGRAM - Základní škola Velká Jesenice Vzdělávací oblast : Matematika a její aplikace Vyučovací předmět : Matematika Charakteristika předmětu V předmětu Matematika je realizován obsah

Více

5.3.2 Vzdělávací obsah vyučovacího předmětu

5.3.2 Vzdělávací obsah vyučovacího předmětu 5.3.2 Vzdělávací obsah vyučovacího předmětu Předmět: Matematika Ročník: 1. Očekávané výstupy z RVP ZV Školní výstupy Učivo Přesahy a vazby (mezipředmětové vztahy, průřezová témata) používá přirozená čísla

Více

Matematika a její aplikace Cvičení z matematiky

Matematika a její aplikace Cvičení z matematiky Vzdělávací oblast : Vyučovací předmět : Matematika a její aplikace Cvičení z matematiky Charakteristika vyučovacího Cílové zaměření vzdělávací oblasti Vzdělávání v dané vzdělávací oblasti směřuje k utváření

Více

Matematika a její aplikace Matematika - 2.období

Matematika a její aplikace Matematika - 2.období Vzdělávací oblast : Vyučovací předmět : Matematika a její aplikace Matematika - 2.období Charakteristika předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace,

Více

5.3. Matematika a její aplikace

5.3. Matematika a její aplikace 5.3. Matematika a její aplikace Vzdělávací oblast je realizována v předmětu Matematika. 5.3.1. Charakteristika vzdělávací oblasti Vzdělávací oblast Matematika a její aplikace je v základním vzdělávání

Více

Učební osnovy pracovní

Učební osnovy pracovní ZV Základní vzdělávání 5 týdně, povinný ČaPO: Přirozená čísla do a přes 1 000 000 Žák: ČaPO: počítá do 1 000 000 - počítá po statisících, desetitisících, tisících ČaPO: čte a zobrazí číslo na číselné ose

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

5.1.2.1. Matematika. 5.1.2. Vzdělávací oblast Matematika a její aplikace

5.1.2.1. Matematika. 5.1.2. Vzdělávací oblast Matematika a její aplikace 5.1.2. Vzdělávací oblast Matematika a její aplikace 5.1.2.1. Matematika Charakteristika vyučovacího předmětu na 1. stupni: Vychází ze vzdělávací oblasti Matematika a její aplikace, která je v základním

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

VZDĚLÁVACÍ OBLAST - MATEMATIKA A JEJÍ APLIKACE

VZDĚLÁVACÍ OBLAST - MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBLAST - MATEMATIKA A JEJÍ APLIKACE VYUČOVACÍ PŘEDMĚT- MATEMATIKA Charakteristika vyučovacího předmětu: Matematika je na 1. stupni založena na vlastních zkušenostech žáka,učí ho porozumět problému

Více

4.2 Matematika a její aplikace

4.2 Matematika a její aplikace 4.2 Matematika a její aplikace Charakteristika matematiky Na 1. stupni je vyučováno 24 hodin matematiky (od 2. do 5. třídy po 5 hodinách, v 1. třídě 4 hodiny výuka probíhá v jednotlivých hodinách nebo

Více

II. MATEMATIKA A JEJÍ APLIKACE

II. MATEMATIKA A JEJÍ APLIKACE II. MATEMATIKA A JEJÍ APLIKACE Charakteristika vzdělávací oblasti Tato oblast je v našem vzdělávání zastoupena jedním předmětem matematikou, od 1. do 9. ročníku. Podle vývoje dětské psychiky a zejména

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Základní škola Klatovy, Čapkova ul. 126 ŠVP Zdravá škola. Dodatek č. 5 Matematika a její aplikace Matematika 2. období (4. a 5.

Základní škola Klatovy, Čapkova ul. 126 ŠVP Zdravá škola. Dodatek č. 5 Matematika a její aplikace Matematika 2. období (4. a 5. Základní škola Klatovy, Čapkova ul. 126 ŠVP Zdravá škola Dodatek č. 5 Matematika a její aplikace Matematika 2. období (4. a 5. ročník) Č.j.: ZS-KT-CAP-301/2013 Schváleno ped. radou dne 19. 6. 2013 Platné

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Vzdělávací obsah předmětu matematika a její aplikace je rozdělen na čtyři tématické okruhy:

Vzdělávací obsah předmětu matematika a její aplikace je rozdělen na čtyři tématické okruhy: 4.2. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Charakteristika předmětu Matematika 1. Obsahové vymezení vyučovacího předmětu Vzdělávací oblast matematika

Více

Tematický plán Matematika pro 4. ročník

Tematický plán Matematika pro 4. ročník Tematický plán Matematika pro 4. ročník Vyučující: Klára Dolanová Hodinová dotace: 4 hodiny týdně Školní rok: 2015/2016 ZÁŘÍ 1. a UČ/str. 3 9 A: Opakování osvojené matematické operace, vlastnosti sčítání

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 7. - 1 - Průřezová témata. Poznám ky. Výstup - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 7. Výstup - modeluje a zapisuje zlomkem část celku - převádí zlom na des. čísla a naopak - porovnává zlom - zlomek

Více

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace.

V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. MATEMATIKA Charakteristika vyučovacího předmětu V předmětu Matematika je realizován obsah vzdělávací oblasti Matematika a její aplikace, oboru Matematika a její aplikace. Žáci v ní mají získat početní

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

Matematika. poznává jednotlivá čísla do 20 na základě názoru. Přirozená čísla 1-5, 6-10, 10 20. využívá matematické pomůcky

Matematika. poznává jednotlivá čísla do 20 na základě názoru. Přirozená čísla 1-5, 6-10, 10 20. využívá matematické pomůcky 1 Matematika Matematika Učivo ŠVP výstupy Vytváření představ o jednotlivých číslech na základě názoru Přirozená čísla 1-5, 6-10, 10 20 Určování čísel v řadě do 10, do 20 Pojmy před, za, hned před, hned

Více

6.7 Matematicko-fyzikální seminář

6.7 Matematicko-fyzikální seminář VZDĚLÁVACÍ OBLAST : VZDĚLÁVACÍ OBOR: VYUČOVACÍ PŘEDMĚT: Matematika a její aplikace Matematika a její aplikace 6.7 Matematicko-fyzikální seminář CHARAKTERISTIKA PŘEDMĚTU: Vyučovací předmět Matematicko-fyzikální

Více

Matematika Charakteristika vyučovacího předmětu 1. stupeň

Matematika Charakteristika vyučovacího předmětu 1. stupeň Matematika Charakteristika vyučovacího předmětu 1. stupeň Vzdělávací oblast Matematika a její aplikace je v základním vzdělávání založena především na aktivních činnostech, které jsou typické pro práci

Více

Matematika a její aplikace

Matematika a její aplikace Matematika a její aplikace Předmět: Matematika Charakteristika vyučovacího předmětu Vzdělávání v matematice je zaloţena na praktických činnostech, sleduje vyuţití matematických dovedností v praktickém

Více

Přehled vzdělávacích materiálů

Přehled vzdělávacích materiálů Přehled vzdělávacích materiálů Název školy Název a číslo OP Název šablony klíčové aktivity Název sady vzdělávacích materiálů Jméno tvůrce vzdělávací sady Číslo sady Anotace Základní škola Ţeliv Novými

Více

Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty

Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty Matematika 1.ročník str. učivo -témata číslo a početní operace geometrie Závislosti, vztahy a práce s daty přirozená čísla 1 až 5 správně čte daná čísla vyhledává je na číselné ose řadí čísla lineárně

Více