IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE
|
|
- Blažena Blažková
- před 8 lety
- Počet zobrazení:
Transkript
1 IDENTIFIKACE LÉČIVA V TABLETÁCH POMOCÍ RAMANOVY SPEKTROMETRIE Úvod Ramanova spektrometrie je metodou vibrační molekulové spektrometrie. Za zakladatele této metody je považován indický fyzik Čandrašékhara Venkata Raman, který obdržel Nobelovu cenu v roce 1930 za popsání jevu neelastického optického rozptylu, který je základem této metody. Jedná se o metodu vhodnou pro identifikaci látek, pro určování jejich složení a struktury. Používá se při analýze pevných látek (krystalické i amorfní materiály, kovy, polovodiče, polymery atp.), kapalin (čisté látky, roztoky vodné i nevodné), plynů, dále též při analýze povrchů (např. sorbenty, elektrody, senzory) či při analýze biologických systémů (od biomolekul až po organismy). V praxi Ramanova spektrometrie nachází své uplatnění od mineralogie a geochemie, přes chemický a farmaceutický průmysl až po biologii a lékařství. Princip Principem Ramanovy spektrometrie, jak už bylo řečeno, je rozptyl záření, tzv. Ramanův rozptyl. Podstatou Ramanova rozptylu je zářivý dvoufotonový přechod mezi dvěma stacionárními vibračními stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření o frekvenci ν 0 > E 2 E 1 / h, kde h je Planckova konstanta, a provázený vyzářením fotonu rozptýleného záření o frekvenci ν R (viz rov. 1). Tento rozptylový efekt si lze zjednodušeně představit jako současnou absorpci fotonu budícího záření molekulou, kdy molekula přechází na virtuální energetickou hladinu, a emisi sekundárního fotonu, za splnění podmínky zachování energie: h νr = h ν0 ± (E2 - E1) (1) Základní výběrové pravidlo pro Ramanovu spektrometrii je vyjádřeno rovnicí 2. Pro vznik ramanovy linie je nutné, aby při daném vibračním pohybu docházelo současně ke změně polarizovatelnosti. Intenzita pásů je úměrná změně polarizovatelnosti během vibračního pohybu. kde q vnitřní souřadnice molekuly, α polarizovatelnost molekuly, tj. míra obtížnosti s níž se vychylují negativní náboje elektrickým polem V Ramanově spektrometrii se používají jak disperzní spektrometry, tak spektrometry s Fourierovou transformací (FT). Základní části Ramanova spektrometru jsou zdroj excitujícího záření (různé druhy laserů), vzorkovací prostor, sběrná optika, disperzní prvek (disperzní spektrometry) / interferometr (FT spektrometry) a detektor (InGaAs, Ge). Analytickým výstupem je Ramanovo spektrum, které stejně jako infračervené spektrum poskytuje informace o vibračních (a rotačních) pohybech polyatomických částic (molekul, krystalů atd.). Grafické znázornění Ramanova spektra vyjadřuje funkční závislost intenzity záření na Ramanově posunu (cm -1 ). (2)
2 Úkol 1. Změřte Ramanovo spektrum předložených čistých léčivých látek a tyto spektra uložte do knihovny spekter. 2. Změřte Ramanovo spektrum předložené komerčně vyráběné tablety léčiva. 3. Vyhodnoťte spektrum komerčně vyráběné tablety. Přístroje a chemikálie FT-IR spektrometr s Ramanovým nádstavcem NXR (Nicolet 6700, Thermo, USA) Čísté léčivé látky a tableta komerčně vyráběného léčiva Tabulka 1: Parametry měření pro Ramanovu spetrometrii Parametry Ramanova spektrometrie Rozsah vlnočtů cm -1 Rozlišení 4 cm -1 Počet skenů 64 Dělič paprsků CaF 2 Detektor InGaAs Laser Nd:YAG (1064 nm) Obr 1: FT-IR spektrometr Nicolet 6700 s Ramanovým NXR FT modulem Pracovní postup - Pomocí vhodného nádstavce připravte tabletu samostatné léčivé látky, kterou předtím zhomogenizujte v achátové třecí misce. - Nádstavec s tabletou léčivé látky umístěte do vzorkového prostoru Ramanova spektrometru a proveďte měření. (parametry měření viz tabulka 1) - Uložte naměřené spektrum do knihovny spekter. - Tento postup opakujte pro všechny předložené čisté léčivé látky.
3 - Zhomogenizujte předloženou komerční tabletu léčiva v achátové třecí misce. Pokud má tableta enterosolventní obal, vhodně ho odstraňte. - Pomocí nádstavce připravte tabletu léčiva pro měření, umístěného do vzorkového prostoru Ramanova spektrometru a proveďte měření. - Ramanovo spektrum neznámé tablety léčiva uložte do složky s vaším jménem. - Na základě porovnání spekter čistých léčivých látek a komerčního léčiva se pokuste odhadnout jakou účinnou látku předložené léčivo obsahuje. - Proveďte identifikaci látky pomocí knihovny spekter spolu s vedoucím cvičení. Zpracování výsledků Vyhodnoťte nejintenzivnější pásy ve spektru komerčně vyráběné tablety a čisté léčivé látky, která je obsažena v předložené tabletě léčiva, zapište si jejich vlnočet a intenzitu. Proveďte přiřazení těchto pásů jednotlivým funkčním skupinám na základě předložené tabulky (tabulka 2). V protokolu uveďte tabulku vlnočtů maxim pásů a jejich intenzit pro komerčně vyráběnou tabletu léčiva a čistou léčivou látku s pravděpodobným přiřazením funkčních skupin. V závěru popište, na základě čeho jste usoudili, že předložená komerční tableta obsahuje právě vámi zvolenou léčivou látku.
4 Tabulka 2: Vlnočty charakteristických vibrací některých vazeb a skupin v Ramanových spektrech 1
5
6
7
8
9 Poznámka: (1) Valenční vibrace νas(ch3) by měla být správně označena νd(ch3). Označení νas se však běžně používá, a bylo proto zachováno i v této tabulce. Použité zkratky: Intenzita: vs - velmi silná, s - silná, m - střední, w - slabá, vw velmi slabá, v - proměnná, br - široký pás, sh - raménko (anglicky shoulder). Popis vibračních kmitů: ν - valenční, δ - deformační, γ - mimorovinný, ω - kývavý (anglicky wagging), ρ - kolébavý (angl. rocking), as - antisymetrický, s - symetrický, d - degenerovaný, amid I - III - označení amidických pásů I - III, vystihující silné spřažení vibrací v amidech, komb.p. - kombinační pásy. R - alkyl, Ar - aryl. Literatura 1.
Identifikace barviv pomocí Ramanovy spektrometrie
Identifikace barviv pomocí Ramanovy spektrometrie V kriminalistických laboratořích se provádí technická expertíza písemností, která se mimo jiné zabývá zkoumáním použitých psacích prostředků: tiskových
VíceInfračervená spektroskopie
Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční
VíceVIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny
VíceSTANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE
STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE Úvod Infračervená spektrometrie v blízké oblasti (Near-Infrared Spectrometry NIR spectrometry) je metoda molekulové spektrometrie, která
VíceIDENTIFIKACE NEZNÁMÉ ORGANICKÉ LÁTKY POMOCÍ INFRAČERVENÉ SPEKTROMETRIE
Úvod Infračervená spektrometrie (IR) je analytická technika určená především k identifikaci a strukturní charakterizaci organických sloučenin a anorganických látek. Tato nedestruktivní analytická technika
VícePokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova
VíceMobilní Ramanův spektrometr Ahura First Defender
ČVUT v Praze, Kloknerův ústav, Šolínova 7, Praha 6 Mobilní Ramanův spektrometr Ahura First Defender Příručka Ing. Daniel Dobiáš, Ph.D. Doc. Ing. Tomáš Klečka, CSc. Praha 2009 Anotace Příručka obsahuje
VíceINFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ
INFRAČERVENÁ SPEKTROMETRIE KVALITATTIVNÍ A KVANTITATIVNÍ STANOVENÍ Úvod: Infračervená spektrometrie (IR) je analytická technika molekulové vibrační spektrometrie, která se zabývá studiem pohybů atomů v
VíceHmotnostní spektrometrie
Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů
VíceZáklady fyzikálněchemických
Základy fyzikálněchemických metod Fyzikálně-chemické metody optické metody elektrochemické metody separační metody kalorimetrické metody radiochemické metody ostatní metody Optické metody Oko je citlivé
VíceKapitoly z fyzikální chemie KFC/KFCH. VII. Spektroskopie a fotochemie
Kapitoly z fyzikální chemie KFC/KFCH VII. Spektroskopie a fotochemie Karel Berka Univerzita Palackého v Olomouci Katedra Fyzikální chemie karel.berka@upol.cz Spektroskopie Analýza světla Excitované Absorbované
VíceVýzva k podání nabídky a zadávací dokumentace
Výzva k podání nabídky a zadávací dokumentace Zadavatel: název: Mikrobiologický ústav AV ČR,v.v.i. sídlo: Vídeňská 1083, 142 00 Praha 4 IČ: 61388971 DIČ: CZ61388971 zastoupený: RNDr. Martinem Bilejem,
Víceλ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny
Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává
VíceINFRAČERVENÁ A RAMANOVA SPEKTROSKOPIE aneb CO NÁM MOHOU VIBRACE ŘÍCI O (BIO)MOLEKULÁCH. Vladimír Baumruk
INFRAČERVENÁ A RAMANOVA SPEKTROSKOPIE aneb CO NÁM MOHOU VIBRACE ŘÍCI O (BIO)MOLEKULÁCH Vladimír Baumruk Univerita Karlova v Prae Matematicko-fikální fakulta Fikální ústav UK Metod vibrační spektroskopie
VíceFotoelektrický jev je uvolňování elektronů z látky vlivem dopadu světelného záření.
FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 FYZIKA MIKROSVĚTA Kvantové vlastnosti světla (str. 241 257) Fotoelektrický jev je uvolňování elektronů z látky vlivem
VíceVybrané spektroskopické metody
Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky
VíceFYZIKA 4. ROČNÍK. Kvantová fyzika. Fotoelektrický jev (FJ)
Stěny černého tělesa mohou vysílat záření jen po energetických kvantech (M.Planck-1900). Velikost kvanta energie je E = h f f - frekvence záření, h - konstanta Fotoelektrický jev (FJ) - dopadající záření
VíceFYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová
VíceMěření výstupní práce elektronu při fotoelektrickém jevu
Měření výstupní práce elektronu při fotoelektrickém jevu Problém A. Změřit voltampérovou charakteristiku ozářené vakuové fotonky v závěrném směru. B. Změřit výstupní práci fotoelektronů na fotokatodě vakuové
Více- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence
ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá
VíceSPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová
SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové
Více10A1_IR spektroskopie
C6200-Biochemické metody 10A1_IR spektroskopie Petr Zbořil IR spektroskopie Excitace vibračních a rotačních přechodů Valenční vibrace n Deformační vibrace d IR spektroskopie N atomů = 3N stupňů volnosti
VíceMetody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I RNDr. Věra Vodičková, PhD. Molekulová spektroskopie atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením
VíceZeemanův jev. Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov
Zeemanův jev Pavel Motal 1 SOŠ a SOU Kuřim, s. r. o. Miroslav Michlíček 2 Gymnázium Vyškov 1 Abstrakt Při tomto experimentu jsme zopakovali pokus Pietera Zeemana (nositel Nobelovy ceny v roce 1902) se
VíceZadávací dokumentace k veřejné zakázce
Zadávací dokumentace k veřejné zakázce Zjednodušené podlimitní řízení Tato veřejná zakázka na Dodání soupravy skládající se z ks mobilního ručního Ramanova spektrometru a ks mobilního ručního infračerveného
VícePovrchová plasmonová rezonance v blízké infračervené oblasti pro studium tvorby multivrstev polyelektrolytů
Povrchová plasmonová rezonance v blízké infračervené oblasti pro studium tvorby multivrstev polyelektrolytů K. Záruba 1 Úkoly 1. Seznamte se s ovládáním měřicího přístroje (demonstruje asistent: montáž
VícePraktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 1 Název: Studium rotační disperze křemene a Kerrova jevu v kapalině Pracoval: Matyáš Řehák stud.sk.:
VícePráce č. 4: Stanovení paliva v motorovém oleji metodou infračervené spektrometrie
NÁVODY PRO LABORATOŘ ENERGETIKY 2. ROČNÍKU MAGISTERSKÉHO STUDIA Práce č. 4: Stanovení paliva v motorovém oleji metodou infračervené spektrometrie Teoretický úvod Motorové oleje se vyrábějí mísením různých
VíceÚvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
VíceÚloha č. 8 Vlastnosti optických vláken a optické senzory
Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před
VíceLABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Charakterizace rostlinných olejů pomocí FTIR spektrometrie
LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Charakterizace rostlinných olejů pomocí FTIR spektrometrie (metoda: infračervená spektrometrie s Fourierovou transformací) Garant úlohy: prof. Dr. Ing.
VíceReferát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.
Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena
VíceSBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce
VíceR10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika
Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární
VíceOddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval:.Jakub Višňák... stud.sk.:... dne: 23.10.2006
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A 20 Název: Fourierovská infračervená spektroskopie Pracoval:.Jakub Višňák... stud.sk.:... dne: 23.10.2006 Odevzdal
VíceINFRAČERVENÁ SPEKTROSKOPIE
INFRAČERVENÁ SPEKTROSKOPIE 1. TRANSMISNÍ TECHNIKY Infračervená spektra látek měříme ve stavu plynném, kapalném (resp. v roztocích) nebo v pevném. K měření používáme většinou kyvet, zhotovených z vhodného
VíceInfračervená a Ramanova spektrometrie
Infračervená a Ramanova spektrometrie Infračervené záření Záření v oblasti vlnočtů 12500 10 cm -1 které se dále dělí na 3 podskupiny: - blízká IČ oblast: 12500 5000 cm -1 (Near Infrared, NIR) -střední
Více4. STANOVENÍ PLANCKOVY KONSTANTY
4. STANOVENÍ PLANCKOVY KONSTANTY Měřicí potřeby: 1) kompaktní zařízení firmy Leybold ) kondenzátor 3) spínač 4) elektrometrický zesilovač se zdrojem 5) voltmetr do V Obecná část: Při ozáření kovového tělesa
VíceDiskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.
S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního
Více5. Měření výstupní práce elektronu při fotoelektrickém jevu
5. Měření výstupní práce elektronu při fotoelektrickém jevu Problém A. Změřit voltampérovou charakteristiku ozářené vakuové fotonky v závěrném směru. B. Změřit výstupní práci fotoelektronů na fotokatodě
VíceÚvod do IR spektroskopie. Dominik Talla
Úvod do IR spektroskopie Dominik Talla Část I Obsah prezentace IR záření jakožto elektromagnetická vlna Interakce IR záření s hmotou, vznik IR spektra Princip spektrometru, IR spektrometr Možnosti aplikace
VíceNukleární magnetická rezonance (NMR)
Nukleární magnetická rezonance (NMR) Nukleární magnetické rezonance (NMR) princip ZDROJ E = h. elektro-magnetické záření E energie záření h Plankova konstanta frekvence záření VZOREK E E 1 E 0 DETEKTOR
VíceZpráva z praxe AQUATEST. Autor: Pavla Pešková Třída: T3. (2003/04)
Zpráva z praxe AQUATEST Autor: Pavla Pešková Třída: T3. (2003/04) ÚVOD Na praxi jsem byla na Barrandově v Aquatestu od 16.6.2004 do 29.6.2004. Laboratoře Aquatestu se zabývají především rozbory všech druhů
Více13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
VíceNávod pro laboratoř oboru Nanomateriály. Příprava a vlastnosti nanočástic kovů deponovaných do kapaliny
Návod pro laboratoř oboru Nanomateriály Příprava a vlastnosti nanočástic kovů deponovaných do kapaliny 1 Úvod Příprava nanočástic V dnešní době existuje mnoho různých metod, jak připravit nanočástice.
VíceINFRAČERVENÁ A RAMANOVA SPEKTROMETRIE
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá λ 0,78 1000 µm. DĚLENÍ: blízká IR oblast
VíceL A S E R. Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami.
L A S E R Krize klasické fyziky na přelomu 19. a 20. století, vznik kvantových představ o interakci optického záření s látkami Stimulovaná emise Princip laseru Specifické vlastnosti laseru jako zdroje
VíceÚvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: Vyučující: doc. Ing. Bohumil Dolenský, Ph.D. prof. RNDr. Pavel Matějka, Ph.D., A136, linka 3687, matejkap@vscht.cz doc. Ing. Bohumil Dolenský,
VíceVybrané metody spektráln. lní analýzy. Metody charakterizace nanomaterálů I
Vybrané metody spektráln lní analýzy Metody charakterizace nanomaterálů I Spektroskopické metody: atomové vs molekulové atomy a molekuly mohou měnit svůj energetický stav přijetím nebo vyzářením pouze
VíceNázev: Pozorování a měření emisních spekter různých zdrojů
Název: Pozorování a měření emisních spekter různých zdrojů Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, chemie Ročník:
VíceHranolový spektrometr
Hranolový spektrometr a vodíkové spektrum Ú k o l y 1. Okalibrujte hranolový spektro.. Určente vlnové délky spektrálních čar vodíkové výbojky. 3. Určente kvantové elektronové přechody v atomu vodíku. 4.
VíceSEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ
OBSAH 1 Úvod 4 2 Literární přehled 5 2.1 Infračervená spektroskopie s Fourierovou transformací 5 2.2 Vznik infračervených absorpčních spekter 6 2.2.1 Kvantování energie 6 2.2.2 Absorpce infračerveného
VíceAplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami
Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo
Více37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra
445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.
VíceRYCHLÉ ZJIŠŤOVÁNÍ LÉČIV A JEJICH REZIDUÍ V ŽP
RYCHLÉ ZJIŠŤOVÁNÍ LÉČIV A JEJICH REZIDUÍ V ŽP MAREK MARTINEC Vysoká škola chemicko-technologická v Praze Fakulta technologie ochrany prostředí Ústav chemie ochrany prostředí Centralizovaný rozvojový projekt
VíceEmisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace
Emisní spektrální čáry atomů. Úvod do teorie a dvě praktické aplikace Ing. Pavel Oupický Oddělení optické diagnostiky, Turnov Ústav fyziky plazmatu AV ČR, v.v.i., Praha Úvod Teorie vzniku a kvantifikace
VíceDvourozměrná NMR spektroskopie metody
Dvourozměrná NMR spektroskopie metody Marcela Strnadová 1D-NMR: experimentální FID je funkcí jediné časové proměnné - detekčního času t 2, spektrum získané Fourierovou transformací je funkcí frekvence
VíceNicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. Typické aplikace těchto technik. The world leader in serving science
Nicolet CZ s.r.o. Porovnání infračervené a Ramanovy spektroskopie. The world leader in serving science Typické aplikace těchto technik. Základní princip Infračervená a Ramanova spektroskopie nedestruktivní
VíceINFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Fakulta technologie ochrany prostředí Ústav technologie ropy a alternativních paliv INFRAČERVENÁ SPEKTROMETRIE A BIOSLOŽKY PALIV Laboratorní cvičení ÚVOD V několika
VíceELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU
ELEKTRONIKA PRO ZPRACOVÁNÍ SIGNÁLU Václav Michálek, Antonín Černoch Společná laboratoř optiky UP a FZÚ AV ČR Regionální centrum pokročilých technologií a materiálů CZ.1.07/2.2.00/07.0018 VM, AČ (SLO/RCPTM)
VíceABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
VíceDiagnostika olejem plněných transformátorů P. Prosr 1, M. Brandt 2 1
Ročník 2008 Číslo IV Diagnostika olejem plněných transformátorů P. Prosr, M. Brandt 2 Katedra technologií a měření, Fakulta elektrotechnická, ZČU v Plzni, Univerzitní 26, Plzeň 2 Centrum výskumu mechatronických
VíceZÁPADOČESKÁ UNIVERZITA V PLZNI
ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA CHEMIE BAKALÁŘSKÁ PRÁCE STANOVENÍ ŽELEZA VE VODĚ SPEKTROFOTOMETRICKY Adéla Turčová Přírodovědná studia, obor Chemie se zaměřením na vzdělávání
VíceOptická spektroskopie
Univerzita Palackého v Olomouci Přírodovědecká fakulta Optická spektroskopie Antonín Černoch, Radek Machulka, Jan Soubusta Olomouc 2012 Oponenti: Mgr. Karel Lemr, Ph.D. RNDr. Dagmar Chvostová Publikace
VíceSenzory v inteligentních budovách
Senzory v inteligentních budovách Pavel Ripka Katedra měření ČVUT FEL v Praze ripka@fel.cvut.cz http://measure.feld.cvut.cz/ Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti Aplikace
VíceInfračervená spektrometrie
Podstata infračervené absorpce jednofotonový přechod mezi dvěma vibračními (vibračně-rotačními) rotačními) stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření
VíceZÁKLADNÍ EXPERIMENTÁLNÍ
Kurz praktické NMR spektroskopie 10. - 12. říjen 2011, Praha ZÁKLADNÍ EXPERIMENTÁLNÍ POSTUPY NMR ROZTOKŮ A KAPALIN Jana Svobodová Ústav Makromolekulární chemie AV ČR, v.v.i. Bruker 600 Avance III PŘÍSTROJOVÉ
VíceAkustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K
zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním
VíceOPTICKÉ METODY. NESPEKTRÁLNÍ při interakci nedochází k výměně energie
OPTICKÉ METODY OM OPTICKÉ METODY Identifikace a kvantifikace sloučenin (organických i anorganických) na základě interakce elektromagnetického záření a hmoty Základní rozdělení optických metod: NESPEKTRÁLNÍ
VíceÚvod do moderní fyziky. lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách)
Úvod do moderní fyziky lekce 9 fyzika pevných látek (vedení elektřiny v pevných látkách) krystalické pevné látky pevné látky, jejichž atomy jsou uspořádány do pravidelné 3D struktury zvané mřížka, každý
VíceÚstav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů
Ústav fyziky a měřicí techniky Laboratoř chemických vodivostních senzorů Návod na laboratorní úlohu Měření plynem indukovaných změn voltampérových charakteristik chemických vodivostních senzorů 1. Úvod
Víceλ hc Optoelektronické součástky Fotorezistor, Laserová dioda
Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů
VícePRAKTIKUM IV Jaderná a subjaderná fyzika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A5 Název: Spektrometrie záření α Pracoval: Radim Pechal dne 27. října 2009 Odevzdal
VícePraktikum III - Optika
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal
VíceUţití elektrické energie. Laboratorní cvičení 27
Uţití elektrické energie. Laboratorní cvičení 27 3.1.6 Měření světelného toku a měrného výkonu světelných zdrojů Cíl: Hlavním cílem úlohy je měření světelného toku a měrného výkonu různých světelných zdrojů
VíceINFRAČERVENÁ A RAMANOVA SPEKTROMETRIE
INFRAČERVENÁ A RAMANOVA SPEKTROMETRIE (c) -2008 INFRAČERVENÁ SPEKTROMETRIE 1 INFRAČERVENÉ ZÁŘENÍ Infračervené (IR) záření: vlnočty 13000 10 cm -1, což odpovídá 0,78 1000 µm. DĚLENÍ: blízká IR oblast 13000
VíceZáklady NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
VíceOPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
VícePŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT)
PŮVOD BARVY U NEVODIČŮ A ČISTÝCH POLOVODIČŮ (KŘEMÍK, GALENIT, RUMĚLKA, DIAMANT) Martin Julínek Ústav fyzikální a spotřební chemie, Fakulta chemická VUT v Brně Purkyňova 118, 612 00 Brno, e-mail: julinek@fch.vutbr.cz
VíceMetody spektrální. Metody molekulové spektroskopie. vibrační spektroskopie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Metody spektrální Metody molekulové spektroskopie vibrační spektroskopie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Schéma hladin svrchní tón - overton fundametální přechod fundametální
VíceKdo jsme. Specializujeme se na tři oblasc: Měřící a regulační techniku pro zabezpečení nádrží a pro bezpečný chod kotelen
Kdo jsme Firma AFRISO EURO INDEX byla založena v roce 1869 panem Adalbertem Fritzem v Schmiedefeldu (Thüringen) jako inovanvní, rodinná firma střední velikosn. V současné době zaměstnává 1 000 pracovníků,
Více2. Pasivní snímače. 2.1 Odporové snímače
. Pasivní snímače Pasivní snímače při působení měřené veličiny mění svoji charakteristickou vlastnost, která potom ovlivní tok elektrické energie. Její změna je pak mírou hodnoty měřené veličiny. Pasivní
Více9. Fyzika mikrosvěta
Elektromagnetické spektrum 9.1.1 Druy elektromagnetickéo záření 9. Fyzika mikrosvěta Vlnění různýc vlnovýc délek mají velmi odlišné fyzikální vlastnosti. Různé druy elektromagnetickéo záření se liší zejména
VíceFTIR absorpční spektrometrie KBr transmisní a ATR metody
FTIR absorpční spektrometrie KBr transmisní a ATR metody Teorie: Infračervená spektroskopie je nedestruktivní analytická technika určená především pro identifikaci a strukturní charakterizaci organických
Více3.2 Rovnice postupné vlny v bodové řadě a v prostoru
3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který
VíceSpecifikace předmětu
Specifikace předmětu 1. Přenosný disperzní Ramanův spektrometr: - spektrální rozsah měření Ramanova posunu: minimálně 250 až 2800 cm 1, - spektrální rozlišení minimálně nebo lepší než 11 cm 1v celém spektrálním
VíceProjekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: Lasery - druhy
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Lasery - druhy Laser je tvořen aktivním prostředím, rezonátorem a zdrojem energie. Zdrojem energie, který může
VíceMolekulová absorpční spektrometrie (Spektrometrie ve viditelné a UV oblasti)
Molekulová absorpční spektrometrie (Spektrometrie ve viditelné a UV oblasti) Využívá se (především) absorpce elektromagnetického záření roztoky stanovovaných látek. Látky jsou přítomny ve formě molekul
VíceBRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE MATERIÁLŮ FACULTY OF CHEMISTRY INSTITUTE OF MATERIALS SCIENCE TVORBA DATABÁZE FT - IR SPEKTER HETEROGENNÍCH SYSTÉMŮ
VíceBarva produkovaná vibracemi a rotacemi
Barva produkovaná vibracemi a rotacemi Hana Čechlovská Fakulta chemická Obor fyzikální a spotřební chemie Purkyňova 118 612 00 Brno Barva, která je produkována samotnými vibracemi je relativně mimořádná.
Více5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu
5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu Cíle úlohy: Cílem této úlohy je seznámení se s lineárním absorpčním koeficientem a jeho závislostí na tlaku vzduchu a použitých stínících
VíceZáklady NIR spektrometrie a její praktické využití
Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší
Více1 Elektronika pro zpracování optického signálu
1 Elektronika pro zpracování optického signálu Výběr elektroniky a detektorů pro měření optického signálu je odvislé od toho, jaký signál budeme detekovat. V první řadě je potřeba vědět, jakých intenzit
VíceElektrické vlastnosti pevných látek
Elektrické vlastnosti pevných látek elektrická vodivost gradient vnějšího elektrického pole vyvolá přenos náboje volnými nositeli (elektrony, díry, ionty) měrná vodivost = e n n e p p [ -1 m -1 ] Kovy
VíceZÁKLADY SPEKTROSKOPIE
VĚDOU A TECHNIKOU KE SPOLEČNÉMU ROZVOJI DODATEK PŘESHRANIČNÍ LETNÍ ŠKOLA VĚDY A TECHNIKY ZÁKLADY SPEKTROSKOPIE EURÓPSKA ÚNIA EURÓPSKY FOND REGIONÁLNEHO ROZVOJA SPOLOČNE BEZ HRANÍC FOND MIKROPROJEKTŮ 1.
VíceTematické okruhy pro státní závěrečné zkoušky v navazujícím magisterském studiu na Fakultě chemicko-inženýrské v akademickém roce 2015/2016
Tematické okruhy pro státní závěrečné zkoušky v navazujícím magisterském studiu na Fakultě chemicko-inženýrské v akademickém roce 2015/2016 1. Průběh státní závěrečné zkoušky (SZZ) navazujících magisterských
VíceRepetitorium chemie VIII. (2014)
Repetitorium chemie VIII. (2014) Moderní metody analýzy organických látek se zastávkou u Lambert-Beerova zákona a odhalení tajemství Bradforda/Bradfordové Odhalení tajemství: Protein Concentration Determination
VíceUNIVERZITA PALACKÉHO V OLOMOUCI. Fakulta přírodovědecká. Katedra fyzikální chemie
UNIVERZITA PALACKÉHO V OLOMOUCI Fakulta přírodovědecká Katedra fyzikální chemie DIPLOMOVÁ PRÁCE Olomouc 2014 Bc. Pavlína Andrýsková UNIVERZITA PALACKÉHO V OLOMOUCI Fakulta přírodovědecká Katedra fyzikální
VícePRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Charakteristiky optoelektronických součástek
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 5 Název: Charakteristiky optoelektronických součástek Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 3.3.2014
Více