Registrační číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B

Rozměr: px
Začít zobrazení ze stránky:

Download "Registrační číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B"

Transkript

1 PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY NAVAZUJÍCÍ MAGISTERSKÉ STUDIUM V OBORU APLIKOVANÁ INFORMATIKA FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITY HRADEC KRÁLOVÉ ČÁST A Registrační číslo Hodnocení - část A Hodnocení - část B Hodnocení - část A+B 1. úloha (4 body) Lineární zobrazení T lineárního prostoru V! (R) do lineárního prostoru V! (R) je pro vektor x = x!, x!, x! V! (R) určeno předpisem T(x) = (x! + 5x!, 2x! + 2x! + x!, 6x! + x! ). Určete všechny pevné body tohoto zobrazení, tj. takové vektory x V! (R), které se v zobrazení T zobrazí na stejný vektor: T(x) = x. Proveďte zkoušku správnosti pro nalezené vektory. 2. úloha (6 bodů) Najděte matici X z maticové rovnice A X = B pro matice A = B =

2 3. úloha (4 body) Kolik hran má úplný bipartitní graf K 10,9? 4. úloha (6 bodů) Použitím Cramerova pravidla vypočítejte neznámou x! ze soustavy lineárních rovnic 2x! x! + 3x! = 0 x! + 2x! x! = 1 x! + x! + 2x! = 0 5. úloha (6 bodů) V následujícím grafu nejprve vyznačte podgraf indukovaný vrcholy {a, c, d, f, h}, a pak v tomto podgrafu najděte dvě navzájem neizomorfní kostry a nakreslete je. Neizomorfizmus koster zdůvodněte! - 2 -

3 6. úloha (5 bodů) Je dána funkce 2 proměnných f: z =!!!!"!! derivací této funkce!" +!" v bodě A.!"!" a bod A[2, 1]. Určete hodnotu součtu parciálních 7. úloha (4 body) Podle záznamů ekologů počet kusů P t nově nasazeného druhu ryb v omezené vodní nádrži roste exponenciálně podle předpisu P t = P(0) e!,!"#!, kde t je čas v měsících od začátku sledování a P 0 = 400 je počet kusů vysazených ryb na počátku do nádrže. a) Načrtněte graf funkce P t a určete, kolik kusů bude v nádrži po dvou měsících od vysazení. b) Za jaký čas od začátku sledování dosáhne počet kusů dvojnásobek počtu ryb nasazených na začátku? - 3 -

4 8. úloha (6 bodů) Pomocí určitého integrálu vypočítejte plošný obsah A(O) rovinné oblasti O omezené částí grafu paraboly y = x, přímky y = x 2 a osou o!. Oblast O znázorněte graficky. 9. úloha (3 body) Určete, kolik pěticiferných čísel dělitelných pěti lze vytvořit z cifer 1,2,3,4,5,6,7,8 a 9? Cifry se můžou opakovat. 10. úloha (6 bodů) Určete intervaly monotónnosti a lokální extrémy funkce f x = x 1 e!!

5 PŘIJÍMACÍ TEST Z INFORMATIKY A MATEMATIKY ČÁST B V úlohách, které nabízejí výběr z odpovědí a), b) atd. zakroužkujte jednu nejvýstižnější možnost. 1. úloha (2 body) Klasifikátor se při vývoji ontologií používá pro: a) odstranění nekonzistentních dat z ontologie b) specifikaci omezení, která mají být pro ontologii platná c) přidělení priorit třídám ontologie d) odvození nových znalostí, které nejsou v ontologii explicitně reprezentovány 2. úloha (2 body) Který z příkazů není příkazem jazyka DDL (jazyk patřící do SQL): a) CREATE TABLE Zakaznik b) CREATE INDEX IX_pname c) ALTER TABLE Kniha d) DELETE Zakaznik 3. úloha (5 bodů) Dana Kovaná se vdala, nyní se jmenuje Rotová a firma potřebuje změnit její příjmení ve své databázi (předpokládejte, že v databázi je v současnosti pouze jedna osoba s příjmením Kovaná). Tabulka EMPLOYEES obsahuje následující atributy: EMP_ID NUMBER(10) PRIMARY KEY LNAME VARCHAR2(20) FNAME VARCHAR2(20) DEPT VARCHAR2 (20) HIRE_DATE DATE SALARY NUMBER(10) Napište příkaz, kterým změníte hodnotu u příjmení uvedené zaměstnankyně. 4. úloha (2 body) Co je to Product backlog? a) Provozní záznamy v logu b) Seznam požadavků c) Nápověda d) Dokumentace k produktu - 5 -

6 5. úloha (2 body) V Prologu byl zapsán následující program: programx(x,[],[]). programx(x,[h T],[H1 V]):-H1 is H+X,programX(X,T,V). Jaký dostanu výsledek, pokud zadám v konzoli následující dotaz??-programx(3,[1,3,5,8,5],x). a) 5 b) [1,3,5] c) [4,6,8,11,8] d) [5] 6. úloha (2 body) Soubor ukládaný na disk, kde je uložen momentálně nepotřebný obsah paměti RAM se nazývá: a) Stránkovací soubor b) Dávkový soubor c) Odkládací soubor d) Systémový soubor 7. úloha (6 bodů) Ve třídě PoulicniLampa jsou obsaženy atributy vyskastozaru (desetinné číslo) a vykon (celé číslo). Napište konstruktor třídy, který naplní všechny atributy hodnotami předanými v parametrech tohoto konstruktoru. Vyberte si jeden z jazyků Java, C++ nebo C# a vybraný jazyk podtrhněte v zadání. 8. úloha (7 bodů) Na následujícím grafu zadaném maticí vzdálenosti demonstrujte Kruskalův algoritmus (hladový algoritmus) pro nalezení minimální kostry. Vypište cenu minimální kostry a posloupnost hran, jak byly postupně přidávány do minimální kostry. Graf nekreslete! a b c d e f g h i a 4 1 b c 3 7 d 7 8 e f g h i

7 9. úloha (2 body) Jazyk RDF se v kontextu sémantického webu používá pro: a) implementaci rámců b) tvorbu pravidel využívaných aplikacemi sémantického webu c) reprezentaci metadat webových zdrojů d) tvorbu komplexních ontologií 10. úloha (2 body) TCP je protokol zajišťující: a) nespojovou a nespolehlivou komunikaci b) nespojovou a spolehlivou komunikaci c) spojovou a spolehlivou komunikaci d) spojovou a nespolehlivou komunikaci 11. úloha (2 body) Který z následujících programovacích jazyků patří mezi tzv. dynamicky typované? a) Pascal b) C# c) JavaScript d) Java 12. úloha (2 body) Jaké jsou tři hlavní stavy úlohy: a) Úloha je ve stavu: probíhající, čekající, předána b) Úloha je ve stavu: probíhající, čekající, ukončena c) Úloha je ve stavu: probíhající, čekající, připravena d) Úloha je ve stavu: předána, přijata, ukončena - 7 -

8 13. úloha (7 bodů) Napište metodu (hlavička + tělo), která vrátí pravdivostní hodnotu určující, zda je celé číslo n prvočíslo. Hodnota n bude předána jako parametr této metody. Pro implementaci si vyberte jeden z jazyků Java, C++ nebo C# a vybraný jazyk podtrhněte v zadání. 14. úloha (7 bodů) Vytvořte UML diagram tříd pro evidenci filmů. Budeme evidovat filmy, režiséry a herce. Film má jednoho režiséra a může mít více herců. Režisér může režírovat více filmů a herec může hrát ve více filmech. U tříd identifikujte podstatné atributy a operace. V diagramu využijte dědičnost a asociaci, případně i jiné typy vhodných vazeb

PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové

PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B

Více

Část A matematika (otázky 1-10 celkem za 40 bodů)

Část A matematika (otázky 1-10 celkem za 40 bodů) PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B

Více

Část A matematika (otázky 1-10 celkem za 40 bodů)

Část A matematika (otázky 1-10 celkem za 40 bodů) PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B

Více

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu... Písemný test MA010 Grafy: 11.1. 2007, var A... 1). Dány jsou následující tři grafy na 8 vrcholech každý. 1 A B C Vašim úkolem je mezi nimi najít všechny isomorfní dvojice. Pro každou isomorfní dvojici

Více

Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium

Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium Fakulta přírodovědně-humanitní a pedagogická Okruhy otázek pro státní závěrečné zkoušky Bakalářské studium Informatika se zaměřením na vzdělávání Bc. Matematika: Funkce, její průběh a vlastnosti. Popisná

Více

PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.

PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_09 ŠVP Podnikání RVP 64-41-L/51

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Maturitní témata Školní rok: 2015/2016

Maturitní témata Školní rok: 2015/2016 Maturitní témata Školní rok: 2015/2016 Ředitel školy: Předmětová komise: Předseda předmětové komise: Předmět: PhDr. Karel Goš Informatika a výpočetní technika Mgr. Ivan Studnička Informatika a výpočetní

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL.

Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Příklady na testy předmětu Seminář z matematiky pro studenty fakulty strojní TUL. Jméno a příjmení(čitelně): varianta č. 90 Přezdívka(nepovinné): Zde pište své výsledky Napište rovnici přímky procházející

Více

Seminář z matematiky. jednoletý volitelný předmět

Seminář z matematiky. jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)

Více

Zadání projektů z BPC2 pro letní semestr 2007/2008

Zadání projektů z BPC2 pro letní semestr 2007/2008 Zadání projektů z BPC2 pro letní semestr 2007/2008 Několik poznámek na úvod Projekt může být i konzolová aplikace. Záleží však na typu zadání, ne každé v konzolové aplikace vyřešit lze. Mezi studenty jsou

Více

MAT_303 Název: VY_32_INOVACE_01_MAT_303_OZŠ_reálná_čísla_II.docx. MAT_304 Název: VY_32_INOVACE_01_MAT_304_OZŠ_zlomky.docx

MAT_303 Název: VY_32_INOVACE_01_MAT_303_OZŠ_reálná_čísla_II.docx. MAT_304 Název: VY_32_INOVACE_01_MAT_304_OZŠ_zlomky.docx Název školy: SPŠ Ústí nad Labem, středisko Resslova Číslo projektu: CZ.1.07/1.5.00/34.10.1036 Klíčová aktivita: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Digitální učební materiály Autor:

Více

MATEMATIKA+ MAMPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA+ MAMPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA+ DIDAKTICKÝ TEST MAMPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 3 úloh. Časový limit pro řešení didaktického

Více

Soubory a databáze. Soubor označuje množinu dat, která jsou kompletní k určitému zpracování a popisují vybrané vlastnosti reálných objektů

Soubory a databáze. Soubor označuje množinu dat, která jsou kompletní k určitému zpracování a popisují vybrané vlastnosti reálných objektů Datový typ soubor Soubory a databáze Soubor označuje množinu dat, která jsou kompletní k určitému zpracování a popisují vybrané vlastnosti reálných objektů Záznam soubor se skládá ze záznamů, které popisují

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava

Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Obchodní akademie a Jazyková škola s právem státní jazykové zkoušky Jihlava Šablona 32 VY_32_INOVACE_038.ICT.34 Tvorba webových stránek SQL stručné minimum OA a JŠ Jihlava, VY_32_INOVACE_038.ICT.34 Číslo

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

PASPORT MÍSTNÍCH KOMUNIKACÍ - Obec Deštné - ZIMNÍ ÚDRŽBA

PASPORT MÍSTNÍCH KOMUNIKACÍ - Obec Deštné - ZIMNÍ ÚDRŽBA ÚK51 ÚK50 ÚK53 ÚK45 19c ÚK46 ÚK49 ÚK52 II/309 ÚK58 ÚK48 II/309 ÚK47 ÚK41 21c ÚK40 ÚK42 20c III/3093 ÚK43 ÚK44 ÚK38 13d II/310 13d ÚK30 ÚK39 ÚK37 ÚK36 ÚK35 ÚK34 ÚK21 10d 9c ÚK15 7c ÚK19 ÚK17 26c 27c 26c-M1

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

. Opakovací kurs středoškolské matematiky podzim 2015

. Opakovací kurs středoškolské matematiky podzim 2015 . Opakovací kurs středoškolské matematiky podzim 0 František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou

Více

Edita Kolářová ÚSTAV MATEMATIKY

Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAIVD12C0T01 ILUSTRAČNÍ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/34.0410

Více

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ

MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ MATURITNÍ OTÁZKY ELEKTROTECHNIKA - POČÍTAČOVÉ SYSTÉMY 2003/2004 PROGRAMOVÉ VYBAVENÍ POČÍTAČŮ 1) PROGRAM, ZDROJOVÝ KÓD, PŘEKLAD PROGRAMU 3 2) HISTORIE TVORBY PROGRAMŮ 3 3) SYNTAXE A SÉMANTIKA 3 4) SPECIFIKACE

Více

MATEMATIKA rozšířená úroveň

MATEMATIKA rozšířená úroveň Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MATEMATIKA rozšířená úroveň profilová část maturitní zkoušky Sešit obsahuje úloh. Na řešení úloh máte 60 minut. Odpovědi pište do záznamového archu.

Více

Databázové systémy trocha teorie

Databázové systémy trocha teorie Databázové systémy trocha teorie Základní pojmy Historie vývoje zpracování dat: 50. Léta vše v programu nevýhody poměrně jasné Aplikace1 alg.1 Aplikace2 alg.2 typy1 data1 typy2 data2 vytvoření systémů

Více

Tabulka symbolů. Vazba (binding) Vazba - příklad. Deklarace a definice. Miroslav Beneš Dušan Kolář

Tabulka symbolů. Vazba (binding) Vazba - příklad. Deklarace a definice. Miroslav Beneš Dušan Kolář Vazba (binding) Tabulka symbolů Miroslav Beneš Dušan Kolář vazba = spojení mezi entitou a vlastností okamžik vazby (binding time) při návrhu jazyka při implementaci jazyka během překladu/spojování/zavádění

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace

8) Jaké jsou důvody pro použití víceprůchodového překladače Dříve hlavně kvůli úspoře paměti, dnes spíše z důvodu optimalizace 1) Charakterizujte křížový překladač Překlad programu probíhá na jiném procesoru, než exekuce. Hlavním důvodem je náročnost překladače na cílovém stroji by ho nemuselo být možné rozběhnout. 2. Objasněte

Více

2. blok část B Základní syntaxe příkazů SELECT, INSERT, UPDATE, DELETE

2. blok část B Základní syntaxe příkazů SELECT, INSERT, UPDATE, DELETE 2. blok část B Základní syntaxe příkazů SELECT, INSERT, UPDATE, DELETE Studijní cíl Tento blok je věnován základní syntaxi příkazu SELECT, pojmům projekce a restrikce. Stručně zde budou představeny příkazy

Více

PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata

PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata PŘEDMĚT: Matematika Ročník: 1. Výstup z RVP Ročníkový výstup Doporučené učivo Průřezová témata číslo a početní operace 1. používá přirozená čísla k modelování reálných situací, počítá předměty v daném

Více

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Principy operačních systémů. Lekce 7: Souborový systém

Principy operačních systémů. Lekce 7: Souborový systém Principy operačních systémů Lekce 7: Souborový systém Souborový systém Souborový systém (anglicky file system) je označení pro způsob organizace dat ve formě souborů (a většinou i adresářů) tak, aby k

Více

MBI - technologická realizace modelu

MBI - technologická realizace modelu MBI - technologická realizace modelu 22.1.2015 MBI, Management byznys informatiky Snímek 1 Agenda Technická realizace portálu MBI. Cíle a principy technického řešení. 1.Obsah portálu - objekty v hierarchiích,

Více

Principy objektově orientovaného programování

Principy objektově orientovaného programování Principy objektově orientovaného programování Třídy a objekty doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz C E T

Více

DODATEČNÉ INFORMACE Č. 1 K ZADÁVACÍM PODMÍNKÁM PŘESHRANIČNÍ INFORMAČNÍ SYSTÉM PRO PŘEDCHÁZENÍ A ŘEŠENÍ POVODNÍ A DALŠÍCH KRIZOVÝCH SITUACÍ

DODATEČNÉ INFORMACE Č. 1 K ZADÁVACÍM PODMÍNKÁM PŘESHRANIČNÍ INFORMAČNÍ SYSTÉM PRO PŘEDCHÁZENÍ A ŘEŠENÍ POVODNÍ A DALŠÍCH KRIZOVÝCH SITUACÍ DODATEČNÉ INFORMACE Č. 1 K ZADÁVACÍM PODMÍNKÁM dle 49 zákona č. 137/2006 Sb., o veřejných zakázkách, ve znění pozdějších předpisů (dále jen zákon) v rámci veřejné zakázky 10/OR/2013 evidenční č. 344875

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 5, 5.1 a 5.2 8/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Algoritmus Algoritmem by se dal nazvat

Více

Změny způsobu zobrazení lze docílit i vyvoláním lokální nabídky pravým tlačítkem na myši, ve které zvolíme možnost ZOBRAZIT.

Změny způsobu zobrazení lze docílit i vyvoláním lokální nabídky pravým tlačítkem na myši, ve které zvolíme možnost ZOBRAZIT. Úvod do problematiky SYSTÉMOVÉ OPERACE Mezi nejdůležitější systémové operace patří manipulace se složkami a soubory. Uživatel osobního počítače by měl ovládat následující operace: způsoby zobrazení vytváření

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Paralelní LU rozklad

Paralelní LU rozklad Paralelní LU rozklad Lukáš Michalec Katedra fyziky, Přírodovědecká fakulta Univerzity J.E. Purkyně v ročník, specializace Ústí n.l. Abstract Seminární práce se zabývá řešení soustavy lineárních rovnic

Více

Databázovéa informačnísystémy NÁVRH IMPLEMENTACE 1

Databázovéa informačnísystémy NÁVRH IMPLEMENTACE 1 Databázovéa informačnísystémy NÁVRH IMPLEMENTACE 1 1 Zadání analýza -návrh -implementace IS 2 Návrhimplementace (design) Analýza ~ CO evidovat, CO s daty dělat Návrh ~ JAK to dělat vstupem je výsledek

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_3_10 ŠVP Podnikání RVP 64-41-L/51

Více

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015

MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 MATURITNÍ ZKOUŠKA ve školním roce 2014/2015 Maturitní zkouška se skládá ze společné části a profilové části. 1. Společná část maturitní zkoušky Dvě povinné zkoušky a) český jazyk a literatura b) cizí jazyk

Více

Matematika I: Aplikované úlohy

Matematika I: Aplikované úlohy Matematika I: Aplikované úlohy Zuzana Morávková Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava 260. Řy 283 - Pálkař Zadání Pálkař odpálí míč pod úhlem α = 30 a rychlostí

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

Databázové modelování. Analýza Návrh konceptuálního schématu

Databázové modelování. Analýza Návrh konceptuálního schématu Databázové modelování Analýza Návrh konceptuálního schématu 1 Vytváření IS Analýza Návrh Implementace Testování Předání SW Jednotlivé fáze mezi sebou iterují 2 Proč modelovat/analyzovat? Standardizované

Více

Konceptuální modelování. Pavel Tyl 21. 3. 2013

Konceptuální modelování. Pavel Tyl 21. 3. 2013 Konceptuální modelování Pavel Tyl 21. 3. 2013 Vytváření IS Vytváření IS Analýza Návrh Implementace Testování Předání Jednotlivé fáze mezi sebou iterují Proč modelovat a analyzovat? Standardizované pracovní

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Jazyk SQL

Informační systémy 2008/2009. Radim Farana. Obsah. Jazyk SQL 4 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Jazyk SQL, datové typy, klauzule SELECT, WHERE, a ORDER BY. Doporučená

Více

Matematika a ekonomické předměty

Matematika a ekonomické předměty Matematika a ekonomické předměty Bohuslav Sekerka, Soukromá vysoká škola ekonomických studií Praha Postavení matematiky ve výuce Zaměřím se na výuku matematiky, i když jsem si vědom, toho, že by měl být

Více

MATEMATIKA ZÁKLADNÍ ÚROVEŇ

MATEMATIKA ZÁKLADNÍ ÚROVEŇ NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém

Více

Základy číslicové techniky. 2 + 1 z, zk

Základy číslicové techniky. 2 + 1 z, zk Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,

Více

Obsah. KAPITOLA 1 Dříve než začneme 19 Kdysi dávno aneb střípky z historie algoritmických strojů 20 1801 21 1833 21 1890 22 třicátá léta 22

Obsah. KAPITOLA 1 Dříve než začneme 19 Kdysi dávno aneb střípky z historie algoritmických strojů 20 1801 21 1833 21 1890 22 třicátá léta 22 Předmluva 11 Čím se tato kniha liší od jiných příruček? 11 Proč C++? 12 Jak číst tuto knihu? 12 Čím se budeme zabývat? 13 Kapitola 1: Dříve než začneme 13 Kapitola 2: Rekurze 13 Kapitola 3: Analýza složitosti

Více

Elektronická dokumentace - LATEX. Maticové operace

Elektronická dokumentace - LATEX. Maticové operace Elektronická dokumentace - LATEX Maticové operace 29.listopadu 2009 Luděk Bordovský (bor0022) Fakulta elektrotechniky a informatiky VŠB-TU Ostrava Uživatelská příručka 1 Obsah 1 Úvod 3 2 Ovládání 3 3 Operace

Více

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy

Přehled systému Microsoft SQL Server. Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Komu je kniha určena Struktura knihy Nejvhodnější výchozí bod pro čtení knihy Konvence a struktura knihy Konvence Další prvky Požadavky na systém Ukázkové databáze Ukázky kódu Použití ukázek kódu Další

Více

IBM SPSS Decision Trees

IBM SPSS Decision Trees IBM Software IBM SPSS Decision Trees Jednoduše identifikujte skupiny a predikujte Stromově uspořádané postupné štěpení dat na homogenní podmnožiny je technika vhodná pro exploraci vztahů i pro tvorbu rozhodovacích

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAIVD11C0T01 ILUSTRAČNÍ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje

Více

Rekurze - tvorba a zápis algoritmů v jazyce Pascal

Rekurze - tvorba a zápis algoritmů v jazyce Pascal Rekurze - tvorba a zápis algoritmů v jazyce Pascal 1 Autor kurzu Zbyněk Hamerník 2 Vyučovací předmět (volitelný) seminář z IVT 3 Ročník maturitní ročník gymnázia 4 Téma Vysvětlení myšlenky rekurze, užití

Více

RELAČNÍ DATABÁZOVÉ SYSTÉMY

RELAČNÍ DATABÁZOVÉ SYSTÉMY RELAČNÍ DATABÁZOVÉ SYSTÉMY VÝPIS KONTROLNÍCH OTÁZEK S ODPOVĚDMI: Základní pojmy databázové technologie: 1. Uveďte základní aspekty pro vymezení jednotlivých přístupů ke zpracování hromadných dat: Pro vymezení

Více

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ SEMESTRÁLNÍ PRÁCE. Modely operačního výzkumu 1. Studijní obor:

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ SEMESTRÁLNÍ PRÁCE. Modely operačního výzkumu 1. Studijní obor: FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ SEMESTRÁLNÍ PRÁCE Modely operačního výzkumu 1 Vypracoval: Studijní obor: Emailová adresa: Datum vypracování: Jana Pospíšilová IM2-KF Jana.Pospisilova@uhk.cz

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Maturitní témata. Informační a komunikační technologie. Gymnázium, Střední odborná škola a Vyšší odborná škola Ledeč nad Sázavou.

Maturitní témata. Informační a komunikační technologie. Gymnázium, Střední odborná škola a Vyšší odborná škola Ledeč nad Sázavou. Gymnázium, Střední odborná škola a Vyšší odborná škola Ledeč nad Sázavou Maturitní témata předmět Informační a komunikační technologie Dominik Janák 2015 třída 4I Dominik Janák Maturitní otázky Výpočetní

Více

Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A

Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA A Název tématického celku: Zobrazení,reálné funkce jedné reálné proměnné,elementární funkce a jejich základní vlastnosti,lineární

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometire Gradovaný řetězec úloh Téma: obsahy a obvody mnohoúhelníků, grafy funkcí s absolutní

Více

Implementace numerických metod v jazyce C a Python

Implementace numerických metod v jazyce C a Python Fakulta elektrotechnická Katedra matematiky Dokumentace k semestrální práci Implementace numerických metod v jazyce C a Python 2013/14 Michal Horáček a Petr Zemek Vyučující: Mgr. Zbyněk Vastl Předmět:

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Základním cílem předmětu Matematický seminář je navázat na získané znalosti a dovednosti v matematickém vzdělávání a co nejefektivněji

Více

Zkouškové otázky z A7B31ELI

Zkouškové otázky z A7B31ELI Zkouškové otázky z A7B31ELI 1 V jakých jednotkách se vyjadřuje napětí - uveďte název a značku jednotky 2 V jakých jednotkách se vyjadřuje proud - uveďte název a značku jednotky 3 V jakých jednotkách se

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět: Období ročník: Učební texty: Matematika 2. období 5. ročník R. Blažková: Matematika pro 4. ročník ZŠ (2. díl) (Alter) R. Blažková: Matematika pro 4. ročník ZŠ (3. díl) (Alter) J. Jurtová:

Více

2. Konceptuální model dat, E-R konceptuální model

2. Konceptuální model dat, E-R konceptuální model 2. Konceptuální model dat, E-R konceptuální model Úvod Databázový model souhrn prostředků, pojmů a metod, jak na logické úrovni popsat data a jejich strukturu výsledkem je databázové schéma. Databázové

Více

Opakování k maturitě matematika 4. roč. TAD 2 <

Opakování k maturitě matematika 4. roč. TAD 2 < 8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární

Více

TECHNICKÉ PREZENTACE

TECHNICKÉ PREZENTACE VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ TECHNICKÉ PREZENTACE Tvorba animací v rámci prezentace Ing. Pavel Smutný, Ph.D. Ostrava 2013 Ing. Pavel Smutný, Ph.D. Vysoká škola báňská

Více

11 Diagram tříd, asociace, dědičnost, abstraktní třídy

11 Diagram tříd, asociace, dědičnost, abstraktní třídy 11 Diagram tříd, asociace, dědičnost, abstraktní třídy Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost diagramům tříd, asociaci,

Více

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE

FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE FAKULTA INFORMATIKY A MANAGEMENTU UNIVERZITA HRADEC KRÁLOVÉ MOV 1 SEMESTRÁLNÍ PRÁCE Vypracoval: Lenka Novotná Studijní obor: K-Informační management Emailová adresa: lenka.novotna.1@uhk.cz Datum vypracování:

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

P ř e d m ě t : M A T E M A T I K A

P ř e d m ě t : M A T E M A T I K A 04-ŠVP-Matematika-P,S,T,K strana 1 (celkem 11) 1. 9. 2014 P ř e d m ě t : M A T E M A T I K A Charakteristika předmětu: Matematika vytváří postupným osvojováním matematických pojmů, útvarů, algoritmů a

Více

Aritmetika s velkými čísly na čipové kartě

Aritmetika s velkými čísly na čipové kartě Aritmetika s velkými čísly na čipové kartě Ivo Rosol ředitel divize vývoje OKsystem s.r.o. Praha, 23.5.2013 Spojujeme software, technologie a služby Čísla v kryptografii V kryptografii se zásadně pracuje

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

20. Projekt Domácí mediotéka

20. Projekt Domácí mediotéka Projekt Domácí mediotéka strana 211 20. Projekt Domácí mediotéka 20.1. Základní popis, zadání úkolu V projektu Domácí mediotéka (Dome) se jednoduchým způsobem evidují CD a videa. Projekt je velmi jednoduchý

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Semestrální práce z DAS2 a WWW

Semestrální práce z DAS2 a WWW Univerzita Pardubice Fakulta elektrotechniky a informatiky Semestrální práce z DAS2 a WWW Databázová část Matěj Trakal 8.12.2009 Kapitola 1: Obsah KAPITOLA 1: OBSAH 2 KAPITOLA 2: ZÁKLADNÍ CHARAKTERISTIKA

Více

Algoritmizace I. Ak. rok 2015/2016 vbp 1. ze 132

Algoritmizace I. Ak. rok 2015/2016 vbp 1. ze 132 Ak. rok 2015/2016 vbp 1. ze 132 Ing. Vladimír Beneš, Ph.D. vedoucí katedry Petrovický K101 katedra informatiky a kvantitativních metod E-mail: vbenes@bivs.cz Telefon: 251 114 534, 731 425 276 Konzultační

Více

Repetitorium matematiky (soubor testů) KMA/P113

Repetitorium matematiky (soubor testů) KMA/P113 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (soubor testů) KMA/P Lenka Součková Ústí nad Labem 0 Obor: Klíčová slova: Anotace: Fyzika (dvouoborové studium),

Více

Dokumentace k semestrální práci z předmětu PT

Dokumentace k semestrální práci z předmětu PT Dokumentace k semestrální práci z předmětu PT Vypracovali: Eva Turnerová (A08B0176P) Martin Dlouhý (A08B0268P) Zadání Zadání: Firma Mistr Paleta, syn a vnuci rozváží palety po celé České republice. Počet

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů

Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Linear algebra and analytic geometry problems and solved examples Klára Javornická Bakalářská práce 2010 UTB ve Zlíně, Fakulta

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

Základní škola Moravský Beroun, okres Olomouc

Základní škola Moravský Beroun, okres Olomouc Charakteristika vyučovacího předmětu matematika Vyučovací předmět má časovou dotaci čtyři hodiny týdně v prvním ročníku, pět hodin týdně ve druhém až pátém ročníku, pět hodin týdně v šestém ročníku a čtyři

Více

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace. Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu INFORMATIKA A VÝPOČETNÍ TECHNIKA 1. Algoritmus a jeho vlastnosti algoritmus a jeho vlastnosti, formy zápisu algoritmu

Více

Přehled probírané látky

Přehled probírané látky OOPR_04 1 Přehled probírané látky asociace (relace) mezi třídami popis množiny spojení mezi objekty skládání objektů - upřesněný typ asociace, vazba mezi objekty kompozice objektů (velmi pevná vazba mezi

Více