METODIKA ZJIŠŤOVÁNÍ NESYMETRIE MAGNETICKÉHO POLE U ELEKTROMOTORŮ

Rozměr: px
Začít zobrazení ze stránky:

Download "METODIKA ZJIŠŤOVÁNÍ NESYMETRIE MAGNETICKÉHO POLE U ELEKTROMOTORŮ"

Transkript

1 METODIKA ZJIŠŤOVÁNÍ NESYMETRIE MAGNETICKÉHO POLE U ELEKTROMOTORŮ Ing. Mečislav Hudeczek,Ph.D. Stonavská Albrechtice Abstrakt Přednáška pojednává o vlivu nesyetrie elektroagnetického pole elektrootoru na poháněný echanisus, o identifikaci této závady a o zkušenostech z dané oblasti. Klíčová slova Eletkroagnetické pole, nelinearita, nevyváženost.. Úvod V noha publikacích jsou popsány příčiny vzniku nesyetrie elektroagnetického pole elektrootoru. Patří ezi ně např.: nesyetrie vzduchové ezery, přesycování zubů statoru a rotoru, nevhodný poěr počtu statorových a rotorových drážek, nevhodné natočení drážek rotoru, excentricita rotoru, vliv uspořádání vinutí s několika paralelníi větvei u větších strojů s napětí U < 000V, vliv neharonického napájení atd. V průběhu diagnostických ěření po dobu posledních třinácti let na kobajnových elektrootorech a otorech hlavních důlních čerpadel v důlních provozech a provozech tepláren a elektráren na elektrootorech čerpadel a ventilátorů a taktéž přejíek nových elektrootorů pro Teplárny Karviná, a. s. přío u výrobce byly zjištěny dvě nové příčiny vzniku nesyetrie elektroagnetického pole: K poškozování agnetického obvodu statoru elektrootoru a následně k nesyetrii elektroagnetického pole dochází také v důsledku tzv. bourání vinutí. Stator usí být vhodnou etodou zahřátý na teplotu ěknutí ipregnačního laku vinutí a následně vinutí vytáhnuto. Tyto teploty se pohybují v těsné blízkosti teploty, kdy statorové plechy ztrácejí své zaručované agnetické vlastnosti. Pokud rozehřívání statoru elektrootoru je prováděno nevhodnou etodou např. plynovýi hořáky, které svůj plaen přío sěřují na statorové plechy, dochází k lokálníu nevhodnéu prohřátí statorových plechů. Lokálně naděrně oteplený stator á větší agnetické ztráty a enší oent. Při nákupu dynaových plechů pro výrobu statorových a rotorových plechů ne vždy jsou vybaveny ateste kvality z hlediska agnetických vlastností. Nekvalitní tabule dynaových plechů ne vždy ají po celé ploše přesně stejnou tloušťku. Při prostřihávání a následné skládání jednotlivých plechů délka je nestejnorodá a způsobuje nesyetrii elektroagnetického pole. Při provádění bezdeontážní technické diagnostiky na teplárnách a elektrárnách a taktéž hornictví byl tento vliv experientálně ověřen přío na provozovaných strojích a následně byla stanovena etodika ěření a taktéž vyhodnocování naěřených hodnot. Přío v provozních podínkách byla zjištěna x nesyetrii elektroagnetického pole elektrootoru a jeho negativní působení na poháněný echanizus.. Identifikace poruchy elektrootoru zapříčiněné nesyetrii elektroagnetického pole a jeho vliv na poháněný echanisus Ve všech doposud zjištěných případech poruchy elektrootoru zapříčiněných nesyetrií elektroagnetického pole se projevují na poháněné echanisu i na saotné elektrootoru vibracei a to v oblasti hodnocení ezních stavů jako ještě přípustný nebo nepřípustný podle VDI 056. Poruchu lze identifikovat při zatížení na první haronické frekvenčního spektra viz obrázek č.. Chvění na první haronické odpovídá nevyváženosti rotujících hot. Hodnoty chvění jsou na elektrootoru o 5 % větší od hodnot chvění na poháněné echanisu v některých případech jsou stejné. Při zjištění tohoto stavu každý diagnostik začne vyvažovat. Nejprve poháněný echanisus (ventilátor) ve dvou rovinách. Následně na ventilátoru elektrootoru jeho rotor. Po spojení spojky, výsledky se zlepší o zbytkovou nevyváženost za předpokladu stavu, že soustrojí bylo dobré. Hodnoty chvění po těchto opatřeních se zlepší cca o 0% I p. Při toto zlepšení, soustrojí á nadále vibrace nevyhovující. Následně je provedená deontáž elektrootoru a vyvážen na vyvažovací stolici jeho rotor. Po ontáži elektrootoru a proěření vibrací je stav stejný. Tento proces probíhá několik dnů. Zde popisují skutečný případ, který se stal v jedné organizaci, kde po dvou týdnech pokusů se snížení vibrací na ventilátoru jse byl pozván abych se k danéu probléu vyjádřil.

2 Obrázek č. Tak jako předchůdci jse začal vyvažovat, s tí rozdíle, že pro vyvažování jse použil starou graficko početní tříbodovou etodu. Z oderní techniky jse použil pouze data kolektor pro přesné ěření první haronické vibrací na dané vyvažovací rovině. Důvode použití staré graficko početní tříbodové etody vyvažování byla skutečnost, že sonda pro ěření fáze při předchozí vyvažováni na jiné stroji byla echanicky zničená. Při třetí vyvažovací běhu jse zjistil, že grafické zjišťování ísta a hotnosti vyvážku neá řešení. Tí podstatné pro vyvažování nebylo zjištěno. Vyvažování jse opakoval několikrát se stejný výsledke. Kolegové vyvažovali na oderní vyvažovací přístroji firy Schenck. Tento přístroj pro vyvažování autoaticky vedl celý vyvažovací proces a taktéž vždy určil ísto a hotnost vyvážku. Po připevnění vývažku na vyvažovací rovinu výsledek z hlediska snížení chvění byl nulový. celá soustava nelineární. Nelinearity v předchozích případech se projevovaly v tí, že byly uvolněné svorníky v základech, které kotvily konstrukci stroje. Dále nelinearita se projevovala když byly značně ěkké nosné konstrukce ráu stroje atd. Při vyvažováni ventilátoru jse nezjistil konstrukční závady, které by způsobovaly nelinearitu. Po dalších úvahách jse nechal rozpojit spojku a proěřil vibrace elektrootoru bez zatížení. Celková efektivní hodnota vibrací elektrootoru při chodu naprázdno byla na úrovni stavu dobrého což by nasvědčovalo, že elektrootor je dobrý. Frekvenční analýzou viz. obrázek č. jse zjistil, že na dvojnásobku síťové frekvence tj. 00 Hz je aplituda větší od první haronické. Z dřívějších diagnostických ěřeních jse věděl, že při této konfiguraci frekvenčního spektra je ve stroji anoálie a stroj nutno zastavit a opravit. Dále jse věděl, že na této haronické se u elektrootorů vyskytují závady elektroagnetického pole. Nechal jse elektrootor vyěnit i při značných protestech provozních pracovníků, protože výěna elektrootoru byla značně obtížná. Po výěně elektrootoru vibrace celého stroje byly na ezní hodnotě dobré. Obrázek č. Příčina neúspěchu s oderní vyvažovací přístroje byla v to, že algoritus vyvažování á přístroj napevno vypálen do ikroprocesoru a vždy usí určit lehké ísto, kde se připojí vyvážek. Z dřívějších vyvažování pooci graficko početní etody jse byl poučen, že v případě kdy při grafické řešení vyvážku kruhy k, k, k se nesejdou viz obrázek č. 6 je Obrázek č. Na obrázku č. je uvedeno spektru vibrací náhradního elektrootoru, který byl zkoušen na zkušebně za účele zjištění jeho technického stavu. Po provedené ěření jse jednoznačně určil, že elektrootor je vadný. Příčinou tohoto tvrzení byla frekvenční analýza spektra vibrací, kde na dvojnásobku síťové frekvence je aplituda o velikosti / základní haronické a navíc á postranní pása. Na obrázku č. 4 je uvedeno spektru dalšího elektrootoru téhož typu a paraetrů. Elektrootor byl označen jako dobrý a ohl být použit v provozu. Spektru vibrací tohoto elektrootoru je ožno označit jako školní příklad. Každý dobrý stroj á spektru o takovéto průběhu.

3 Obrázek č. 4. Metoda vyvažováni nelineárních soustav Třípolohová etoda je znáa a je nejvýhodnější pro vyvažování v provozních podínkách a taktéž na vyvažovacích stolicích staršího typu, které ají dobrý technický stav echanické části stolice ale echanické nebo elektronické zařízení pro určení ísta a hotnosti vyvážku je neopravitelné. Výhodnost etody spočívá v to, že při relativně alé počtu běhů lze i bez ěření fáze určit polohu vývažku. Největší přínos této etody je v to, že při její pravidelné aplikaci jse zjistil, že lze poocí ní rozpoznat, zda vyvažovaný stroj je nebo není lineární. Nelineární stroj se nedá vyvážit žádnou vyvažovací etodou ani přístroje. Třípolohovou etodu používá třináctý rok. Postup vyvažování: Vyvažovaný stroj např. ventilátor viz obrázek č. 7 se připojí pod napětí, a když otáčky stroje se ustáli na jenovitých otáčkách (u vyvažovacích stolic stačí otáčky 750 otin -, otáčky při všech bězích usí být stejné) je ožné zahájit ěření vibrací. Měření vibrací provádíe vždy v jedno bodě a to záleží, kterou vyvažovací rovinu chcee vyvažovat. Měřící bod L4V viz obrázek č. 7 usí být vyznačen tak aby byla kdykoliv zachována opakovatelnost ěření. V toto bodě L4V se zěří vibrace, pokud chcee vyvažovat oběžné kolo ventilátoru, přístroje, který dovede jako výsledek uvést frekvenční spektru alespoň v rozsahu od 0 do 00Hz v efektivní hodnotě, v lineárních souřadnicích a ohutnost kitání v rychlosti v [s - ]. Na první haronické odečtee hodnotu aplitudy X v v rychlosti v [s - ]. Na výkrese sestrojíe kružnici k 0 o poloěru rovné hodnotě X v. Někdy je nutné kreslit v ěřítku pro lepší rozlišitelnost. Stroj zastavíe a tí je ukončen první běh. Při zastavené a zajištěné stroji proti nahodiléu zapnutí rozdělíe oběžné kolo na tři části vzájeně posunuté o 0 o. Na každé části vyznačíe bod na stejné poloěru a označíe je čísly,,. Do těchto bodů budou postupně připevňovány poocné vývažky W a při stejných otáčkách budou proěřeny vibrace v bodě L4V a odečteny hodnoty aplitud X v, X v, X v. Po zěření těchto aplitud je ukončen druhý, třetí a čtvrtý běh. Hotnost poocného vývažku se volí podle epirického vztahu X M v w = [kg.0 - ], kde X v je hodnota rw aplitudy zěřená při první běhu v bodě L4V, M je hotnost rotujících části (oběžné kolo, hřídel, spojka), r w je poloěr poocného vyvážku udávajícího vzdálenost jeho těžiště od osy rotace. Títo vztahe se lze dobře řídit při určování poocného vývažku avšak je nutná velká zkušenost při vyvažování. Z naěřených hodnot se graficky určí příčinkový činitel α, potřebný pro výpočet hotnosti v hledaného vývažku (obr. 5), takto: kole zvoleného počátku O se opíše kružnice k o poloěre rovný X v ; na kružnici k o se vyznačí body,, odpovídající ístů připojování poocného vývažku W; kole bodu l se opíše kružnice k poloěre X v, kole bodu kružnice k poloěre X v a kole bodu kružnice k poloěre X v ; všechny tři kružnice by se teoreticky ěly protnout v jedno bodě P. Vlive nelineárních vlastností ěřené soustavy a vlive určitých nepřesností ěření se dostanou obvykle tři průsečíky P, P, P ; jejich spojení vznikne trojúhelník, jehož plocha je určitou írou nelinearity soustavy, popřípadě nepřesností ěření; spojnice těžiště P P P s bode O je příčinkový činitel α; jeho sěr určuje tentokrát rovinu nevyváženosti zcela jednoznačně, přičež průsečík α s k o udává lehké ísto L; hotnost v hledaného vývažku V se určí ze vztahu X r v w v = w [kg.0 - ] α rv vypočtený vývažek o hotnosti v se připojí do ísta L a při stejných otáčkách jako dříve se zěří aplituda X v což reprezentuje pátý běh; nedosáhne-li se títo vyvařovací kroke žádaného stupně vyvážení, je třeba celý postup opakovat; poocný vývažek se volí úěrný hodnotě X v.

4 X V X V k L P P P 0 k 0 Obrázek č. 5 Při toto vyvažování nutno dbát na bezpečnost a to z hlediska protipožárního při svařování jednotlivých poocných vývažků do jednotlivých bodů a taktéž z hlediska zajištění stroje proti nahodiléu zapnutí. U elektrootorů je nutné dodržet výrobce stanovenou čekací dobu ezi jednotlivýi zkušebníi běhy. Nedodržení čekací doby hrozí tepelné poškození vinutí elektrootoru a následný elektrický zkrat. k X V k k k X V konstrukci ventilátoru, uvolnění oběžného kola v náboji atd. Pokud závada není nalezená v konstrukčně echanické části soustrojí, je nutné rozpojit spojku a elektrootor proěřit při chodu bez zatížení v ěřících bodech viz obrázek č. 7. Pokud naěřená spektra budou podobná frekvenční spektru na obrázcích č. a č. 4 elektrootor nutno vyěnit za nový. Elektrootor, který vykazuje takováto frekvenční spektra á poškozené elektroagnetické pole. Ve většině případů se otor nedá opravit. Závada je konstrukčně výrobního charakteru. Náklady na opravu převyšují pořizovací náklady na nový elektrootor. Na Teplárně Karviná byl proveden pokus na elektrootoru, který jse určil jako elektrootor s poškozený elektroagnetický pole. Elektrootor byl poslán do NH Ostrava na elektrickou brzdu. Při zatížení elektrootoru na jenovitý proud, v elektrootoru nastal tepelný průraz ve vinutí s následný zkrate. V provozních podínkách tento otor pracoval se zvětšenýi vibracei a nedošlo k tepelnéu poškození vinutí, protože nebyl zatížen na jenovitý výkon. Na základě tohoto Teplárny Karviná vystavila objednávku na stanovení ezních hodnot pro nákup nových elektrootorů. Přejíky takto vyrobených elektrootorů jsou u výrobce prováděny na základě výsledků ěření vibrací při požadavku dodržení ezních hodnot, které jse stanovil. Takto nakoupených elektrootorů o výkonu od 0, MW do, MW je provozováno v současné době na Teplárně Karviná sed. Některé z těchto elektrootorů jsou v provozu již paty rok bez jakýchkoliv probléů a poruch. X v X v 4. Závěr X v 0 X v k 0 k Výše uvedený bylo jednoznačně prokázáno, že poruchy elektroagnetického pole v elektrootorech ají zásadní vliv na poháněný echanizus. Při zatížení elektrootoru poháněný echanise se značné vibrace projevují na první haronické frekvenčního spektra vibrací. Při chodu naprázdno hodnota vibrací je alá a projevuje se předevší ve spektru vibrací na frekvenci odpovídající dvojnásobku frekvence sítě. Pro identifikaci poruchy elektroagnetického pole elektrootoru je nejlépe použit graficko početní tříbodovou etodu vyvažování. Obrázek č. 6 Pokud se všechny tři kružnice neprotnout vlive nelineárních vlastností ěřené soustavy a nevytvoří tři průsečíky P, P, P viz obrázek č. 6 ěření je nutno pro kontrolu zopakovat a pokud další výsledek je stejný soustava je jednoznačně nelineární. Nelinearitu je nutno hledat v prasklé základové ráu, ěkké nosné 4

5 VENTILÁTOR MOTOR Obrázek č. 7

ELEKTROMAGNETICKÉHO POLE U MOTORŮ 6 KV

ELEKTROMAGNETICKÉHO POLE U MOTORŮ 6 KV IDENTIFIKACE PORUCH ELEKTROMAGNETICKÉHO POLE U MOTORŮ 6 KV, Stonavská 287, 735 43 Albrechtice ecislav.hudeczek@hudeczek.cz, www.hudeczek.cz. Úvod V noha publikacích jsou popsány příčiny vzniku nesyetrie

Více

Rozeznáváme tři základní složky vibrací elektrických strojů točivých. Vibrace elektromagnetického původu

Rozeznáváme tři základní složky vibrací elektrických strojů točivých. Vibrace elektromagnetického původu Rozeznáváme tři základní složky vibrací elektrických strojů točivých Vibrace elektromagnetického původu Vibrace mechanického původu Vibrace - hluk ventilačního původu Od roku 1985 pozorují fenomén negativního

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

1 ÚVOD 14 2 KDEZAČÍT SE SPOLEHLIVOSTÍASYNCHRONNÍCH ELEKTROMOTORŮ 16 3 BEZDEMONTÁŽNÍ TECHNICKÁDIAGNOSTIKA 17

1 ÚVOD 14 2 KDEZAČÍT SE SPOLEHLIVOSTÍASYNCHRONNÍCH ELEKTROMOTORŮ 16 3 BEZDEMONTÁŽNÍ TECHNICKÁDIAGNOSTIKA 17 Obsah 1 ÚVOD 14 2 KDEZAČÍT SE SPOLEHLIVOSTÍASYNCHRONNÍCH ELEKTROMOTORŮ 16 3 BEZDEMONTÁŽNÍ TECHNICKÁDIAGNOSTIKA 17 3.1 MOŽNOSTI POSUZOVÁNÍ TECHNICKÉHO STAVU ASYNCHRONNÍCH ELEKTROMOTORŮ 23 3.2 ZAČLENĚNÍ

Více

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli

Více

Frekvenční měniče a elektromotory

Frekvenční měniče a elektromotory Frekvenční měniče a elektromotory Ing. Mečislav Hudeczek, Ph.D. V současné době jsou frekvenční měniče běžným akčním regulačním členem silnoproudých rozvodů a to především pro napájení asynchronních elektromotorů.

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

doc. Dr. Ing. Elias TOMEH

doc. Dr. Ing. Elias TOMEH doc. Dr. Ing. Elias TOMEH e-mail: elias.tomeh@tul.cz Elias Tomeh / Snímek 1 Analýza spekter vibrací Amplituda vibrací x, v, a 1) Kinematické schéma, vibrací - n, z1,z2..,typy VL, - průměr řemenic. 2) Výběr

Více

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet

Více

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů.

Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů. Rotující soustavy, měření kritických otáček, typické projevy dynamiky rotorů www.kme.zcu.cz/kmet/exm 1 Obsah prezentace 1. Rotující soustavy 2. Základní model rotoru Lavalův rotor 3. Nevyváženost rotoru

Více

Diagnostika vybraných poruch asynchronních motorů pomocí proudových spekter

Diagnostika vybraných poruch asynchronních motorů pomocí proudových spekter Diagnostika vybraných poruch asynchronních motorů pomocí proudových spekter Prof. Ing. Karel Sokanský, CSc. VŠB TU Ostrava, FEI.Teoretický úvod Z rozboru frekvenčních spekter různých veličin generovaných

Více

MXV. MXV 25-2, 32-4, 40-8 MXV 50-16, 65-32, 80-48 Všechny součásti v kontaktu s kapalinou, včetně hlavic, jsou z chromnikl nerez oceli. AISI 304.

MXV. MXV 25-2, 32-4, 40-8 MXV 50-16, 65-32, 80-48 Všechny součásti v kontaktu s kapalinou, včetně hlavic, jsou z chromnikl nerez oceli. AISI 304. MXV Konstrukce Vertikální, článkové čerpadlo se shodný průěre sacího a výtlačného hrdla na jedné ose (in-line). Vodivé vložky jsou odolné proti korozi a jsou proazávány čerpanou kapalinou. Čerpadlo je

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:

Více

Úvod do elektrických měření I

Úvod do elektrických měření I Úvod do elektrických ěření I Historické střípky První pozorované elektrické jevy byly elektrostatické povahy Proto první elektrické ěřicí přístroje byly založeny právě na elektrostatické principu ezi první

Více

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP

2. Určete optimální pracovní bod a účinnost solárního článku při dané intenzitě osvětlení, stanovte R SH, R SO, FF, MPP FP 5 Měření paraetrů solárních článků Úkoly : 1. Naěřte a poocí počítače graficky znázorněte voltapérovou charakteristiku solárního článku. nalyzujte vliv různé intenzity osvětlení, vliv sklonu solárního

Více

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f )

2. Sestrojte graf závislosti prodloužení pružiny na působící síle y = i(f ) 1 Pracovní úkoly 1. Zěřte tuost k pěti pružin etodou statickou. 2. Sestrojte raf závislosti prodloužení pružiny na působící síle y = i(f ) 3. Zěřte tuost k pěti pružin etodou dynaickou. 4. Z doby kitu

Více

DOPORUČENÍ PRO TUHOST ZÁKLADOVÉHO RÁMU SOUSTROJÍ A CHVĚNÍ ELEKTROMOTORU

DOPORUČENÍ PRO TUHOST ZÁKLADOVÉHO RÁMU SOUSTROJÍ A CHVĚNÍ ELEKTROMOTORU Anotace DOPORUČENÍ PRO TUHOST ZÁKLADOVÉHO RÁMU SOUSTROJÍ A CHVĚNÍ ELEKTROMOTORU Ing. Mečislav HUDECZEK, Ph.D. Ing. Jaroslav BRYCHCY HUDECZEK SERVICE, s. r. o., Albrechtice V této práci je řešena problematika

Více

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru:

Úvod. Rozdělení podle toku energie: Rozdělení podle počtu fází: Rozdělení podle konstrukce rotoru: Rozdělení podle pohybu motoru: Indukční stroje 1 konstrukce Úvod Indukční stroj je nejpoužívanější a nejrozšířenější elektrický točivý stroj a jeho význam neustále roste (postupná náhrada stejnosměrných strojů). Rozdělení podle toku

Více

Metodika napěťové nedestruktivní zkoušky elektrických zařízení VN

Metodika napěťové nedestruktivní zkoušky elektrických zařízení VN Metodika napěťové nedestruktivní zkoušky elektrických zařízení VN 1. Úvod Ing. Mečislav Hudeczek, PhD. Ing. Jaroslav Brychcy HUDECZEK SERVICE, s. r. o. Albrechtice. Nutnost zajištění spolehlivého chodu

Více

VIBRODIAGNOSTIKA HYDRAULICKÝCH POHONŮ VSTŘIKOVACÍCH LISŮ VIBRODIAGNOSTICS HYDRAULIC DRIVES INJECTION MOLDING MACHINES

VIBRODIAGNOSTIKA HYDRAULICKÝCH POHONŮ VSTŘIKOVACÍCH LISŮ VIBRODIAGNOSTICS HYDRAULIC DRIVES INJECTION MOLDING MACHINES VIBRODIAGNOSTIKA HYDRAULICKÝCH POHONŮ VSTŘIKOVACÍCH LISŮ VIBRODIAGNOSTICS HYDRAULIC DRIVES INJECTION MOLDING MACHINES Lukáš Heisig, Daniel Plonka, Esos Ostrava, s. r. o. Anotace: Provozování vštřikolisů

Více

Laserové scanovací mikrometry

Laserové scanovací mikrometry Laserové scanovací ikroetry Příklady použití Kontinuální ěření skleněných vláken a tenkých drátů běhe výrobního procesu Měření vnějšího průěru válcových obrobků Měření vnějšího průěru a ovality válcových

Více

Informativní řez čerpadlem

Informativní řez čerpadlem Inforativní řez čerpadle 0 0 1.1 2.1 1 2.1 02 01 1 2.2 21.2 2 2 0 0.2 21.1 2 1.2 02.2 20 0 02.1 2.2 20 2. 0.1 Číslování pozic podle DIN 2 20 Sací těleso Výtlačné těleso Těleso článku Rozváděcí kolo 1 Příložka

Více

Laboratorní práce č. 3: Kmitání mechanického oscilátoru

Laboratorní práce č. 3: Kmitání mechanického oscilátoru Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA

Více

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství)

1. Mechanika - úvod. [ X ] - měřící jednotka. { X } - označuje kvantitu (množství) . Mechanika - úvod. Základní pojy V echanice se zabýváe základníi vlastnosti a pohybe hotných těles. Chcee-li přeístit těleso (echanický pohyb), potřebujee k tou znát tyto tři veličiny: hota, prostor,

Více

Pro profesionální použití výhradně profesionální řešení

Pro profesionální použití výhradně profesionální řešení 3 Pro profesionální použití výhradně profesionální řešení Filozofie firy Toshiba je založená předevší na zdokonalování výrobků a na hledání dalších inovací. Z této filozofie se zrodily i tři výrobní řady

Více

Dynamika I - příklady do cvičení

Dynamika I - příklady do cvičení Dynaika I - příklady do cvičení Poocí jednotek ověřte, zda platí vztah: ( sinβ + tgα cosβ) 2 2 2 v cos α L = L [] v [ s -1 ] g [ s -2 ] 2 g cos β π t = 4k v t [s] v [ s -1 ] [kg] k [kg -1 ] ln 2 L = 2k

Více

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu 1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit

Více

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru.

Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Princip alternátoru. Usměrňování, chod, chlazení automobilového alternátoru. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Zdeněk Vala. Dostupné z Metodického portálu www.rvp.cz;

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

1.SERVIS-ENERGO, s.r.o.

1.SERVIS-ENERGO, s.r.o. 16 / E N E R G I E K O L E M N Á S 1.SERVIS-ENERGO, s.r.o. d v a c e t l e t Rok 2014 byl pro společnost 1.SERVIS-ENERGO, s.r.o. rokem jubilejním, ve kterém završila dvacet let činnosti v oblasti servisu

Více

Vibroakustická diagnostika

Vibroakustická diagnostika Vibroakustická diagnostika frekvenční analýza, ultrazvukové emise Vibroakustické metody Vibroakustika jako hlavní diagnostický signál používá chvění kmitání vibrace hlučnost Použitý diagnostický signál

Více

Dodatek k manuálu. Analyzátor vibrací Adash 4102/A

Dodatek k manuálu. Analyzátor vibrací Adash 4102/A Dodatek k manuálu Analyzátor vibrací Adash 4102/A (Dodatek k manuálu pro přístroj Adash 4101) Aplikace: Diagnostika mechanických poruch strojů nevyváženost, nesouosost Diagnostika ventilátorů, čerpadel,

Více

VĚTRNÉ ELEKTRÁRNY Tomáš Kostka

VĚTRNÉ ELEKTRÁRNY Tomáš Kostka VĚTRNÉ ELEKTRÁRNY Tomáš Kostka VĚTRNÁ ELEKTRÁRNA Větrná elektrárna (větrná turbína) využívá k výrobě elektrické energie kinetickou energii větru. Větrné elektrárny řadíme mezi obnovitelné zdroje energie.

Více

14 Měření základních parametrů třífázového asynchronního motoru s kotvou nakrátko

14 Měření základních parametrů třífázového asynchronního motoru s kotvou nakrátko 14 Měření základních parametrů třífázového asynchronního motoru s kotvou nakrátko 14.1 Zadání a) změřte izolační odpor třífázového asynchronního motoru s kotvou nakrátko, b) změřte ohmický odpor jednotlivých

Více

Zařízení pro obloukové svařování, kontrola a zkoušení svařovacích zařízení v provozu podle ČSN EN 60974-4/STN EN 60974-4

Zařízení pro obloukové svařování, kontrola a zkoušení svařovacích zařízení v provozu podle ČSN EN 60974-4/STN EN 60974-4 Zařízení pro obloukové svařování, kontrola a zkoušení svařovacích zařízení v provozu podle ČSN EN 60974-4/STN EN 60974-4 Antonín ŠEVČÍK, Rudolf HUNA Platnost ČSN/STN EN 60974-4 od 01/09/2007 je ve všech

Více

Diagnostika strojů - jak nastavit smysluplné měření. ANEB NAUČTE SE TO KONEČNĚ, JAK NA TO 20. - 25.4.2015 ŠTÚROVO ŠKOLÍCÍ STŘEDISKO CMMS

Diagnostika strojů - jak nastavit smysluplné měření. ANEB NAUČTE SE TO KONEČNĚ, JAK NA TO 20. - 25.4.2015 ŠTÚROVO ŠKOLÍCÍ STŘEDISKO CMMS Diagnostika strojů - jak nastavit smysluplné měření. ANEB NAUČTE SE TO KONEČNĚ, JAK NA TO 20. - 25.4.2015 ŠTÚROVO ŠKOLÍCÍ STŘEDISKO CMMS VÍTE, ŽE VÍC JAK 75% PROJEKTŮ PREDIKTIVNÍ ÚDRŽBY JE NEÚSPĚŠNÝCH?

Více

3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU

3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU 3. VÝVRTY: ODBĚR, POPIS A ZKOUŠENÍ V TLAKU Vývrty jsou válcová zkušební tělesa, získaná z konstrukce poocí dobře chlazeného jádrového vrtáku. Vývrty získané jádrový vrtáke jsou pečlivě vyšetřeny, upraveny

Více

STŘÍDAVÉ SERVOMOTORY ŘADY 5NK

STŘÍDAVÉ SERVOMOTORY ŘADY 5NK STŘÍDAVÉ SERVOMOTORY ŘADY 5NK EM Brno s.r.o. Jílkova 124; 615 32 Brno; Česká republika www.embrno.cz POUŽITÍ Servomotory jsou určeny pro elektrické pohony s regulací otáček v rozsahu nejméně 1:1000 a s

Více

Stavební mechanizace. Vibrování betonu Úpravy betonových povrchů

Stavební mechanizace. Vibrování betonu Úpravy betonových povrchů Stavební echanizace Vibrování betonu Úpravy betonových povrchů Kvalita ENARCO pracuje v souladu s ezinárodníi sěrnicei řízení kvality ISO 9001. Společnost á certifikát na "konstrukci, vývoj, výrobu a poprodejní

Více

POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU

POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU POHON 4x4 JAKO ZDROJ VIBRACÍ OSOBNÍHO AUTOMOBILU Pavel NĚMEČEK, Technická univerzita v Liberci 1 Radek KOLÍNSKÝ, Technická univerzita v Liberci 2 Anotace: Příspěvek popisuje postup identifikace zdrojů

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS SYNCHRONNÍ STROJE Určeno pro posluchače bakalářských studijních programů FS Obsah Význam a použití 1. Konstrukce synchronních strojů 2. Princip činnosti synchronního generátoru 3. Paralelní chod synchronního

Více

SMART transformátor proudu PTD s děleným jádrem

SMART transformátor proudu PTD s děleným jádrem SMART transformátor proudu PTD s děleným jádrem Měřící Energetické Aparáty, a.s. 664 31 Česká 390 Česká republika Měřící Energetické Aparáty SMART transformátor proudu PTD s děleným jádrem 1/ Účel a použití

Více

1A Impedance dvojpólu

1A Impedance dvojpólu 1A pedance dvojpólu Cíl úlohy Na praktických příkladech procvičit výpočty odulů a arguentů ipedancí různých dvojpólů. Na základních typech prakticky užívaných obvodů ověřit ěření příou souvislost ezi ipedancí

Více

VIBEX Uživatelská příručka

VIBEX Uživatelská příručka VIBEX Uživatelská příručka ŠKODA POWER s.r.o. ŠKODA VÝZKUM s.r.o. ČVUT FEL Praha PROFESS, spol. s r.o. Plzeň 2005 VIBEX je program, který slouží k identifikaci příčin změn ve vibračním chování turbosoustrojí.

Více

FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz.

FYZIKA 2. ROČNÍK. Příklady na obvody střídavého proudu. A1. Určete induktanci cívky o indukčnosti 500 mh v obvodu střídavého proudu o frekvenci 50 Hz. FYZKA. OČNÍK Příklady na obvody střídavého proudu A. rčete induktanci cívky o indukčnosti 500 H v obvodu střídavého proudu o frekvenci 50 Hz. = 500 0 3 H =?. = ω = π f = 57 Ω ívka á induktanci o velikosti

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Synchronní stroje 1FC4

Synchronní stroje 1FC4 Synchronní stroje 1FC4 Typové označování generátorů 1F. 4... -..... -. Točivý elektrický stroj 1 Synchronní stroj F Základní provedení C Provedení s vodním chladičem J Osová výška 560 mm 56 630 mm 63 710

Více

6. ÚČINKY A MEZE HARMONICKÝCH

6. ÚČINKY A MEZE HARMONICKÝCH 6. ÚČINKY A MEZE HARMONICKÝCH 6.1. Negativní účinky harmonických Poruchová činnost ochranných přístrojů nadproudové ochrany: chybné vypínání tepelné spouště proudové chrániče: chybné vypínání při nekorektním

Více

Senzor polohy rotoru vysokootáčkového elektromotoru

Senzor polohy rotoru vysokootáčkového elektromotoru Senzor polohy rotoru vysokootáčkového elektromotoru Vysokootáčkový elektromotor Jednou z cest, jak zvýšit užitné vlastnosti výrobků je intenzifikace jejich užitných vlastností. V oblasti elektromotorů

Více

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa

VZDUCH V MÍSTNOSTI POMŮCKY NASTAVENÍ MĚŘICÍHO ZAŘÍZENÍ. Vzdělávací předmět: Fyzika. Tematický celek dle RVP: Látky a tělesa VZDUCH V MÍSTNOSTI Vzdělávací předět: Fyzika Teatický celek dle RVP: Látky a tělesa Teatická oblast: Měření fyzikálních veličin Cílová skupina: Žák 6. ročníku základní školy Cíle pokusu je určení rozěrů

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium harmonických kmitů mechanického oscilátoru

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Studium harmonických kmitů mechanického oscilátoru Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Lukáš Vejelka stud. skup. FMUZV (73) dne 2.2.23

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY ABORATORNÍ CVIČENÍ Z FYZIKY Jéno: Petr Česák Datu ěření: 7.. Studijní rok: 999-, Ročník: Datu odevzdání:.5. Studijní skupina: 5 aboratorní skupina: Klasifikace:

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

Názvosloví. VENTILÁTORY RADIÁLNÍ STŘEDOTLAKÉ RSB 500 až 1250. Hlavní části ventilátorů - pohon na přímo. 1. Rám ventilátoru. 2.

Názvosloví. VENTILÁTORY RADIÁLNÍ STŘEDOTLAKÉ RSB 500 až 1250. Hlavní části ventilátorů - pohon na přímo. 1. Rám ventilátoru. 2. VENTILÁTORY RADIÁLNÍ STŘEDOTLAKÉ RSB 500 až 1250 Názvosloví Hlavní části ventilátorů - pohon na přímo 1. Rám ventilátoru 2. Spirální skříň 3. Oběžné kolo 4. Sací hrdlo 5. Sací dýza 6. Elektromotor 7. Těsnění

Více

Synchronní generátor. SEM Drásov Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov

Synchronní generátor. SEM Drásov Siemens Electric Machines s.r.o. Drásov 126 CZ 664 24 Drásov Synchronní generátor 3~ SEM Drásov Siemens Electric Machines sro Drásov 126 CZ 664 24 Drásov Jedná se o výrobek firmy Siemens Electric Machines sro, podniku s mnohaletou tradicí Synchronní generátor, vytvořený

Více

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS

10. PŘEVODY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS 10. PŘEVOY S OZUBENÝMI KOLY 10. TRANSMISSION WITH GEAR WHEELS Jedná se o převody s tvarový styke výhody - relativně alé roěry - dobrá spolehlivost a životnost - dobrá echanická účinnost - přesné dodržení

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 8. TRANSFORMÁTORY Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 8. TRANSFORMÁTORY 8. Princip činnosti 8. Provozní stavy skutečného transformátoru 8.. Transformátor naprázdno 8.. Transformátor

Více

Systém nízkoúrovňových válečkových a řetězových dopravníků

Systém nízkoúrovňových válečkových a řetězových dopravníků Systém nízkoúrovňových válečkových a řetězových dopravníků Bc. Vít Hanus Vedoucí práce: Ing. František Starý Abstrakt Tématem práce je návrh a konstrukce modulárního systému válečkových a řetězových dopravníků

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK OBOR: GEODÉZIE A KARTOGRAFIE TEST.

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK OBOR: GEODÉZIE A KARTOGRAFIE TEST. FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 0 0 OBOR: GEODÉZIE A KARTOGRAFIE Část A TEST A) cos cos b) tg c) ( ) A) cos b) c) cotg cotg cotg A3) Hodnota

Více

Vestavba archivu v podkroví

Vestavba archivu v podkroví Návrh statické části stavby Statický výpočet Vestavba archivu v podkroví Praha 10 - Práčská 1885 Místo stavby: Investor: Zpracovatel PD: Praha 10 - Práčská 1885 Lesy hl. ěsta Prahy, Práčská 1885, Praha

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

ASYNCHRONNÍ STROJE. Asynchronní stroje se užívají nejčastěji jako motory.

ASYNCHRONNÍ STROJE. Asynchronní stroje se užívají nejčastěji jako motory. Význam a použití Asynchronní stroje se užívají nejčastěji jako motory. Jsou nejrozšířenějšími elektromotory vůbec a používají se k nejrůznějším pohonům proto, že jsou ze všech elektromotorů nejjednodušší

Více

Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3

Osnova kurzu. Elektrické stroje 2. Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 3 Osnova kurzu 1) 2) 3) 4) 5) 6) 7) 8) 9) 1) 11) 12) 13) Úvodní informace; zopakování nejdůležitějších vztahů Základy teorie elektrických obvodů 1 Základy teorie elektrických obvodů 2 Základy teorie elektrických

Více

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2)

h ztr = ς = v = (R-4) π d Po dosazení z rov.(r-3) a (R-4) do rov.(r-2) a úpravě dostaneme pro ztrátový součinitel (R-1) a 2 Δp ς = (R-2) Stanovení součinitele odporu a relativní ekvivalentní délky araturního prvku Úvod: Potrubí na dopravu tekutin (kapalin, plynů) jsou vybavena araturníi prvky, kterýi se regulují průtoky (ventily, šoupata),

Více

2302R007 Hydraulické a pneumatické stroje a zařízení Specializace: - Rok obhajoby: 2008. Anotace

2302R007 Hydraulické a pneumatické stroje a zařízení Specializace: - Rok obhajoby: 2008. Anotace VŠB Technická univerzita Ostrava Fakulta strojní Katedra hydromechaniky a hydraulických zařízení Název práce: Měření místních ztrát vložených prvků na vzduchové trati, měření teploty vzduchu, regulace

Více

Pár zajímavých nápadů

Pár zajímavých nápadů Pár zajíavých nápadů Václav Pazdera Gynáziu, Oloouc, Čajkovského 9 Abstrakt Příspěvek je věnován tře jednoduchý poůcká, které si ůže každý učitel fyziky sá vyrobit: "Tlak plynu v balónku", "Zpívající trubky"

Více

4 Vibrodiagnostika elektrických strojů

4 Vibrodiagnostika elektrických strojů 4 Vibrodiagnostika elektrických strojů Cíle úlohy: Cílem úlohy je seznámit se s technologií měření vibrací u točivých elektrických strojů a vyhodnocováním diagnostiky jejích provozu. 4.1 Zadání Pomocí

Více

ZÁKLADNÍ TEZE TECHNICKÉ DIAGNOSTIKY

ZÁKLADNÍ TEZE TECHNICKÉ DIAGNOSTIKY Ing. Mečislav Hudeczek ZÁKLADNÍ TEZE TECHNICKÉ DIAGNOSTIKY Únor 2000 ELEKTROCENTRUM HUDECZEK 1 Technická diagnostika Bezdemontážní technická diagnostika je nejprogresivnější metodou péče o hmotný majetek.

Více

Účinky elektrického proudu. vzorová úloha (SŠ)

Účinky elektrického proudu. vzorová úloha (SŠ) Účinky elektrického proudu vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud jako

Více

Kontrola technického ho stavu brzd. stavu brzd

Kontrola technického ho stavu brzd. stavu brzd Kontrola technického ho stavu brzd Kontrola technického ho stavu brzd Dynamická kontrola brzd Základní zákon - Zákon č. 56/001 Sb. o podmínkách provozu vozidel na pozemních komunikacích v platném znění

Více

Synchronní stroj je točivý elektrický stroj na střídavý proud. Otáčky stroje jsou synchronní vůči točivému magnetickému poli.

Synchronní stroj je točivý elektrický stroj na střídavý proud. Otáčky stroje jsou synchronní vůči točivému magnetickému poli. Synchronní stroje Rozvoj synchronních strojů byl dán zavedením střídavé soustavy. V počátku se používaly zejména synchronní generátory (alternátory), které slouží pro výrobu trojfázového střídavého proudu.

Více

Pohony šicích strojů

Pohony šicích strojů Pohony šicích strojů Obrázek 1:Motor šicího stroje Charakteristika Podle druhu použitého pohonu lze rozdělit šicí stroje na stroje a pohonem: ručním, nožním, elektrickým pohonem. Motor šicího stroje se

Více

Návrh a realizace regulace otáček jednofázového motoru

Návrh a realizace regulace otáček jednofázového motoru Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Návrh a realizace regulace otáček jednofázového motoru Michaela Pekarčíková 1 Obsah : 1 Úvod.. 3 1.1 Regulace 3 1.2

Více

VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU

VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU VY_32_INOVACE_06_III./1._OBVOD STŘÍDAVÉHO PROUDU Střídavý proud Vznik střídavého napětí a proudu Fyzikální veličiny popisující jevy v obvodu se střídavý proude Střídavý obvod, paraetry obvodu Střídavý

Více

Laboratorní úloha. MĚŘENÍ NA MECHATRONICKÉM SYSTÉMU S ASYNCHRONNÍM MOTOREM NAPÁJENÝM Z MĚNIČE KMITOČTU Zadání:

Laboratorní úloha. MĚŘENÍ NA MECHATRONICKÉM SYSTÉMU S ASYNCHRONNÍM MOTOREM NAPÁJENÝM Z MĚNIČE KMITOČTU Zadání: Laboratorní úloha MĚŘENÍ NA MECHATRONICKÉM SYSTÉMU S ASYNCHRONNÍM MOTOREM NAPÁJENÝM Z MĚNIČE KMITOČTU Zadání: 1) Proveďte teoretický rozbor frekvenčního řízení asynchronního motoru 2) Nakreslete schéma

Více

Korekční křivka napěťového transformátoru

Korekční křivka napěťového transformátoru 8 Měření korekční křivky napěťového transformátoru 8.1 Zadání úlohy a) pro primární napětí daná tabulkou změřte sekundární napětí na obou sekundárních vinutích a dopočítejte převody transformátoru pro

Více

KATALOGOVÝ LIST. VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 400 až 1250 jednostranně sací

KATALOGOVÝ LIST. VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 400 až 1250 jednostranně sací KATALOGOVÝ LIST VENTILÁTORY RADIÁLNÍ VYSOKOTLAKÉ RVM 400 až 1250 jednostranně sací KM 12 3334 Vydání: 12/10 Strana: 1 Stran: 10 Ventilátory radiální vysokotlaké RVM 400 až 1250 jednostranně sací (dále

Více

Asynchronní stroje. Fakulta elektrotechniky a informatiky VŠB TUO. Ing. Tomáš Mlčák, Ph.D. Katedra elektrotechniky.

Asynchronní stroje. Fakulta elektrotechniky a informatiky VŠB TUO. Ing. Tomáš Mlčák, Ph.D. Katedra elektrotechniky. Asynchronní stroje Ing. Tomáš Mlčák, Ph.D. Fakulta elektrotechniky a informatiky VŠB TUO Katedra elektrotechniky www.fei.vsb.cz/kat452 PEZ I Stýskala, 2002 ASYNCHRONNÍ STROJE Obecně Asynchronní stroj (AS)

Více

Popis Geometrické řady ventilátorů

Popis Geometrické řady ventilátorů KATALOGOVÝ LIST AXIÁLNÍ PŘETLAKOVÉ VENTILÁTORY APH PRO PŘÍČNÉ VĚTRÁNÍ TUNELŮ KM 12 2458 Vydání: 12/10 Strana: 1 Stran: 7 Axiální přetlakové ventilátory APH pro příčné větrání tunelů (dále jen ventilátory)

Více

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice).

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice). 9. Magnetické pole 9.1 Základní poznatky o agnetisu a) Tyč z ěkké oceli ovinee dráte, do něhož zavedee stejnosěrný proud. Tyč ná zagnetuje. Po přerušení proudu bude tyč neagnetická. Nahradíe-li tyč z ěkké

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 6: Určování polohy těžiště stabilometrickou plošinou Metodický pokyn pro vyučující se vzorovým protokolem Ing. Patrik

Více

Pøíruba motoru: NEMA 6" Stupeò krytí: IP 58 Tøída izolace: Napájecí napìtí: tøífázové, 3 x 400 V / 50 Hz (+6% a -10%) PUMP PERFORMANCE

Pøíruba motoru: NEMA 6 Stupeò krytí: IP 58 Tøída izolace: Napájecí napìtí: tøífázové, 3 x 400 V / 50 Hz (+6% a -10%) PUMP PERFORMANCE PONORNÁ ÈERPADLA - DO VRTÙ A STUÍ S6 ÈERPADLA DO VRTÙ 6 PRÙMSLOVÁ ÈERPADLA VŠEOBECNÉ INFORMACE POU ITÍ Ponorná odstøedivá èerpadla pro studny a vrty o prùìru vìtší ne li 6". S ohlede na dodávané no ství

Více

EU peníze středním školám digitálníučebnímateriál

EU peníze středním školám digitálníučebnímateriál EU peníze středním školám digitálníučebnímateriál Číslo projektu: Číslo a název šablony klíčové aktivity: CZ.1.07/1.5.00/34.0515 III/2InovaceazkvalitněnívýukyprostřednictvímICT Tem atická oblast, název

Více

ELEKTRICKÉ STROJE - POHONY

ELEKTRICKÉ STROJE - POHONY ELEKTRICKÉ STROJE - POHONY Ing. Petr VAVŘIŇÁK 2012 1.1.2 HLAVNÍ ČÁSTI ELEKTRICKÝCH STROJŮ 1. ELEKTRICKÉ STROJE Elektrický stroj je definován jako elektrické zařízení, které využívá ke své činnosti elektromagnetickou

Více

KATALOGOVÝ LIST. Tab. 1 PROVEDENÍ VENTILÁTORU První doplňková číslice

KATALOGOVÝ LIST. Tab. 1 PROVEDENÍ VENTILÁTORU První doplňková číslice KATALOGOVÝ LIST VENTILÁTOR AXIÁLNÍ PŘETLAKOVÝ APB 2240 pro větrání silničních tunelů KM 2064/94 Vydání: 12/10 Strana: 1 Stran: 5 Ventilátor axiální přetlakový APB 2240 (dále jen ventilátor) je určen speciálně

Více

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky

Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu čelní a kuželové převodovky Katedra částí a mechanismů strojů Fakulta strojní, VŠB - Technická univerzita Ostrava 708 33 Ostrava- Poruba, tř. 7.listopadu Verifikace výpočtových metod životnosti ozubení, hřídelů a ložisek na příkladu

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Přístrojový transformátor proudu PTD s děleným jádrem

Přístrojový transformátor proudu PTD s děleným jádrem Přístrojový transformátor proudu PTD s děleným jádrem Měřící Energetické Aparáty Měřící Energetické Aparáty Přístrojový transformátor proudu PTD s děleným jádrem 1/ Účel a použití Přístrojový transformátor

Více

Snímač tlaku SITRANS P200. Provozní instrukce SITRANS P

Snímač tlaku SITRANS P200. Provozní instrukce SITRANS P Snímač tlaku SITRANS P200 Provozní instrukce SITRANS P Obecné a bezpečnostní pokyny Tato příručka obsahuje pokyny, které musíte dodržet kvůli zachování Vaší osobní bezpečnosti a vyloučení věcných škod.

Více

FAKULTA STAVEBNÍ VUT V BRNĚ

FAKULTA STAVEBNÍ VUT V BRNĚ FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP GEODÉZIE A KARTOGRAFIE PRO AKADEMICKÝ ROK 009 010 OBOR: GEODÉZIE A KARTOGRAFIE 1. tg ( α ) = o tg α B) cot gα C) tgα D) sin( 90 α) o. cotg 70 = B) 0

Více

bifilárním vinutím malá indukčnost vinutého odporu Chaperonovo vinutí malá indukčnost a kapacita. Vyhovující jen pro kmitočty do 100Hz

bifilárním vinutím malá indukčnost vinutého odporu Chaperonovo vinutí malá indukčnost a kapacita. Vyhovující jen pro kmitočty do 100Hz VELIČINY OVLIVŇUJÍCÍ ÚDAJE MĚŘÍCÍCH PŘÍSTROJŮ MECHANICKÉ VLIVY tření, otřesy,stárnutí pružin, poloha přístroje, nevyváženost pohybového ústrojí VLIV TEPLOTY teplotní kompenzace oddělení zdrojů tepla (předřadníky,

Více

VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU

VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU VÝZNAM VLASTNÍCH FREKVENCÍ PRO LOKALIZACI POŠKOZENÍ KONZOLOVÉHO NOSNÍKU Ing. Petr FRANTÍK, Ph.D., Ing. David LEHKÝ, Ph.D., Ústav stavební echaniky, Fakulta stavební, Vysoké učení technické v Brně, tel.:

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

Rezonanční elektromotor II

Rezonanční elektromotor II - 1 - Rezonanční elektromotor II Ing. Ladislav Kopecký, 2002 V tomto článku dále rozvineme a zpřesníme myšlenku rezonančního elektromotoru. Nejdříve se zamyslíme nad vhodnou konstrukcí elektromotoru. Z

Více

Diagnostika vozidel mechanické části

Diagnostika vozidel mechanické části Diagnostika vozidel mechanické části Pro zjištění technického stavu vozidla slouží kontroly jednotlivých částí automobilu z hlediska jejich funkce nebo opotřebení. Mezi základní kontroly patří kontroly

Více