1. Pohyby nabitých částic

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Pohyby nabitých částic"

Transkript

1 1. Pohyby nabitých částic

2 16 Pohyby nabitých částic V celé první kapitole budee počítat pohyby částic ve vnějších přede znáých (zadaných) polích. Předpokládáe že 1. částice vzájeně neinteragují. vlastní pole částic jsou zanedbatelná. Pro popis elektrického pole využijee intenzitu elektrického pole E pro popis agnetického pole agnetickou indukci B. Alternativně ůžee elektrické a agnetické pole popsat za pooci skalárního a vektorového potenciálu (ϕ A). Převodní vztahy jsou A E t x (1.1) B rot A. (1.) Odvození těchto vztahů nalezne čtenář v jakékoli učebnici elektroagnetického pole například v [8]. Při výpočtu pohybu nabitých částic budee předpokládat že potenciály ϕ(t x) a A(t x) jsou přede dané funkce. Poznaeneje že tvoří relativistický čtyřvektor a lze je z jedné souřadnicové soustavy do druhé transforovat za pooci Lorentzovy transforace. 1.1 Nerelativistické pohyby Za nerelativistické považujee pohyby nabitých částic jejichž rychlost je zanedbatelná vzhlede k rychlosti světla tj. v c. Takové částice naleznee například ve sluneční větru nebo v plazatu obloukového výboje Lagrangeova a Hailtonova funkce Probleatika pohybu nabitých částic v elektroagnetických polích je dána Lagrangeovou funkcí L Lpart Lint Lelg (1.3) kde L part je Lagrangeova funkce částice L int popisuje interakci ezi částicí a pole a L elg je Lagrangeova funkce elektroagnetického pole. V naše přiblížení jsou pole pevně dána a nebudee je počítat proto je polní část Lagrangeovy funkce nulová. Pokud budee uvažovat jen elektrické pole které je potenciální bude Lagrangeova funkce dána vztahe 1 L v Q. (1.4) Tvar je shodný s klasickou echanikou [1] kde je Lagrangeova funkce dána rozdíle kinetické a potenciální energie L = T V. Kinetická energie představuje Lagrangeovu funkci volné částice L part a potenciální energie Lagrangeovu funkci interakce s elektrický pole L int. V přítonosti agnetického pole které není potenciální usí ít inte-

3 Nerelativistické pohyby 17 rakční část Lagrangeovy funkce další člen. Ten bude nějakou funkcí čtyřvektoru toku náboje pro částici (charakterizuje částici) a čtyřvektoru potenciálů pole (charakterizuje pole): J cq cq( x x) / c ; j Qv ( x x) A A kde x' je poloha částice a x poloha pozorovatele. Lagrangeova funkce by ěla být skaláre jedinou rozunou kobinací připadající v úvahu je tedy veličina úěrná skalárníu součinu obou čtyřvektorů integrovanéu přes obje (bez integrace přes obje bycho dostali veličinu úěrnou hustotě Lagrangeovy funkce): 3 3 JA d x QQAv ( xx) d x Q QAv. Z uvedeného vztahu je již jasná chybějící část ve vztahu (1.4) správná Lagrangeova funkce pro nerelativistický pohyb částic v elektrické a agnetické poli bude 1 L Q Q v A v. (1.5) Standardníi postupy určíe zobecněnou hybnost zobecněnou energii a po vyloučení rychlosti z obou vztahů Hailtonovu funkci: L p vqa (1.6) v L 1 vl v Q v E (1.7) H ( p QA) Q. (1.8) Poznáka 1: Energii budee v této kapitole značit sybole E abycho ji odlišili od intenzity elektrického pole E. Poznáka : Zobecněná hybnost není součine hotnosti a rychlosti jako v klasické echanice ale figuruje v ní vektorový potenciál! Poznáka 3: Energie nezávisí na agnetické poli (vektorové potenciálu A) protože agnetické pole neění energii částice ale jen sěr její rychlosti. Ukaže že příslušné Lagrangeovy rovnice jsou totožné s Lorentzovou pohybovou rovnicí pro nabitou částici. Ve složkách áe 1 L vv j j Q ( t x) QAj( t x) vj ; d L L 0 dt vi xi d Aj ( vi QA i) Q Q vj 0 dt x x i i

4 18 Pohyby nabitých částic d Ai A dx i j Aj ( vi) Q Q Q Q vj 0 dt t x j dt xi xi d Ai Aj Ai ( vi) Q vj. dt t x i xi x j Poslední výraz v hranaté závorce snadno upravíe poocí Levi-Civitova tenzoru do tvaru (postup naleznete v dodatku A vztah A.0) d A d ( v) Q vrot A ( v) QEvB (1.9) dt t x dt což je znáá Lorentzova pohybová rovnice Pohyb v elektrické poli optická analogie Pokud se nabitá částice pohybuje dostatečně dlouho jen v hoogenní elektrické poli nelze situaci řešit nerelativisticky. Elektrické pole by částici urychlovalo nade všechny eze což je v rozporu se speciální relativitou. Můžee ale řešit úlohu ve které je elektrické pole nenulové jen v alé oblasti prostoru například v nějaké vrstvě plazatu. Idealizovaný případe je rázová vlna se skoke elektrického potenciálu (tzv. dvojvrstva se kterou se podrobněji seznáíe v kapitole 3.3.4). y v α 1 α x v 1 ϕ 1 ϕ Obr. 1: Skok elektrického potenciálu. Předpokládeje že v obou poloprostorech na obrázku je potenciál konstantní a elektrické pole tedy nulové. Nabitá částice se proto pohybuje rovnoěrně příočaře. V tenké vrstvě (je označena šedě) na rozhraní obou oblastí se potenciál ění elektrické pole je zde nenulové a íří ve sěru osy x. Pokud je přechodová vrstva infiniteziálně alá je zěna potenciálu skoková. Ve sěru osy y nepůsobí žádné pole proto se složka rychlosti částice ve sěru osy y neění. Tečná složka rychlosti vzhlede k rozhraní je proto spojitá: v sin v sin. (1.10) 1 1 Při pohybu nabité částice se bude zachovávat energie (1.7):

5 Nerelativistické pohyby 19 1 v1 Q 1 1 v Q E. (1.11) Pokud z posledního vztahu vypočtee rychlosti a dosadíe do (1.10) dostanee sin E Q C U sin E Q C U (1.1) Uvedenéu vztahu se říká optická analogie pohybu částice v elektrické poli. Svý tvare připoíná Snellův zákon lou Pohyb v hoogenní agnetické poli elektroagnetické pole: E (000) B (00 B) ; počáteční podínky: x(0) (000) p(0) (0 v 0). Předpokládeje hoogenní agnetické pole; souřadnicovou soustavu zvolíe tak aby osa z ířila ve sěru pole. Nabitou částici vypustíe kolo na agnetické indukční čáry ve sěru osy y. Pohyb budee řešit za pooci Hailtonových pohybových rovnic. Pro sestavení Hailtonovy funkce proto nejdříve potřebujee nalézt potenciály pole. Potenciály nejsou vztahy (1.1) a (1.) určeny jednoznačně (různé potenciály vedou na stejná pole). Například pro agnetický potenciál ůžee v naše případě využít výrazy A = ( yb 0 0) nebo A = (0 xb 0) nebo A = ½ ( yb xb 0). Vyzkoušejte si že rot A vede vždy na pole B = (0 0 B). Pro další výpočet zvolíe potenciály ve tvaru 0 A (0 xb0). Potenciály elektrických a agnetických polí pro typické konfigurace naleznete v dodatku D3. Zobecněná hybnost je v naše případě dána vztahe p = v + QA. Pro Hailtonovu funkci platí a Hailtonovy rovnice jsou ( p QA) px ( py x) pz H Q H px x px (1.13) H py x y py (1.14)

6 0 Pohyby nabitých částic Z rovnic (1.17) (1.18) áe ihned H p z z (1.15) p z H ( py x) p x (1.16) x H p y 0 (1.17) y H p z 0. (1.18) z py() t py(0) v pz() t pz(0) 0. Tyto výrazy spolu s p x vyjádřený z (1.13) dosadíe do (1.16) a získáe tak rovnici x x v pro proěnnou x. Po její vyřešení (je součte hoogenního a partikulárního) znáe závislost x(t) a ůžee již přío integrovat rovnice (1.14) (1.15). Výsledné řešení á tvar kde jse označili R x() t R R cos t L L c yt () R sin t L zt () 0 L v ; c c (1.19) (1.0) tzv. Larorův poloěr R L a cyklotronní frekvenci c. Trajektorii získáe vyloučení času z (1.19): x R y R (1.1) L L. Vidíe že pohyb se děje po kružnici s poloěre R L a se střede S = [ R L 0 ]. Poloha středu závisí na znaénku náboje částice. Magnetické pole nepůsobí na pohyb částice ve sěru podél pole. Kolo na sěr pole působí Lorentzova síla která zakřivuje trajektorii částice na kružnici. Při nenulové počáteční rychlosti v z (0) je pohyb částice složen z rovnoěrného příočarého pohybu podél pole a Larorovy rotace (tzv. gyrace) v rovině kolé na pole tí vzniká pohyb po šroubovici.

7 Nerelativistické pohyby 1 Saotné elektrické pole naopak nepůsobí na pohyb částice napříč pole (v nerelativistické případě) nebo jen veli álo (v relativistické případě). Ve sěru pole dochází k urychlování. Obr. : Pohyby nabité částice v hoogenní agnetické poli. Poznáka: Výpočet Larorova pohybu lze také provést přío z Lorentzovy pohybové rovnice r Qr B. Složka z opět vede na volný pohyb. Ve složce x a y dostáváe x y (1.) y x. (1.3) Obě rovnice je ožné řešit různýi způsoby. Asi nejrychleji k cíli vede Landaův postup: druhou rovnici vynásobíe koplexní jednotkou a sečtee s první. Kobinaci / označíe jako cyklotronní frekvenci: x i y i c ( x i y ) (1.4) Nyní stačí zavést koplexní proěnnou x i y a řešit jednoduchou rovnici ic (1.5) v koplexní oboru. Po nalezení integračních konstant získáe hledanou polohu částice x a y tak že oddělíe reálnou a iaginární část řešení.

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

25 Měrný náboj elektronu

25 Měrný náboj elektronu 5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1. Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá

Více

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera Srovnání klasického a kvantového oscilátoru Ondřej Kučera Seestrální projekt 010 Obsah 1. Úvod... 3. Teorie k probleatice... 4.1. Mechanika... 4.1.1. Klasická echanika... 4.1.1.1. Klasický oscilátor...

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

F10 HARMONICKÝ OSCILÁTOR

F10 HARMONICKÝ OSCILÁTOR F1 HARMONICKÝ OSCILÁTOR Evropský sociální fond Praha & EU: Investujee do vaší budoucnosti F1 HARMONICKÝ OSCILÁTOR V okolí inia potenciální energie ůžee vždy očekávat kity. Síla působí do inia potenciální

Více

r j Elektrostatické pole Elektrický proud v látkách

r j Elektrostatické pole Elektrický proud v látkách Elektrostatiké pole Elektriký proud v látkáh Měděný vodiče o průřezu 6 protéká elektriký proud Vypočtěte střední ryhlost v pohybu volnýh elektronů ve vodiči jestliže předpokládáe že počet volnýh elektronů

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 3. přednáška Řešení obvodů napájených haronický napětí v ustálené stavu ZÁKADNÍ POJMY Časový průběh haronického napětí: kde: U u U. sin( t ϕ ) - axiální hodnota [V] - úhlový kitočet

Více

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky

teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Pohyb soustavy hmotných bodů

Pohyb soustavy hmotných bodů Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: Číslo DUM: VY_32_INOVACE_18_FY_B Jéno autora: Mgr. Zdeněk Chalupský Datu vytvoření: 15. 12. 2012 Číslo DUM: VY_32_INOVACE_18_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Teatický okruh: Mechanika

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G Řešení úloh celostátního kola 47 ročníku fyzikální olypiády Autor úloh: P Šedivý 1 a) Úlohu budee řešit z hlediska pozorovatele ve vztažné soustavě otáčející se spolu s vychýlenou tyčí okolo svislé osy

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

KOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI

KOMPLEXNÍ DVOJBRANY - PŘENOSOVÉ VLASTNOSTI Koplexní dvobrany http://www.sweb.cz/oryst/elt/stranky/elt7.ht Page o 8 8. 6. 8 KOMPEXNÍ DVOJBNY - PŘENOSOVÉ VSTNOSTI Intergrační a derivační článek patří ezi koplexní dvobrany. Integrační článek á vlastnost

Více

MECHANICKÉ KMITÁNÍ NETLUMENÉ

MECHANICKÉ KMITÁNÍ NETLUMENÉ MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Analýza napjatosti PLASTICITA

Analýza napjatosti PLASTICITA Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

Vznik a vlastnosti střídavých proudů

Vznik a vlastnosti střídavých proudů 3. Střídavé proudy. Naučit se odvození vztahu pro okažitý a průěrný výkon střídavého proudu, znát fyzikální význa účiníku.. ět použít fázorový diagra na vysvětlení vztahu ezi napětí a proude u jednoduchých

Více

( ) ( ) Newtonův zákon II. Předpoklady:

( ) ( ) Newtonův zákon II. Předpoklady: 6 Newtonův zákon II Předpoklady: 0005 Př : Autoobil zrychlí z 0 k/h na 00 k/h za 8 s Urči velikost síly, která auto uvádí do pohybu, pokud autoobil váží,6 tuny Předpokládej rovnoěrně zrychlený pohybu auta

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

1. Hmotnost a látkové množství

1. Hmotnost a látkové množství . Hotnost a látkové nožství Hotnost stavební jednotky látky (například ato, olekly, vzorcové jednotky, eleentární částice atd.) označjee sybole a, na rozdíl od celkové hotnosti látky. Při požití základní

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

f x = f y j i y j x i y = f(x), y = f(y),

f x = f y j i y j x i y = f(x), y = f(y), Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).

Více

Pedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace.

Pedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace. 1.1.5 Hustota Předpoklady: 010104 Poůcky: voda, olej, váhy, dvojice kuliček, dvě stejné kádinky, dva oděrné válce. Pedagogická poznáka: Cíle hodiny je zopakování vztahu pro hustotu, ale zejéna nácvik základní

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn?

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn? Kvantová a statistická fyzika (erodynaika a statistická fyzika) 1 Poznáka k terodynaice: Jednoatoový či dvouatoový plyn? Jeden ol jednoatoového plynu o teplotě zaujíá obje V. Plyn však ůže projít cheickou

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Newtonův zákon I

Newtonův zákon I 14 Newtonův zákon I Předpoklady: 104 Začnee opakování z inulé hodiny Pedaoická poznáka: Nejdříve nechá studenty vypracovat oba následující příklady, pak si zkontrolujee první příklad a studenti dostanou

Více

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

Úvod do teorie plazmatu

Úvod do teorie plazmatu Úvod do teorie plazmatu Petr Kulhánek AGA 013 Text Petr Kulhánek ISBN: 978-80-90458-- Obsah PŘEDMLUVA 9 ÚVOD11 1 POHYBY NABITÝCH ČÁSTIC15 11 NERELATIVISTICKÉ POHYBY 16 111 Lagrangeova a Hamiltonova funkce

Více

PLOŠNÉ INTEGRÁLY PLOCHY

PLOŠNÉ INTEGRÁLY PLOCHY LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). LOCHY lochy v prostoru, které byly zatí hlavně používány, byly

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2.

1. kapitola. Vnitřní síly v průřezu prostorového prutu. Janek Faltýnek SI J (43) Teoretická část: Stavební mechanika 2. 1. kapitola Stavební echanika Janek Faltýnek SI J (43) Vnitřní síl v průřeu prostorového prutu eoretická část: ) erinologie ejdříve bcho si ěli říci co se rouí pod poje prut. Jako prut se onačuje konstrukční

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více

7.3.2 Parametrické vyjádření přímky II

7.3.2 Parametrické vyjádření přímky II 7 Paraetriké vyjádření příky II Předpoklady 07001 Pedagogiká poznáka V podstatě pro elou hodinu platí že příklady by neěly působit žáků větší probléy Pokud se probléy objeví (stává se to často) je třeba

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice).

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice). 9. Magnetické pole 9.1 Základní poznatky o agnetisu a) Tyč z ěkké oceli ovinee dráte, do něhož zavedee stejnosěrný proud. Tyč ná zagnetuje. Po přerušení proudu bude tyč neagnetická. Nahradíe-li tyč z ěkké

Více

Příklady z teoretické mechaniky pro domácí počítání

Příklady z teoretické mechaniky pro domácí počítání Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

. Potom (2) B pro danou periodickou funkci f ( ) x se nazývá Fourierova analýza.

. Potom (2) B pro danou periodickou funkci f ( ) x se nazývá Fourierova analýza. Učební text k přednášce UFY Fourierov nlýz, Fourierov trnsforce nhronické periodické vlny Fourierov nlýz Fourierův teoré: Funkce f ( x ) s prostorovou periodou ůže být rozvinut do řdy hronických funkcí

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

6.2.5 Pokusy vedoucí ke kvantové mechanice IV

6.2.5 Pokusy vedoucí ke kvantové mechanice IV 65 Pokusy vedoucí ke kvantové echanice IV Předpoklady: 06004 94: J Franck, G Hertz: Frack-Hertzův pokus Př : Na obrázku je nakresleno schéa Franck-Hertzova pokusu Jaký způsobe se budou v baňce (pokud v

Více

2 Operace s vektory a maticemi Násobení vektoru skalárem Vektorový součin vektorů Dvojitý vektorový součin...

2 Operace s vektory a maticemi Násobení vektoru skalárem Vektorový součin vektorů Dvojitý vektorový součin... Setrvačník Petr Šlechta 9. února 2011 2 Obsah 1 Úvod 5 1.1 Značení........................................... 5 2 Operace s vektory a aticei 7 2.1 Násobení vektoru skaláre................................

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Relativistická kinematika

Relativistická kinematika Relativistická kinematika 1 Formalismus čtyřhybnosti Pro řešení relativistických kinematických úloh lze často s výhodou použít formalismus čtyřhybnosti. Čtyřhybnost je čtyřvektor, který v sobě zahrnuje

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Gravitační pole. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERITA OSTRAVA FAKULTA STROJNÍ FYIKA I Gravitační pole Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

ELEKTROMAGNETICKÉ POLE

ELEKTROMAGNETICKÉ POLE ELEKTROMAGNETICKÉ POLE 1. Magnetická síla působící na náboj v magnetickém poli Fyzikové Lorentz a Ampér zjistili, že silové působení magnetického pole na náboj Q, závisí na: 1. velikosti náboje Q, 2. relativní

Více

Parametrické rovnice křivky

Parametrické rovnice křivky Křivkový integrál Robert Mařík jaro 2014 Tento text je tištěnou verzí prezentací dostupných z http://user.mendelu.cz/marik/am. Křivkový integrál Jedná se o rozšíření Riemannova integrálu, kdy množinou

Více

MFT - Matamatika a fyzika pro techniky

MFT - Matamatika a fyzika pro techniky MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

α = 210 A x =... kn A y =... kn A M =... knm

α = 210 A x =... kn A y =... kn A M =... knm Vzorový příklad k 1. kontrolnímu testu Konzola Zadání: Vypočtěte složky reakcí a vykreslete průběhy vnitřních sil. A x A M A y y q = kn/m M = - 5kNm A α B c a b d F = 10 kn 1 1 3,5,5 L = 10 x α = 10 A

Více

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost: Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika 1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více