1. Pohyby nabitých částic

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1. Pohyby nabitých částic"

Transkript

1 1. Pohyby nabitých částic

2 16 Pohyby nabitých částic V celé první kapitole budee počítat pohyby částic ve vnějších přede znáých (zadaných) polích. Předpokládáe že 1. částice vzájeně neinteragují. vlastní pole částic jsou zanedbatelná. Pro popis elektrického pole využijee intenzitu elektrického pole E pro popis agnetického pole agnetickou indukci B. Alternativně ůžee elektrické a agnetické pole popsat za pooci skalárního a vektorového potenciálu (ϕ A). Převodní vztahy jsou A E t x (1.1) B rot A. (1.) Odvození těchto vztahů nalezne čtenář v jakékoli učebnici elektroagnetického pole například v [8]. Při výpočtu pohybu nabitých částic budee předpokládat že potenciály ϕ(t x) a A(t x) jsou přede dané funkce. Poznaeneje že tvoří relativistický čtyřvektor a lze je z jedné souřadnicové soustavy do druhé transforovat za pooci Lorentzovy transforace. 1.1 Nerelativistické pohyby Za nerelativistické považujee pohyby nabitých částic jejichž rychlost je zanedbatelná vzhlede k rychlosti světla tj. v c. Takové částice naleznee například ve sluneční větru nebo v plazatu obloukového výboje Lagrangeova a Hailtonova funkce Probleatika pohybu nabitých částic v elektroagnetických polích je dána Lagrangeovou funkcí L Lpart Lint Lelg (1.3) kde L part je Lagrangeova funkce částice L int popisuje interakci ezi částicí a pole a L elg je Lagrangeova funkce elektroagnetického pole. V naše přiblížení jsou pole pevně dána a nebudee je počítat proto je polní část Lagrangeovy funkce nulová. Pokud budee uvažovat jen elektrické pole které je potenciální bude Lagrangeova funkce dána vztahe 1 L v Q. (1.4) Tvar je shodný s klasickou echanikou [1] kde je Lagrangeova funkce dána rozdíle kinetické a potenciální energie L = T V. Kinetická energie představuje Lagrangeovu funkci volné částice L part a potenciální energie Lagrangeovu funkci interakce s elektrický pole L int. V přítonosti agnetického pole které není potenciální usí ít inte-

3 Nerelativistické pohyby 17 rakční část Lagrangeovy funkce další člen. Ten bude nějakou funkcí čtyřvektoru toku náboje pro částici (charakterizuje částici) a čtyřvektoru potenciálů pole (charakterizuje pole): J cq cq( x x) / c ; j Qv ( x x) A A kde x' je poloha částice a x poloha pozorovatele. Lagrangeova funkce by ěla být skaláre jedinou rozunou kobinací připadající v úvahu je tedy veličina úěrná skalárníu součinu obou čtyřvektorů integrovanéu přes obje (bez integrace přes obje bycho dostali veličinu úěrnou hustotě Lagrangeovy funkce): 3 3 JA d x QQAv ( xx) d x Q QAv. Z uvedeného vztahu je již jasná chybějící část ve vztahu (1.4) správná Lagrangeova funkce pro nerelativistický pohyb částic v elektrické a agnetické poli bude 1 L Q Q v A v. (1.5) Standardníi postupy určíe zobecněnou hybnost zobecněnou energii a po vyloučení rychlosti z obou vztahů Hailtonovu funkci: L p vqa (1.6) v L 1 vl v Q v E (1.7) H ( p QA) Q. (1.8) Poznáka 1: Energii budee v této kapitole značit sybole E abycho ji odlišili od intenzity elektrického pole E. Poznáka : Zobecněná hybnost není součine hotnosti a rychlosti jako v klasické echanice ale figuruje v ní vektorový potenciál! Poznáka 3: Energie nezávisí na agnetické poli (vektorové potenciálu A) protože agnetické pole neění energii částice ale jen sěr její rychlosti. Ukaže že příslušné Lagrangeovy rovnice jsou totožné s Lorentzovou pohybovou rovnicí pro nabitou částici. Ve složkách áe 1 L vv j j Q ( t x) QAj( t x) vj ; d L L 0 dt vi xi d Aj ( vi QA i) Q Q vj 0 dt x x i i

4 18 Pohyby nabitých částic d Ai A dx i j Aj ( vi) Q Q Q Q vj 0 dt t x j dt xi xi d Ai Aj Ai ( vi) Q vj. dt t x i xi x j Poslední výraz v hranaté závorce snadno upravíe poocí Levi-Civitova tenzoru do tvaru (postup naleznete v dodatku A vztah A.0) d A d ( v) Q vrot A ( v) QEvB (1.9) dt t x dt což je znáá Lorentzova pohybová rovnice Pohyb v elektrické poli optická analogie Pokud se nabitá částice pohybuje dostatečně dlouho jen v hoogenní elektrické poli nelze situaci řešit nerelativisticky. Elektrické pole by částici urychlovalo nade všechny eze což je v rozporu se speciální relativitou. Můžee ale řešit úlohu ve které je elektrické pole nenulové jen v alé oblasti prostoru například v nějaké vrstvě plazatu. Idealizovaný případe je rázová vlna se skoke elektrického potenciálu (tzv. dvojvrstva se kterou se podrobněji seznáíe v kapitole 3.3.4). y v α 1 α x v 1 ϕ 1 ϕ Obr. 1: Skok elektrického potenciálu. Předpokládeje že v obou poloprostorech na obrázku je potenciál konstantní a elektrické pole tedy nulové. Nabitá částice se proto pohybuje rovnoěrně příočaře. V tenké vrstvě (je označena šedě) na rozhraní obou oblastí se potenciál ění elektrické pole je zde nenulové a íří ve sěru osy x. Pokud je přechodová vrstva infiniteziálně alá je zěna potenciálu skoková. Ve sěru osy y nepůsobí žádné pole proto se složka rychlosti částice ve sěru osy y neění. Tečná složka rychlosti vzhlede k rozhraní je proto spojitá: v sin v sin. (1.10) 1 1 Při pohybu nabité částice se bude zachovávat energie (1.7):

5 Nerelativistické pohyby 19 1 v1 Q 1 1 v Q E. (1.11) Pokud z posledního vztahu vypočtee rychlosti a dosadíe do (1.10) dostanee sin E Q C U sin E Q C U (1.1) Uvedenéu vztahu se říká optická analogie pohybu částice v elektrické poli. Svý tvare připoíná Snellův zákon lou Pohyb v hoogenní agnetické poli elektroagnetické pole: E (000) B (00 B) ; počáteční podínky: x(0) (000) p(0) (0 v 0). Předpokládeje hoogenní agnetické pole; souřadnicovou soustavu zvolíe tak aby osa z ířila ve sěru pole. Nabitou částici vypustíe kolo na agnetické indukční čáry ve sěru osy y. Pohyb budee řešit za pooci Hailtonových pohybových rovnic. Pro sestavení Hailtonovy funkce proto nejdříve potřebujee nalézt potenciály pole. Potenciály nejsou vztahy (1.1) a (1.) určeny jednoznačně (různé potenciály vedou na stejná pole). Například pro agnetický potenciál ůžee v naše případě využít výrazy A = ( yb 0 0) nebo A = (0 xb 0) nebo A = ½ ( yb xb 0). Vyzkoušejte si že rot A vede vždy na pole B = (0 0 B). Pro další výpočet zvolíe potenciály ve tvaru 0 A (0 xb0). Potenciály elektrických a agnetických polí pro typické konfigurace naleznete v dodatku D3. Zobecněná hybnost je v naše případě dána vztahe p = v + QA. Pro Hailtonovu funkci platí a Hailtonovy rovnice jsou ( p QA) px ( py x) pz H Q H px x px (1.13) H py x y py (1.14)

6 0 Pohyby nabitých částic Z rovnic (1.17) (1.18) áe ihned H p z z (1.15) p z H ( py x) p x (1.16) x H p y 0 (1.17) y H p z 0. (1.18) z py() t py(0) v pz() t pz(0) 0. Tyto výrazy spolu s p x vyjádřený z (1.13) dosadíe do (1.16) a získáe tak rovnici x x v pro proěnnou x. Po její vyřešení (je součte hoogenního a partikulárního) znáe závislost x(t) a ůžee již přío integrovat rovnice (1.14) (1.15). Výsledné řešení á tvar kde jse označili R x() t R R cos t L L c yt () R sin t L zt () 0 L v ; c c (1.19) (1.0) tzv. Larorův poloěr R L a cyklotronní frekvenci c. Trajektorii získáe vyloučení času z (1.19): x R y R (1.1) L L. Vidíe že pohyb se děje po kružnici s poloěre R L a se střede S = [ R L 0 ]. Poloha středu závisí na znaénku náboje částice. Magnetické pole nepůsobí na pohyb částice ve sěru podél pole. Kolo na sěr pole působí Lorentzova síla která zakřivuje trajektorii částice na kružnici. Při nenulové počáteční rychlosti v z (0) je pohyb částice složen z rovnoěrného příočarého pohybu podél pole a Larorovy rotace (tzv. gyrace) v rovině kolé na pole tí vzniká pohyb po šroubovici.

7 Nerelativistické pohyby 1 Saotné elektrické pole naopak nepůsobí na pohyb částice napříč pole (v nerelativistické případě) nebo jen veli álo (v relativistické případě). Ve sěru pole dochází k urychlování. Obr. : Pohyby nabité částice v hoogenní agnetické poli. Poznáka: Výpočet Larorova pohybu lze také provést přío z Lorentzovy pohybové rovnice r Qr B. Složka z opět vede na volný pohyb. Ve složce x a y dostáváe x y (1.) y x. (1.3) Obě rovnice je ožné řešit různýi způsoby. Asi nejrychleji k cíli vede Landaův postup: druhou rovnici vynásobíe koplexní jednotkou a sečtee s první. Kobinaci / označíe jako cyklotronní frekvenci: x i y i c ( x i y ) (1.4) Nyní stačí zavést koplexní proěnnou x i y a řešit jednoduchou rovnici ic (1.5) v koplexní oboru. Po nalezení integračních konstant získáe hledanou polohu částice x a y tak že oddělíe reálnou a iaginární část řešení.

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

3.2.2 Rovnice postupného vlnění

3.2.2 Rovnice postupného vlnění 3.. Rovnice postupného vlnění Předpoklady: 310, 301 Chcee najít rovnici, která bude udávat výšku vlny v libovolné okažiku i libovolné bodě (v jedno okažiku je v různých ístech různá výška vlny). Veličiny

Více

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1.

Řešení: Odmocninu lze vždy vyjádřit jako mocninu se zlomkovým exponentem. A pro práci s mocninami = = = 2 0 = 1. Varianta A Př.. Zloek 3 3 je roven číslu: a), b) 3, c), d), e) žádná z předchozích odpovědí není Řešení: Odocninu lze vždy vyjádřit jako ocninu se zlokový exponente. A pro práci s ocninai již áe jednoduchá

Více

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera

Srovnání klasického a kvantového oscilátoru. Ondřej Kučera Srovnání klasického a kvantového oscilátoru Ondřej Kučera Seestrální projekt 010 Obsah 1. Úvod... 3. Teorie k probleatice... 4.1. Mechanika... 4.1.1. Klasická echanika... 4.1.1.1. Klasický oscilátor...

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

3.1.2 Harmonický pohyb

3.1.2 Harmonický pohyb 3.1.2 Haronický pohyb Předpoklady: 3101 Graf závislosti výchylky koštěte na čase: Poloha na čase 200 10 100 poloha [c] 0 0 0 10 20 30 40 0 60 70 80 90 100-0 -100-10 -200 čas [s] U některých periodických

Více

F10 HARMONICKÝ OSCILÁTOR

F10 HARMONICKÝ OSCILÁTOR F1 HARMONICKÝ OSCILÁTOR Evropský sociální fond Praha & EU: Investujee do vaší budoucnosti F1 HARMONICKÝ OSCILÁTOR V okolí inia potenciální energie ůžee vždy očekávat kity. Síla působí do inia potenciální

Více

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G

Řešení úloh celostátního kola 47. ročníku fyzikální olympiády. Autor úloh: P. Šedivý. x l F G Řešení úloh celostátního kola 47 ročníku fyzikální olypiády Autor úloh: P Šedivý 1 a) Úlohu budee řešit z hlediska pozorovatele ve vztažné soustavě otáčející se spolu s vychýlenou tyčí okolo svislé osy

Více

Pohyb soustavy hmotných bodů

Pohyb soustavy hmotných bodů Pohyb soustavy hotných bodů Tato kapitola se zabývá úlohai, kdy není ožné těleso nahradit jední hotný bode, předevší při otáčení tělesa. Těžiště soustavy hotných bodů a tělesa Při hodu nějaký složitější

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

3.9. Energie magnetického pole

3.9. Energie magnetického pole 3.9. nergie agnetického poe 1. Uět odvodit energii agnetického poe cívky tak, aby bya vyjádřena poocí paraetrů obvodu (I a L).. Znát vztah pro energii agnetického poe cívky jako funkci veičin charakterizujících

Více

Vznik a vlastnosti střídavých proudů

Vznik a vlastnosti střídavých proudů 3. Střídavé proudy. Naučit se odvození vztahu pro okažitý a průěrný výkon střídavého proudu, znát fyzikální význa účiníku.. ět použít fázorový diagra na vysvětlení vztahu ezi napětí a proude u jednoduchých

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015

Řešení testu 1b. Fyzika I (Mechanika a molekulová fyzika) NOFY021. 19. listopadu 2015 Řešení testu b Fyzika I (Mechanika a olekulová fyzika) NOFY0 9. listopadu 05 Příklad Zadání: Kulička byla vystřelena vodorovně rychlostí 0 /s do válcové roury o průěru a koná pohyb naznačený na obrázku.

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

f x = f y j i y j x i y = f(x), y = f(y),

f x = f y j i y j x i y = f(x), y = f(y), Cvičení 1 Definice δ ij, ε ijk, Einsteinovo sumační pravidlo, δ ii, ε ijk ε lmk. Cvičení 2 Štoll, Tolar: D3.55, D3.63 Cvičení 3 Zopakujte si větu o derivovování složené funkce více proměnných (chain rule).

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Plošný integrál Přednášky Z 216-217 ponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 216 Povinná látka. Bude v písemkách a bude se zkoušet při ústní

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

Pedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace.

Pedagogická poznámka: Cílem hodiny je zopakování vztahu pro hustotu, ale zejména nácvik základní práce se vzorci a jejich interpretace. 1.1.5 Hustota Předpoklady: 010104 Poůcky: voda, olej, váhy, dvojice kuliček, dvě stejné kádinky, dva oděrné válce. Pedagogická poznáka: Cíle hodiny je zopakování vztahu pro hustotu, ale zejéna nácvik základní

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet

Více

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,

Více

Úvod do teorie plazmatu

Úvod do teorie plazmatu Úvod do teorie plazmatu Petr Kulhánek AGA 013 Text Petr Kulhánek ISBN: 978-80-90458-- Obsah PŘEDMLUVA 9 ÚVOD11 1 POHYBY NABITÝCH ČÁSTIC15 11 NERELATIVISTICKÉ POHYBY 16 111 Lagrangeova a Hamiltonova funkce

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

PLOŠNÉ INTEGRÁLY PLOCHY

PLOŠNÉ INTEGRÁLY PLOCHY LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). LOCHY lochy v prostoru, které byly zatí hlavně používány, byly

Více

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole

ČÁST V F Y Z I K Á L N Í P O L E. 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Kde se nacházíme? ČÁST V F Y Z I K Á L N Í P O L E 18. Gravitační pole 19. Elektrostatické pole 20. Elektrický proud 21. Magnetické pole 22. Elektromagnetické pole Mapování elektrického pole -jak? Detektorem.Intenzita

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

MĚŘENÍ NA ASYNCHRONNÍM MOTORU

MĚŘENÍ NA ASYNCHRONNÍM MOTORU MĚŘENÍ NA ASYNCHRONNÍM MOTORU Základní úkole ěření je seznáit posluchače s vlastnosti asynchronního otoru v různých provozních stavech a s ožnosti využití provozu otoru v generátorické chodu a v režiu

Více

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice).

9. Magnetické pole. e) vodič s elektrickým proudem vyvolává kolem sebe magnetické pole (soustředné kružnice). 9. Magnetické pole 9.1 Základní poznatky o agnetisu a) Tyč z ěkké oceli ovinee dráte, do něhož zavedee stejnosěrný proud. Tyč ná zagnetuje. Po přerušení proudu bude tyč neagnetická. Nahradíe-li tyč z ěkké

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

2 Operace s vektory a maticemi Násobení vektoru skalárem Vektorový součin vektorů Dvojitý vektorový součin...

2 Operace s vektory a maticemi Násobení vektoru skalárem Vektorový součin vektorů Dvojitý vektorový součin... Setrvačník Petr Šlechta 9. února 2011 2 Obsah 1 Úvod 5 1.1 Značení........................................... 5 2 Operace s vektory a aticei 7 2.1 Násobení vektoru skaláre................................

Více

6.2.5 Pokusy vedoucí ke kvantové mechanice IV

6.2.5 Pokusy vedoucí ke kvantové mechanice IV 65 Pokusy vedoucí ke kvantové echanice IV Předpoklady: 06004 94: J Franck, G Hertz: Frack-Hertzův pokus Př : Na obrázku je nakresleno schéa Franck-Hertzova pokusu Jaký způsobe se budou v baňce (pokud v

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

Podívejte se na časový průběh harmonického napětí

Podívejte se na časový průběh harmonického napětí Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost:

MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojmy: Setrvačnost: Projekt Efektivní Učení Reforou oblastí gynaziálního vzdělávání je spolufinancován Evropský sociální fonde a státní rozpočte České republiky. MECHANIKA - DYNAMIKA Teorie Vysvětlete následující pojy: Setrvačnost:

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Energie, její formy a měření

Energie, její formy a měření Energie, její formy a měření aneb Od volného pádu k E=mc 2 Přednášející: Martin Zápotocký Seminář Aplikace lékařské biofyziky 2014/5 Definice energie Energos (ἐνεργός) = pracující, aktivní; ergon = práce

Více

1. Teoretická mechanika

1. Teoretická mechanika 1. Teoretická mechanika 16 Teoretická mechanika 1.1 Integrální principy mechaniky V teoretické mechanice se hojně používá Einsteinova sumační konvence, diferenciálu a Lagrangeova věta o přírůstku. Pokud

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Magnetická síla a moment sil Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 6. MAGNETICKÁ SÍLA A MOMENT SIL 3 6.1 ÚKOLY 3 ÚLOHA 1: HMOTNOSTNÍ

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika 1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská

Více

DIDAKTICKÝ TEST MAGNETICKÉ POLE

DIDAKTICKÝ TEST MAGNETICKÉ POLE DIDAKTICKÝ TEST MAGNETICKÉ POLE Použité zdroje: Blahovec, A.: Elektrotechnika I, Inforatoriu, Praha 2005 Černý, V.: Repetitoriu, Základní vztahy v elektrotechnice, časopis ELEKTRO ročník 2003 http://www.odbornecasopisy.cz

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

STUDIJNÍ TEXT PRO FJFI ČVUT

STUDIJNÍ TEXT PRO FJFI ČVUT TEORIE PLAZMATU STUDIJNÍ TEXT PRO FJFI ČVUT PETR KULHÁNEK PRAHA 9/15 FJFI ČVUT PŘEDMLUVA O plazmatu se často hovoří jako o čtvrtém skupenství hmoty A je to oprávněné, protože vlastnosti plazmatu jsou velmi

Více

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1, Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,

Více

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se:

CHEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ. Složení roztoků udává vzájemný poměr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: CEMICKÉ VÝPOČTY II SLOŽENÍ ROZTOKŮ Teorie Složení roztoků udává vzájený poěr rozpuštěné látky a rozpouštědla v roztoku. Vyjadřuje se: MOTNOSTNÍM ZLOMKEM B vyjadřuje poěr hotnosti rozpuštěné látky k hotnosti

Více

Elektřina a magnetismus Elektrostatické pole

Elektřina a magnetismus Elektrostatické pole Elektrostatické pole Elektrostatické pole je prostor (v okolí elektricky nabitých částic/těles), ve které na sebe náboje působí elektrickýi silai. Zdroje elektrostatického pole jsou elektrické náboje (vázané

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

5.2.4 Rayleighova Taylorova nestabilita

5.2.4 Rayleighova Taylorova nestabilita 74 Nestability v plazmatu 5..4 Rayleighova Taylorova nestabilita Rayleighova Taylorova nestabilita (RT nestabilita) vzniká na rozhraní dvou tekutin různých hustot (například je-li v gravitačním poli hustší

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Vzájemné silové působení

Vzájemné silové působení magnet, magnetka magnet zmagnetované těleso. Původně vyrobeno z horniny magnetit, která má sama magnetické vlastnosti dnes ocelové zmagnetované magnety, ferity, neodymové magnety. dva magnetické póly (S-J,

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Řešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie C

Řešení úloh 1. kola 56. ročníku fyzikální olympiády. Kategorie C Řešení úloh. kola 56. ročníku fyzikální olypiády. Kategorie C Autořiúloh:J.Thoas(3,4,5,7),J.Jírů(,2)aM.Jarešová(6).a) První pilíř je nejvíce zatížen, vjedou-li na něj zadní kola více zatížené nápravy:

Více

Elektřina a magnetismus úlohy na porozumění

Elektřina a magnetismus úlohy na porozumění Elektřina a magnetismus úlohy na porozumění 1) Prázdná nenabitá plechovka je umístěna na izolační podložce. V jednu chvíli je do místa A na vnějším povrchu plechovky přivedeno malé množství náboje. Budeme-li

Více

FYZIKA I. Pohyb těles po podložce

FYZIKA I. Pohyb těles po podložce VYSOKÁ ŠKOLA BÁŇSKÁ TECHICKÁ UIVERZITA OSTRAVA FAKULTA STROJÍ FYZIKA I Pohyb ěles po podložce Prof. RDr. Vilé Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Ar. Dagar Mádrová

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu

Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Sestavení pohybové rovnosti jednoduchého mechanismu pomocí Lagrangeových rovností druhého druhu Václav Čibera 12. února 2009 1 Motivace Na obrázku 1 máme znázorněný mechanický systém, který může představovat

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence.

Obr. 141: První tři Bernsteinovy iontové módy. Na vodorovné ose je bezrozměrný vlnový vektor a na svislé ose reálná část bezrozměrné frekvence. Mikronestability 33 m Re( ) ( m1) m1,,3, (5.18) ci Imaginární část frekvence, která je zodpovědná za útlum, razantně roste, pokud se vlny nešíří kolmo na magnetické pole. Útlum také roste s číslem módu

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E.

V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. MAGNETICKÉ POLE V elektrostatickém poli jsme se zabývali vznikem a vlastnostmi pole v blízkosti nábojů. Elektrické pole jsme popisovali vektorem E. Podobně i magnety vytvářejí pole v každém bodě prostoru.

Více

( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207

( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207 78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

1A Impedance dvojpólu

1A Impedance dvojpólu 1A pedance dvojpólu Cíl úlohy Na praktických příkladech procvičit výpočty odulů a arguentů ipedancí různých dvojpólů. Na základních typech prakticky užívaných obvodů ověřit ěření příou souvislost ezi ipedancí

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

3.1.8 Přeměny energie v mechanickém oscilátoru

3.1.8 Přeměny energie v mechanickém oscilátoru 3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci

Více