Číslo 44 Listopad 2010 SLOVO EDITORA OBSAHY PŘEDNÁŠEK JARNÍHO SEMINÁŘE. Marek Veteška

Rozměr: px
Začít zobrazení ze stránky:

Download "Číslo 44 Listopad 2010 SLOVO EDITORA OBSAHY PŘEDNÁŠEK JARNÍHO SEMINÁŘE. Marek Veteška"

Transkript

1 Česká společnost pro výzkum a využití jílů (ČSVVJ), ustavená v roce 1998, sdružuje zájemce a stimuluje teoretický i aplikovaný výzkum, vzdělávání a mezinárodní styky v oblasti argilologie. ČSVVJ je pokračováním "Československé národní jílové skupiny", která byla založena v Československu v roce Číslo 44 Listopad 2010 SLOVO EDITORA Vážení přátelé, v novém čísle Informátora bych Vás chtěl seznámit s několika novinkami, které projednal výbor Společnosti na jedné ze svých schůzek. Za prvé se jedná o novou podobu sdělení ze seminářů, kdy budeme preferovat příspěvky v podobě odborných článků (Informátor má ISBN, takže články lze vykazovat jako výsledek pro hodnocení vědecké výkonnosti). Pokyny pro autory jsou uvedeny dále. Pokud bude chtít výsledky autor publikovat v jiném periodiku, pak bude uveřejněn pouze rozšířený či běžný abstrakt. To je, myslím, dobrá zpráva, ale je tu i ta ne zcela dobrá, že jsme nuceni zvýšit pravidelný členský příspěvek (viz dále). Za druhé může být pro členy zajímavá i vlastní prezentace na našich webových stránkách (každý člen zde může mít svou vizitku) a pro firmy prezentace v podobě reklamních bannerů. Výbor si vyhradil právo kontroly reklam. Cena pro zájemce z řad členů je 1.000,- Kč (pokud mají zaplacen členský poplatek pak zdarma), pro ostatní zájemce ,- Kč. Dalšími projednávanými aktivitami je pořádání několika konferencí. V září roku 2011 připravujeme v Bystřici nad Pernštejnem 19. jílovou konferenci v ČR, která bude svým obsahem přitažlivá především pro pracovníky z praxe, neboť se bude věnovat aplikacím v jílové petrologii. V září 2012 budeme organizovat v Průhonicích nedaleko Prahy 6. Středoevropskou konferenci (MECC12). Výbor jednal konečně i o možnosti uspořádat EUROCLAY konferenci v roce 2015 v ČR. Tolik v kostce o novinkách z výboru. Vzhledem k bohaté náplni tohoto čísla nechám již prostor odborným informacím. Na závěr ještě upozorňuji na uzávěrku jarního čísla, která je Všechna dosud vyšlá čísla a další informace jsou na webových stránkách Společnosti na adrese: Na závěr slova editora přeji všem našim čtenářům příjemné prožití svátků vánočních a pohodový rok Jako editor jsem přesídlil na staronové pracoviště, nové kontakty zde: Martin Šťastný, editor Rozvojová Praha 6 tel.: OBSAHY PŘEDNÁŠEK JARNÍHO SEMINÁŘE Na semináři České společnosti pro výzkum a využití jílů, který se konal dne v posluchárně Ústavu struktury a mechaniky hornin AV ČR, v.v.i., V Holešovičkách 41, Praha 8, byly předneseny dvě přednášky, jejichž znění dnes přinášíme v podobě odborných článků. SORPCE ORGANICKÝCH MOLEKUL NA POVRCHU MONTMORILLONITU; MOLEKULÁRNÍ MODELOVÁNÍ A EXPERIMENT Marek Veteška Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Ke Karlovu 3, Praha 2 Abstrakt Vlastnosti materiálů souvisí s jejich strukturou, proto je znalost jejich struktury základem pro vývoj nových 1

2 materiálů s požadovanými vlastnostmi. Strukturní analýza se obvykle provádí s využitím rentgenové difrakce. Při zkoumání povrchů materiálů obvykle žádná difrakční data k dispozici nejsou. V tomto případě je vhodné použít výpočetní metody. Jedná se především o kvantověmechanické ab-initio výpočty, semi-empirické metody výpočtu molekulárních orbitalů, čistě geometrické přístupy, molekulární simulace aj. Při velkém počtu atomů ve zkoumaných strukturách jsou velmi vhodnou volbou postupy molekulárních simulací, založené na popisu struktury pomocí parametrů empirických silových polí (tj. molekulární mechanika a klasická molekulární dynamika). Klíčová slova: molekulární simulace, strukturní analýza, montmorillonit, sorpce. 1. Úvod do metodiky molekulárních simulací Molekulární simulace umožňují charakterizovat strukturu a předpovídat vlastnosti jak pro jednotlivé molekuly, tak i molekulární systémy nebo i složité biologické systémy. Lze je využít pro širokou škálu různých typů anorganických nebo organických materiálů, může se jednat o krystalické i nekrystalické látky. Molekulární simulace používají k popisu atomů ryze mechanický přístup, v němž jsou atomy molekul určeny jen svými středy a několika parametry, přesné elektronové obaly tedy nejsou uvažovány, vazby jsou zjednodušeně tvořeny pružinami. Matematicky je tento popis obsažen v tzv. empirickém silovém poli, na jehož základě se spočte potenciální energie systému (relativně k jiným zkoumaným konformacím dané molekuly nebo systému). Velkou výhodou tohoto přístupu je jeho rychlost. Silové pole obsahuje jak atomární parametry, tak parametry pro popis interakcí (v závislosti na volbě silového pole jde o jednoduché, nebo komplexnější analytické výrazy pro výpočet energie, z těch základních např. harmonický či Lennard-Jonesův potenciál). Počítají se vazební složky energie pro kovalentní vazbu (konkrétně např. vazební, úhlový, torzní, inverzní člen a cross-terms členy) a nevazební složky energie (van der Waalsovy a Coulombické interakce, popř. energie vodíkových můstků). Je vhodné a v případě periodických okrajových podmínek dokonce nezbytné omezit dosah nevazebných interakcí. Nejjednodušší technika ukončí interakci v určené vzdálenosti, případně lze zvolit spline funkci, která utlumí interakci ve zvoleném intervalu. V periodických systémech je vhodné použít mnohem přesnější Ewaldovu sumaci, v níž se výpočet nekonečné sumy interakcí výhodně rozdělí na výpočet v přímém a reciprokém prostoru. Silových polí existuje velké množství jak obecných, tak i speciálních. Liší se různými parametry pro výpočet potenciální energie. Parametrizovaná silová pole mají parametry odvozené z fitování experimentálních dat (CVFF, Amber, Dreiding), novější generace i z kvantově mechanických výpočtů (CFF, PCFF, Compass). Další typ silových polí jsou silová pole s parametry dle pravidel. Tato silová pole obsahují jen základní veličiny pro každý obsažený atom a převod do silových parametrů se provádí dle množiny pravidel (univerzální silové pole UFF). Velikosti nábojů jsou buď součástí silového pole, nebo se počítají pomocí rovnovážných metod, např. QEq charge equilibration. Molekulární mechanika neboli minimalizace je postup optimalizující vazební geometrii struktury či krystalového uspořádání do konfigurace s minimální energií. Existují různě rychlé, stabilní a přesné metody určení směru k minimu a hledání minima podél něj. Konformační analýza porovnává optimalizované konformace z hlediska jejich energie a shody s experimentem velké modely jsou často z rozdílných výchozích konformací optimalizovány do několika různých konformací, které jsou velmi pravděpodobné. Podle potřeby lze modely porovnat např. podle sublimační energie energie bez deformací, kdy je každá molekula počítána jako pevná jednotka a jedná se tak pouze o nevazební energii počítanou jako interakci atomů mezi různými molekulami, nebo podle velikosti interakce jen mezi hosty, kdy jsou ostatní možné přítomné molekuly v systému (např. voda, kationty kompenzující náboj atd.) zafixovány. Molekulární dynamika spočívá v řešení klasické pohybové rovnice a lze tak sledovat vývoj systému v čase a zavést do systému termodynamické parametry (teplota, tlak). Existují také speciální typy dynamických simulací pro specifické účely zde prezentovaná quench dynamika byla použita k překonání energetických bariér a takto ke vzniku vhodné množiny počátečních modelů pro následnou minimalizaci. Strukturní analýzu s pomocí molekulárních simulací lze zobecnit v následující postup: 1. určení parametrů modelů z experimentů (např. mezirovinná vzdálenost, náboje, množství vody), 2. stavba sady iniciálních modelů, 3. nastavení parametrů výpočtů minimalizace (např. určení fixních parametrů modelu a zvolení pevných jednotek ve struktuře), 4. nastavení molekulární dynamiky (např. volba typu dynamiky), 5. interpretace výsledků (tj. porovnání modelů z hlediska energie a porovnání změřeného a vypočtených difraktogramů). 2. Výsledky a diskuse 2.1. Modelování povrchu montmorillonitu Metody molekulárních simulací byly použity na výpočet struktury několika různých adsorbovaných organických molekul na povrch montmorillonitu. Primárně bylo zvoleno silové pole Burchartuniversal (speciální pole pro zeolity, přičemž nedefinované typy atomů mají parametry převzaté z Univerzálního silového pole), nebo v případě nutnosti Univerzální silové pole. Výpočet byl proveden s periodickými okrajovými podmínkami (nekonečný krystal) jak ve 2D, tak vhodněji ve 3D stavbě se slabem (rychlejší Ewaldova sumace). Montmorillonitová vrstva byla zafixována a náboje byly počítány metodou QEq Sorpce anilinu a fenolu na povrch nemodifikovaného MMT a MMT interkalovaného TMA (tetrametylammoniový kationt) Anilin a fenol jsou vodní polutanty. Záměr byl prozkoumat možnosti MMT jako sorbentu těchto polutantů. Byl použit MMT typu Wyoming (Al 3,4 Mg 0,6 ) (Si 7,8 Al 0,2 ) O 20 (OH) 4, při modelování měla buňka velikost 25,9 Å x 35,92 Å (x 200 Å slab) a náboj vrstvy na jednotkovou buňku byl 16 e. Náboj 2

3 vrstvy kompenzovalo 8 kationtů Na, nebo TMA nad vrstvou a vždy 8 kationtů Na pod vrstvou. Ze simulací možných uspořádání molekul vody byla vypočtena těsně nad MMT mírně koncentrovanější vrstva molekul vody, zatímco nad TMA-MMT vyšla distribuce vody homogenní. Při sorpci fenolu na přírodní MMT se jeví, že fenol pokud jde jen o jednotky molekul tvoří ostrůvky (Obr. 1), dále, že koncentrovanější vrstvička molekul vody je energeticky výhodná a vytlačuje fenoly od vrstvy MMT a dále, že s rostoucím počtem fenolů jsou sorbovány další nasycené vrstvy fenolů. Naopak při sorpci fenolu na TMA-MMT jsou fenoly blízko montmorillonitové vrstvě a je energeticky výhodné vodu nevytlačit. V případě sorpce anilinu na přírodní MMT molekuly anilinu vykazují tendenci být blízko MMT povrchu (Obr. 2), přičemž vrstvička vody je pro toto uspořádání významně výhodná z důvodu možnosti propojení molekul anilinu a vrstvy vodíkovými vazbami prostřednictvím přítomných molekul vody. V případě sorpce anilinu na TMA-MMT anilin rovněž preferuje být blízko MMT vrstvy, ovšem TMA a zbytkové molekuly vody, pro které je energeticky výhodné být u MMT vrstvy a nejsou tedy vytlačeny, sorpci brání. Obr. 1 Čtyři molekuly fenolu nad povrchem MMT. Obr. 2 Čtyři molekuly anilinu nad povrchem MMT. 3

4 Sorpce tenzidů (cetylpyridiniový kationt (CP) a cetyltrimethylammoniový kationt (CTA)) na MMT Simulace ukázaly, že CTA zaplní celý prostor nad montmorillonitovou vrstvou a interakce mezi CTA a MMT je relativně silná (proti CP), ovšem CTA se absorboval jen v množství odpovídající iontové výměně. Oproti tomu CP vytváří monovrstvu, v níž se může přeuspořádávat snadněji než CTA a také se CP sorbuje ve větším množství než CTA Interkalace rhodaminu B do mezivrství a na povrch MMT Rhodamin B vykazuje optické vlastnosti, takže výzkum tohoto interkalantu byl motivován vývojem materiálu pro optoelektronická zařízení. Podařilo se pomocí molekulárních simulací ukázat, že optické vlastnosti na uspořádání mezivrství téměř nezávisí, ale jsou silně ovlivněny uspořádáním na povrchu. Dimery jsou energeticky preferovány, ovšem vznik tzv. H-dimeru je pro optické vlastnosti nežádoucí, neboť zhasíná fotoluminiscenci. Povrch materiálů, který je opticky aktivní, tak tvoří jen jedna vrstva monomerů, popř. J-dimerů. A jelikož při nízké koncentraci interkalačního roztoku vznikají monomery, zatímco při vysoké dimery, pro vytvoření opticky aktivního materiálu je vhodná nízká koncentrace roztoků Interkalace metylenové modře do mezivrství a na povrch MMT Jako v předchozím případě se jedná o látku se zajímavými optickými vlastnostmi. Simulace prokázaly, že uspořádání na povrchu a v mezivrství je silně ovlivňováno typem použitého montmorillonitu, především nábojem vrstvy. Opticky velmi aktivní se ukázal redukovaný modifikovaný MMT, tedy případ, kdy dochází k sorpci jen velmi nízkého množství molekul metylenové modři Závěr Kombinací molekulárních simulací a experimentů lze získat detailní popis uspořádání různých typů organických molekul na povrchu MMT. Strukturní analýza pomocí těchto metod je užitečná jak pro teoretický popis struktur MMT, tak pro zkoumání různých praktických aplikací použití MMT (sorpce polutantů a čištění vod, optické senzory). Výzkum sorpce metylenové modře na MMT byl završen podáním patentu s následným praktickým využitím (patentovaná technologie jako detektor vlnových délek). Poděkování Poděkování patří mým kolegům, kteří se podíleli na výše uvedených výzkumech. Práce vznikly za finanční podpory projektů MŠMT a GAČR: 205/08/ Literatura Comba P., Hambley T. W. (1995): Molecular Modeling of Inorganic Compounds. VCH, Weinheim, Cerius 2 User Guide, Forcefield Based Simulations. Molecular Simulations Inc., San Diego, CHARAKTERIZACE A CHEMICKÁ MODIFIKACE HALLOYSITŮ Vlasta Vašutová Ústav anorganické chemie AV ČR v.v.i., Husinec Řež 1001, Řež Abstrakt Vznik halloysitů je spojen se zvětráváním magmatických hornin nebo s hydrotermální přeměnou vulkanických hornin často na kontaktu s vápenci. Halloysit patří do skupiny kaolinitů, od kterého se liší obsahem vody v mezivrství. Vyskytuje se ve dvou základních formách, hydratované 10 Å a dehydratované 7 Å. Obecně platí, že hydratovaný halloysit vzniká ve větších hloubkách než halloysit dehydratovaný. Získané vzorky halloysitů ze světových ložisek byly charakterizovány pomocí rtg práškové difrakce, infračervené spektroskopie, chemické analýzy a vysokorozlišovací transmisní elektronové mikroskopie. Z analýz vyplývá, že hydratované halloysity jsou chemicky čistší než halloysity dehydratované. Typickými příměsmi ve vzorcích jsou kaolinit, křemen, cristobalit, alunit, gibbsit, v jednom případě i draselná slída. U všech vzorků byla také stanovena kationtová výměnná kapacita (CEC), která byla provedena metodou interakce vzorku s komplexem Ag-thiomočovina (AgTU). Koncentrace stříbra v roztoku před a po interakci byly stanoveny pomocí atomové absorpční spektrometrie (AAS). Hodnoty CEC závisí výrazně na poměru pevné a kapalné fáze při reakci. Pro halloysity je proto třeba pracovat s poměrem P:K alespoň 1:20. Pro účely experimentů s porfyrinem byly nakonec vybrány dva čisté hydratované halloysity s nejvyšší CEC, které se liší pouze šířkou tabulárních částic (trubiček). Bylo zjištěno, že porfyrin sice nevstupuje do mezivrství halloysitu, ale průkazně, na základě výsledků difúzně reflexní a fluorescenční emisní spektroskopie, se váže na jeho vnějším povrchu (není přitom rozlišeno, zda se jedná o vnitřní nebo vnější stranu halloysitové trubičky). Halloysit tak může být vhodným nosičem porfyrinu, neboť po interakci se slunečním zářením jeho fotoaktivní molekuly produkují singletový kyslík, který rozkládá jiné organické sloučeniny. Klíčová slova: halloysit, XRD, HT-XRD, FT - IR, HRTEM, CEC, AAS, UV-vis absorpční a fluorescenční emisní spektroskopie, porfyrin. 1. Úvod Svět nanotechnologie velikostně spadá pod 100 nm. První zmínky o nanočásticích pocházejí z pátého nebo čtvrtého století před n. l. z Egypta a Číny. Tehdy bylo objeveno rozpustné zlato, které bylo používáno jak pro estetické (výroba rubínového skla, barvení keramiky), tak pro léčivé účely (srdeční a sexuální problémy, úplavice, epilepsie, nádory a pro diagnózu syfilis). V současné době se nanočástice týkají všech věcí kolem nás. Jedním z příkladů jsou tubulární nanočástice halloysitu. Jejich hlavní využití patří do keramického průmyslu a výroby porcelánu, stejně jako u kaolinitu. Dále se využívají jako příměs v pigmentech, těsnících materiálech, mazivech, pesticidech, domácích prostředcích, potravinách a kosmetických produktech. Zvláštností halloysitu je ale především tubulární morfologie jeho nanočástic, která se stala v posledním století častým předmětem vědeckých výzkumů. Trubičky se totiž zdají být vhodnými matricemi pro fixaci různých organických molekul. Na významu tedy nabývá použití halloysitů jako součástí polymerů nebo jako nosičů některých 4

5 fotoaktivních molekul. Příkladem takovéto organické molekuly je porfyrin. Z hlediska klasifikace a struktury je halloysit dioktaedrický vrstevný silikát, patřící do skupiny kaolinitu, od kterého se liší obsahem vody v mezivrství. Halloysit představuje základní 2 formy, které byly zároveň schváleny klasifikační komisí AIPEA. Hydratovaná forma se označuje jako halloysit 10 Å (ve starších literaturách ho lze nalézt pod označením endellit ) a dehydratovaná forma se nazývá halloysit 7 Å (dříve jako metahalloysit ). Halloysity mohou mít planární, sféroidální nebo tubulární morfologii. Mezivrství obsahuje asi 12,3 hm.% vody a dále může obsahovat vyměnitelné kationy, pokud proběhla substituce Al 3+ za Si 4+. Co se týká syntetických halloysitů, bylo již provedeno mnoho pokusů o syntézu minerálů skupiny kaolinitu, a to krystalizací z alumosilikátových gelů nebo zředěných roztoků a nebo též alterací geologických materiálů (např. vulkanická skla, živce, jiné jíly atd.). Většina z nich byla ale neúspěšná. Pokud se při syntéze získá minerál ze skupiny kaolinitu, jedná se spíše o kaolinit než o halloysit. Hlavní problém syntézy halloysitu pravděpodobně spočívá ve volbě vhodné teploty. Vznik halloysitu je pravděpodobnější za nižších teplot (méně než 150 C). A pokud halloysit vznikne, tak zpravidla jen ve velmi malém množství. Některé syntézy popsal Joussein a kol. (2005). Hlavní náplní práce bylo získat halloysity z různých světových nalezišť, charakterizovat je mineralogicky, chemicky a morfologicky, popsat jejich hydratační a dehydratační vlastnosti, stanovit jejich kationtovou výměnnou kapacitu a na závěr experimentálně odzkoušet interakce mezi vybranými halloysity a porfyrinem. Celkem bylo získáno 11 přírodních vzorků (Turecko, Čína, Nový Zéland, USA, Slovensko) a jeden komerční vzorek od firmy Sigma Aldrich. Geneticky se přírodní ložiska příliš neliší. Jedná se převážně o zvětrávání nebo hydrotermální přeměny ryolitů a jejich tufů a andezitů, které leží na kontaktu s vápenci. 2. Metodika Mezi metody, které byly použity pro identifikaci halloysitů, patří prášková rentgenová a vysokoteplotní difrakce, infračervená spektroskopie, vysokorozlišovací elektronová mikroskopie, atomová absorpční spektrometrie a UV-vis absorpční a fluorescenční emisní spektroskopie. 3. Výsledky a diskuse 3.1. Prášková rentgenová difrakce (XRD) V práškové podobě byly měřeny nejdříve neorientované a pak orientované preparáty. Oba typy záznamů se u některých vzorků nepatrně lišily, což je způsobeno přípravou vzorku sedimentací ze suspenze. U studovaných vzorků bylo zjištěno, že tři z nich představují formu dehydratovanou (7 Å) a devět z nich formu hydratovanou (10 Å). Vzorky s halloysitem 7 Å obsahují navíc poměrně velké množství příměsí (např. kaolinit, křemen, cristobalit, alunit). Hydratované vzorky byly převážně čisté, nanejvýš s malým obsahem křemene. Velmi zásadní rozdíl zaznamenal komerční vzorek halloysitu od Sigma Aldrich, neboť přestože se tento vzorek prodává a uvádí jako čistý halloysit, obsah halloysitu zde představuje pouze minoritní složku. Obtížnější identifikace minerálních fází nastala u dehydratovaných forem halloysitů, neboť se u nich překrývá bazální reflexe d 001 halloysitu 7 Å s bazální reflexí kaolinitu. K tomu byl použit jednoduchý test na odlišení obou minerálů, který je založen na interakci dehydratovaného halloysitu s formamidem (Frost et al., 2001b; Churchman et al., 1984; Joussein et al., 2005 a Joussein et al., 2007). Při této interakci vznikne organo-jílový komplex, jehož d 001 difrakční linie se posune na 10,2 Å (obr. 1). Pokud na 7 Å zůstane patrná reflexe, jedná se o reflexi kaolinitu. Dále jsme u těchto vzorků vypočetli zastoupení halloysitu 7 Å a kaolinitu, což bylo popsáno Churchmanem et al. (1984) a Jousseinem et al. (2005). Jedná se o relativní kvantifikaci obsahu halloysitu a kaolinitu ve směsi podle poměru I 10 /I 7 +I 10, kde I 7 a I 10 jsou intenzity reflexí na 7 Å a 10 Å u vzorků interkalovaných formamidem. Obr. 1 Výřez difrakčního záznamu vzorků hall 1, hall 2 a hall 12 - srovnání orientovaných neinterkalovaných preparátů (dolní křivka) a preparátů interkalovaných formamidem (horní křivka). Velká písmena označují jednotlivé fáze: K kaolinit, H7 halloysit 7 Å, H7-f halloysit 7 Å interkalovaný formamidem Infračervená spektroskopie s Fourierovou transformací (FT-IR) Jak bylo výše zmíněno, strukturně se halloysit velmi podobá kaolinitu. Přesto lze v infračervených spektrech najít několik odlišností, které by mohly přispět k prokázání příměsi kaolinitu ve vzorku. Infračervená spektra všech halloysitů byla porovnána se spektry dvou kaolinitů (KGa-1b, KGa- 2). Největší rozdíl představují dva absorpční pásy: 3600 cm -1 a 938 cm -1 (Obr. 2). Pás na 3600 cm -1 charakterizuje vibraci mezivrstevní vody a je přítomen jen u hydratovaných halloysitů a 5

6 dehydratované halloysity, kdežto kaolinity ho shodně neobsahují (Obr. 2) Pás 938 cm -1 přísluší pouze kaolinitu - odpovídá totiž vibraci povrchových OH skupin kaolinitu. Je dobře zřetelný u referenčních vzorků KGa-1b a KGa-2, zatímco čisté halloysity tento pás nemají (Obr. 2). Obr. 2 Zobrazení charakteristických vibračních pásů v IČ spektrech halloysitů Chemická analýza Po porovnání výsledků chemické analýzy s výsledky práškové rentgenové difrakce vyplynulo, že se poměrně shodují. Zvýšené hodnoty K 2 O odpovídají obsahu alunitu nebo illitu. Přesně jasný ale není obsah SO 3, který odpovídá nejspíš obsahu alunitu. U ostatních vzorků je možné, že se jedná o amorfní fázi obsahující síru, kterou nelze identifikovat pomocí XRD. Obsahy Fe jsou celkově velmi malé a nelze rozlišit, jedná-li se o strukturní Fe, nebo malou příměs ve formě volných oxidů. Ze zastoupení SiO 2, Al 2 O 3, Fe 2 O 3 byl spočítán poměr tetraedrických (Si 4+ ) a oktaedrických (Al 3+, Fe 3+ ) kationtů, který by měl být v ideálním případě bez příměsí roven 1. V tomto případě je opět dobré porovnat poměry s výsledky XRD. Na základě srovnání lze odchylky v poměru Al(+Fe):Si vysvětlit buď příměsmi nebo nestechiometrií ve struktuře. Příměsi vychylují hodnotu oběma směry (křemen a cristobalit zvyšují obsah Si, kdežto gibbsit a alunit obsah Al). Náhodně se tak může stát, že je hodnota blízká 1, pokud se vliv Si a Al minerálů kompenzuje. Stechiometrii vzorce je tak možno odvodit jen pro čisté halloysity Vysokorozlišovací transmisní elektronová mikroskopie (HRTEM) Podle literatury (Joussein et al., 2005) jsou pro interakci s organickými molekulami nejvhodnější tubulární formy halloysitu. Při výzkumu transmisním elektronovým mikroskopem bylo zjištěno, že tubulární forma se vyskytuje u všech vzorků halloysitů (Obr. 3). Rentgenovou difrakcí byla zjištěna přítomnost kaolinitu, ale na elektronovém mikroskopu nebyly hexagonální destičky kaolinitu patrné. Je ale znám také tubulární kaolinit. Pomocí počítačového programu ImageTool na zpracování obrazu byly proměřeny jednotlivé částice a stanovena distribuce jejich délek a šířek. Obr. 3 Snímky z vysokorozlišovacího transmisního elektronového mikroskopu (HRTEM); a) Slovensko, b) Nový Zéland, c) Čína, d) Utah, USA, e) Čína, f) Čína, g) Turecko, h) Čína, i) Čína, j) Turecko, k) Turecko, l) Sigma Aldrich. 6

7 3. 5. Dehydratační vlastnosti Podle literatury (Churchman a Carr, 1972, 1975; Churchman et al., 1984; Kautz a Ryan, 2003; Joussein et al., 2005) je dehydratace halloysitu nevratný proces. Stupeň hydratace ovlivňuje zejména vlhkost a teplota. Důležitou roli při dehydrataci hraje vysokoteplotní prášková rentgenová difrakce (HT-XRD). Všechny hydratované halloysity byly v teplotní komůrce rentgenu zahřívány od 25 do 120 C. Z výsledků vyplývá, že dehydratace probíhá skokově v jednom stupni bez meziproduktů nejpozději do 50 C při relativní vlhkosti 20 %. Teploty dehydratace se však pro různé halloysity lišily. Protože se při interakci s organickými molekulami vychází z hydratovaných forem halloysitu, je lepší použít vzorek teplotně nejstabilnější. Kromě zkoumání teplot dehydratace může HT-XRD sloužit také jako diagnostická metoda, neboť se d 001 halloysitu 10 Å může překrývat s d 001 slídy. Pokud dojde k úplné dehydrataci na halloysit 7 Å, objeví se difrakční linie d 001 slídy (pravděpodobně illitu) okolo 10 Å (Obr. 4). Obr. 4 Zvýrazněná bazální reflexe d 001 K-slídy po dehydrataci vzorku hall 10. Křivka dole představuje záznam vzorku při teplotě 25 C, křivka nahoře představuje tentýž vzorek zahřátý na 120 C. Velká písmena popisují jednotlivé fáze: I K-slída, pravděpodobně illit, H7 halloysit 7 Ǻ, H10 halloysit 10 Ǻ, K kaolinit, H částečně dehydratovaný halloysit Kationtová výměnná kapacita (CEC) Pro stanovení hodnot CEC byla použita metoda stříbra-thiomočoviny (AgTU roztok thiomočoviny, dusičnanu stříbrného a octanu amonného), která byla popsána Dohrmannem (2006). Podle autora je pro jíly s velmi nízkou odhadovanou hodnotou CEC (kaolinity) vhodné navážit množství do 10 g na 50 ml zásobního roztoku AgTU. Naopak při vysoké CEC (cca 100 meq/100 g), což je typické pro smektity, postačuje 0,5 g a méně. Protože nikde není uveden přesnější údaj, bylo potřeba nejdříve zjistit vliv navážky a poměru pevné a kapalné fáze (P:K) na výslednou hodnotu kationtové výměnné kapacity halloysitů. Celkové hodnoty CEC byly přepočteny z hodnot koncentrace Ag-iontů, stanovené pomocí atomové absorpční spektrometrie. Bylo zjištěno, že se výsledné hodnoty CEC snižují se zvětšujícím se množstvím navážky, tj. snižujícím se poměrem P:K. Bylo tedy možno předpokládat, že u větších navážek nedošlo k úplné výměně stříbra u všech částic. Při větší hustotě suspenze nemusel být dostupný veškerý povrch nebo by výměna zbylého stříbra při jeho již výrazně nižší koncentraci vyžadovala podstatně delší čas. Ze zkušebních testů lze ale doporučit, aby byl v praxi pro tyto materiály používán poměr alespoň 1:20 (P:K) a byly srovnávány pouze výsledky dosažené při stejném poměru P:K Interakce s porfyrinem (TMPyP) Porfyrin je organická sloučenina s fotoaktivními vlastnostmi. Interakce se slunečním zářením způsobuje, že porfyrin produkuje singletový kyslík, který oxiduje a rozkládá jiné organické sloučeniny. Samotný porfyrin není schopen trvale setrvat v prostředí, neboť může být velmi rychle vyloužen. Z tohoto důvodu se řada vědeckých výzkumů snaží o to, aby se našel vhodný nosič, který by na sebe navázal molekuly porfyrinu a zajistil tak jeho udržení v daném prostředí. Jednou z možností, jak toho docílit je, aby se porfyrin navázal na povrch jílových minerálů. Tento proces je doprovázen barevnou změnou jílových minerálů po interakci s porfyrinem a zároveň změny spektrální (difúzně reflexní a fluorescenční emisní spektra). Pokud dojde k barevné změně halloysitů, znamená to, že porfyrin nevstupuje do mezivrství, ale váže se na volné vazby, které vznikají díky defektům v povrchové struktuře a způsobují tak slabý negativní náboj halloysitu. Pomocí difúzně reflexních UV-vis absorpčních spekter (DRS) je možné alespoň částečně popsat, k čemu při interakci dochází. Toto spektrum porfyrinu zahrnuje dva typy pásů: jeden Soretův pás a 4 Q-pásy. Soretův pás porfyrinu se vyskytuje na 420 nm a má důležitý diagnostický význam. Q-pásy se vyskytují v oblasti nm. Spektrální změna při interakci porfyrinu s halloysitem spočívá právě v posunu Soretova pásu na hodnotu kolem 470 nm (Obr. 5), což. Obr. 5 UV-vis absorpční spektrum porfyrinu v roztoku (TMPyP/H 2 O) a po sorpci na dva vzorky halloysitů (vz3~hall 3, vz11~hall 11). 7

8 dokazuje, že se porfyrin navázal na povrch halloysitových trubiček. Aby se prokázalo, že tomu tak opravdu je, byly vzorky změřeny pomocí XRD. Nedošlo k posunu d 001 do vyšších mezirovinných vzdáleností, spíše naopak, což je způsobeno dehydratací halloysitu, nikoli interakcí s porfyrinemvýznamnou změnu zaznamenaly při interakci halloysitu s porfyrinem také fluorescenční emisní spektra (Obr. 6), která zobrazují průběh křivek čistého porfyrinu v roztoku a obou vzorků halloysitů po interakci s porfyrinem. Tyto změny nelze přesně interpretovat, neboť jsou více spojeny se strukturou povrchu a morfologií halloysitových trubiček. Přesněji by se mohly získat, kdyby se vědělo, jaký je rozdíl mezi strukturou vnější a vnitřní plochy trubiček a jaký je poměr defektních struktur na obou těchto stranách vnějšího povrchu, zda-li je vázán uvnitř i vně halloysitové trubičky. Obr. 6 Normalizovaná fluorescenční spektra vodného roztoku TMPyP a halloysitů s porfyrinem v práškové formě (vz. 3 a 11). K excitaci roztoku došlo při 518 nm a práškového materiálu při 558 nm. 5. Závěr Přírodní vzorky halloysitů pocházejí ze světových lokalit na Slovensku, Novém Zélandu, v Turecku, Číně a Utahu (USA). Jeden komerčně dostupný vzorek halloysitu byl zakoupen u firmy Sigma Aldrich. Z celkového počtu 12 vzorků představují tři halloysity dehydratovanou formu a devět halloysitů formu hydratovanou. Hydratovaná forma snadno dehydratuje, což ovlivňuje především okolní relativní vlhkost a teplota. Bylo zjištěno, že při snížené vlhkosti (ca 20 %) halloysity zcela dehydratují v teplotním intervalu ºC v závislosti na tloušťce jílové vrstvy. Tento proces je nevratný, do mezivrství ale mohou vstoupit některé organické molekuly, např. formamid. Při specifických podmínkách (relativně nízké teploty a velmi tenké vrstvy) byla částečná rehydratace pozorována, tento jev však vyžaduje podrobnější výzkum. Hydratované vzorky halloysitů (10 Ǻ) byly většinou velmi čisté, dehydratované vzorky halloysitů obsahovaly obvykle příměsi. Doprovodnými fázemi byly hlavně kaolinit, křemen, cristobalit, alunit a gibbsit, v jednom případě draselná slída. U dehydratovaných halloysitů se překrývá bazální 001 reflexe s bazální reflexí kaolinitu, která se pohybuje kolem 7 Å. Oba minerály byly od sebe odlišeny interakcí halloysitu formamidem, který zvýšil jeho mezirovinnou vzdálenost. Z poměru intenzit bazálních difrakčních linií byl pak stanoven relativní podíl halloysitu a kaolinitu. Relativní podíl halloysitu se u všech vzorků pohyboval nad 80 % s výjimkou vzorku dodaného firmou Sigma-Aldrich zde byl halloysit 7 Å výrazně minoritní fází (ca 20 %), přestože byl produkt označen jako halloysit. Morfologie byla pro všechny halloysity shodná. Jedná se o tubulární halloysity, délka a šířka trubiček však byla velmi variabilní. Pro první pokusy s porfyrinovým barvivem byly vybrány dva čisté halloysity shodně tvořené krátkými trubičkami, avšak rozdílného průměru vzorek z lokality Turplu, Turecko (hall 11) a Zunyi, Čína (hall 3). Rovněž kationtová výměnná kapacita byla u těchto vzorků nejvyšší mezi studovanými čistými halloysity (6,7, resp. 6,5 meq/100 g). Při stanovení kationtové výměnné kapacity metodou AgTU (interakce s Ag-thiomočovinou) byl nejprve optimalizován pracovní postup. Bylo zjištěno, že výsledek je výrazně ovlivněn poměrem P:K (pevná fáze: kapalná fáze), který by v případě halloysitů měl být alespoň 1:20, aby došlo k výměně na celém povrchu částic. Vybrané vzorky č. 3 a 11 se při interakci s porfyrinem chovají stejně i přes drobné rozdíly především ve velikosti částic. Bylo zjištěno, že porfyrin nevstupuje do mezivrství (na rozdíl např. od formamidu), mezivrstevní vzdálenost se naopak zmenšuje v důsledku částečné dehydratace při vysychání vzorku. Na základě vysoké citlivosti difúzně reflexní a fluorescenční emisní spektroskopie bylo ale jednoznačně prokázáno, že molekuly porfyrinu se navázaly na vnější povrch halloysitu (který zahrnuje jak vnitřní tak vnější stranu trubičky) - tím došlo k barevným změnám vzorků a zároveň ke změnám spektrálním. Přesnější informace o umístění molekul porfyrinu by mohl přinést až další výzkum. V jeho rámci by bylo třeba zmapovat defektní místa povrchu, kde je v případě halloysitu největší hustota negativního náboje a to především s ohledem na poměr defektů uvnitř i vně halloysitové trubičky. Vstup porfyrinu do strukturního mezivrství halloysitu byl ale experimentálně vyloučen. Poděkování Zde bych ráda poděkovala všem lidem, kteří mi pomohli se zpracováním mé diplomové práce. Nejvíce děkuji svému školiteli Davidu Hradilovi za velmi zajímavé téma a že byl pro mě velmi cenným průvodcem v průběhu celého výzkumu; Petru Bezdičkovi, Silvii Švarcové a Kamilovi Langovi za intenzivní pomoc ve vědecké činnosti; Michaele Hruškové, Peterovi Komadelovi a Peterovi Uhlíkovi za cenné informace; Miroslavovi Pospíšilovi za zpracování oponentského posudku. 6. Literatura Dohrmann R. (2006): Cation exchange capacity methodology II: A modified silver thiourea method. Applied Clay Science, 34, Frost R.L., Kristóf J., Horvath E., Kloprogge J.T. (2001b): Separation of adsorbed formamide and intercalated formamide using controlled 8

9 rate thermal analysis methodology. Langmuir, 17, Churchman G.J., Carr R.M. (1972): Stability fields of hydration states of a halloysite. American Mineralogist, 57, Churchman G.J., Carr R.M. (1975): The definition and nomenclature of halloysites. Clays and Clay Minerals, 23, Churchman G.J., Whitton J.S., Claridge G.G.C., Theng B.K.G. (1984): Intercalation method using formamide for differentiating halloysite from kaolinite. Clays and Clay Minerals, 32, Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. (2005): Halloysite clay minerals a review. Clay Minerále, 40, Joussein E., Petit S., Delvaux B. (2007): Behavior of halloysite clay under formamide treatment. Clay Minerals, 35, Kautz C.Q., Ryan P.C. (2003): The 10 Å to 7 Å halloysite transition in a tropical soil sequence, Costa Rica. Clays and Clay Minerals, 51, PODZIMNÍ SEMINÁŘ Česká společnost pro výzkum a využití jílů pořádá ve čtvrtek dne v 10,30 hod. v posluchárně Ústavu struktury a mechaniky hornin AV ČR, v.v.i., V Holešovičkách 41, Praha 8 odborný seminář. Program semináře: Ing. Jaromír Dlouhý (Západočeská univerzita v Plzni, Fakulta strojní, katedra materiálů): Interkalace polárních materiálů a škrobů do struktury montmorillonitu Ing. Jiří Brus, Ph. D. (Ústav makromolekulární chemie, Akademie věd České republiky v.v.i., Společná laboratoř NMR pevné fáze): Strukturní charakterizace amorfních aluminosilikátů: role vody a ss-nmr TRANSMISE ODBORNÉ LITERATURY (XXVI) Dnešní transmise upozorňuje české čtenáře Informátora ČSVVJ na inspirativní číslo časopisu Elements pojednávající o "kapalinách při metamorfóze hornin". Téma je v úzkém vztahu k argilologii, neboť jílové a jílovité horniny uvolňují velké objemy vody a CO 2 během metamorfních a hydrotermálních procesů za vzniku velkého počtu nových vrstevných silikátů. S nimi krystalizují v různých časových rozpětích další hydrosilikáty, bezvodé silikáty, karbonáty, oxidy a jiné minerály. Téma je soustředěno především na genetickou globální geologii a také na sedimentologii. Poslední článek pojednává o vlivu metamorfózy hornin na globální ekologii. Elements, An International Magazine of Mineralogy, Geochemistry, and Petrology, June 2010, Volume 6, Nr. 3, obsahuje sedm článků, v nichž redakční radou vybraní autoři citují dalších téměř 200 odborných prací souvisejících s tématem. "Kapaliny při metamorfóze hornin" je téma velmi rozsáhlé, takže z každého článku převedeme jenom krátký abstrakt, názvy kapitol (a to nejpodstatnější v nich), jež informují o rozsahu současných znalostí teoretických a o jejich praktickém významu. Upozorníme také na nejdůležitější obrázky. Před každým abstraktem představíme ještě autora či autory článku. Thompson A, B. (2010): Perspectives on metamorphic processes and fluids. - Elements, 6: Autor je profesorem petrologie na ETH (Eidgenössische Technische Hochschule) a na Univerzitě v Curychu, Švýcarsko. Specializuje se na fyzikální a chemický vývoj litosféry Země, zvláště na úlohu vodných kapalin při metamorfóze hornin, na působení magmatu při přenosu hmoty a tepla a na jejich úlohu při tektonických procesech. Abstrakt: Vodné kapaliny významně působí při procesech uvnitř Země. Podstatně urychlují přenos tepla a hmoty a snižují stabilitu horninových mas. Voda podporuje místní deformace a také tektonickou odezvu při pohybu zemských desek; voda rovněž znatelně snižuje tavicí teplotu silikátových hornin a snižuje viskozitu silikátových magmat. Vodné kapaliny umožňují transport velkého množství materiálu v roztoku. Otázky, jež potřebují odpovědi v budoucnu, jsou následující: Co určuje cesty kapalin uvnitř Země? Co určuje jejich množství a rychlost toku? Jak definovat chemické vlivy tekoucích kapalin na horniny a místních kapalin, s nimiž horniny reagují? A jak působí při mineralizaci a deformaci hornin? Názvy kapitol: Vývoj metamorfní petrologie. Rozmanitost metamorfních kapalin. Obsahy chemikálií v metamorfních kapalinách (těkavé složky a anionty, jako OH -, CO 3 2-, S 2-, SO 4 2-, NH 4 -, Cl - ; avšak hlavně H 2 O a z plynů CO 2 ; jak se mění rozpustnosti kovů a silikátů v přírodních kapalinách při P - T - X [tlak - teplota - složení] gradientech v horní části zemské kůry, kde se koncentrují vzácné prvky při tvorbě nerostných ložisek). Časová měřítka metamorfózy hornin a migrace kapalin. Témata budoucího výzkumu. Jamtveit B. (2010): Metamorphism: From patterns to processes. - Elements, 6: Autor pracuje v Centru pro fyziku a geologické procesy (CPGP) na Univerzitě v Oslo, Norsko. Abstrakt: Metamorfované horniny tvoří podstatnou část litosféry Země. Rozumět metamorfóze hornin je zásadní pro interpretaci geodynamických procesů velkých rozměrů a interakcí mezi geosférou, hydrosférou, atmosférou a biosférou. Je zdůrazněna kritická úloha kapalin a jejich vliv na rychlost a různé mechanismy metamorfních procesů. Typické příklady pozorované v širokém rozsahu měřítek pro metamorfované horniny nejsou pouze pasívními záznamy tektonických jevů. Odhalují také, že složitá vzájemnost chemických reakcí, transportu a deformačních procesů, jež existují při metamorfóze hornin, probíhá překvapivě daleko od rovnováhy. Názvy kapitol: Změna (zdůrazňuje se, že čas, jako důležitá proměnná veličina, nebyl náležitě uvažován ve většině literatury před rokem 1980; významné změny: v minerálních asociacích a kvantitativních poměrech minerálů, v mikrostruktuře hornin, ve fyzikálních vlastnostech hornin, např. v 9

10 hustotě, pórovitosti, pevnosti v tlaku a ohybu, ve způsobu deformace; pět barevných obrázků znázorňuje některé běžné změny). Příčiny a rychlosti procesů (jak probíhá hydratace a někdy karbonatizace během metamorfózy hornin za přítomnosti kapalin). Jamtveit B., Austrheim H. (2010): Metamorphism: The role of fluids. - Elements, 6: Oba autoři jsou z Centra pro fyziku a geologické procesy (CPGP) na Univerzitě v Oslo, Norsko. Abstrakt: Vývoj litosféry Země je podstatně ovlivněn metamorfními procesy. Metamorfóza hornin napadá chemické a mineralogické složení litosféry a také její fyzikální vlastnosti v rozměrech sahajících od nanometru až po tektonické desky. Výzkum metamorfovaných hornin během několika posledních desítek let ukázal, že kapaliny v horninách jsou tak významné v měnící se litosféře, jako voda v biosféře. Znaky metamorfovaných hornin svědčící o jejich geologické historii, jako jejich mikrostruktura, změny v látkovém složení a deformační znaky, odrážejí dynamiku interakcí mezi horninou a kapalinou. Migrace kapalin uvolněných během prográdních metamorfních procesů nebo spotřebovaných během retrográdní metamorfózy spojuje hlubinnou metamorfózu hornin s vývojem hydrosféry, atmosféry a biosféry. Názvy kapitol: Vyvíjející se litosféra. Metamorfní rychlostní míry (obecně použitelný rychlostní zákon pro metamorfní reakce lze vyjádřit rovnicí: R = k (T) G n A s, kde R představuje rychlost reakce, např. v molech m -3 s -1, další proměnná k(t) je kinetická rychlostní konstanta závislá na teplotě, G představuje nárůst rovnovážné podmínky [nebo chemické afinity], n je konstanta a A s je plocha měrného povrchu; R klesá s časem, neboť reakce nutí systém k rovnováze, čímž klesá reakční aktivita, atd.). Uvolňování kapalin (těkáním při prográdní metamorfóze hornin, cesty migrace). Spotřeba kapalin (jejich přínos při retrográdní metamorfóze hornin; serpentinizace forsteritu a příbuzných minerálů je pravděpodobně nejvýznamnější metamorfní hydratační proces, viz několik barevných obrázků; přírodní upevňování CO 2 v metakarbonátech). Otevřené a zavřené systémy. Budoucí perspektivy (poznání všech přírodních procesů, a tedy i metamorfních, je důležité pro budoucnost naší planety vzhledem k podstatným změnám v životním prostředí, jež člověk civilizačním vzepětím těžce ohrozil). Putnis A., John T. (2010): Replacement processes in the Earth's crust. - Elements, 6: Oba autoři pracují v mineralogickém ústavu Univerzity v Münsteru, Německo. Abstrakt: Rozebírá se zásadní otázka o metamorfóze hornin: "Jaký mechanismus přeměňuje určitou minerální asociaci na jinou při změnách fyzikálního a/nebo chemického prostředí?" Skutečnost, že vodné kapaliny působí ve velkém měřítku při změnách směřujících k nové rovnováze v horninách, byla prokázána výsledky v petrografických, mineralogických, mikrostrukturních a izotopických studiích. Reakce mezi kapalinou a minerály probíhá jako rozpouštění-vysrážení. Avšak přeměna jedné horniny na jinou vyžaduje průnikový transport reaktivní kapaliny celou horninou. Existence nebo vznik pórovitosti, vyvolané reakcí, jakož i prostorové a časové spojení rozpouštění s vysrážením může platit pro transport kapaliny a prvků horninami a také pro náhradu jedné minerální asociace jinými minerály. Názvy kapitol: Úvod (je citována literatura pojednávající o izochemické reakci kyanit sillimanit, kdy kyanit reaguje nejprve s křemenem a kapalinou obsahující ionty K + za vzniku muskovitu; muskovit naopak reaguje s kapalinou tak, že vzniká sillimanit a křemen; podobně byly v literatuře vysvětleny mnohem komplikovanější reakce transportem kapaliny a v ní rozpuštěné hmoty; vše směřuje k novým rovnováhám v metamorfovaných horninách; je vůbec nutné rozlišovat metamorfismus od metasomatózy(?); autoři se soustředili převážně na metamorfity v kontinentální kůře; procesy o náhradách v hlubší zóně kůry a v subdukčních zónách v makro- a mikroměřítkách, doloženo několika fotografiemi). Náhrady v horninách svrchní kontinentální kůry. Styčně probíhající rozpouštění a vysrážení (rozsah prostorového zapojení závisí na poměrných rychlostech rozpouštění, difúzního transportu kapalinou a vysrážení). Transport kapaliny horninami. Závěr (zcela stručně o současných problémech: původní a výsledné fáze v metamorfované hornině někdy mohou a jindy nemusí představovat rovnovážný pár; při reakci rozpouštění-vysrážení může být oddělení stopových prvků mezi matečnými a výslednými fázemi ovlivněno více povahou a transportními vlastnostmi pronikající kapaliny než jakýmkoliv vnitřním koeficientem pro rovnovážné oddělování v uzavřeném systému; v otevřeném systému difúze a advekce v kapalině určují, jaký obsah stopového prvku se může dostat z matečné fáze do výsledného produktu; poznatek, že procesy, závislé jednak na teplotě, jednak na přítomné kapalině, mohou působit při nastolování nové rovnováhy, umožní poznat jak termickou, tak "hygrometrickou" historii metamorfní horniny; fázové přeměny za hydrotermálních podmínek jak v laboratoři, tak v přírodě, jsou velmi rychlé, což znamená, že metamorfní reakce za přítomnosti kapalin mohou být velmi rychlé v podmínkách, kde kapalina a matečná hornina nejsou daleko od rovnováhy). Connolly J. A. D. (2010): The mechanics of metamorphic fluid expulsion. - Elements, 6: Autor pracuje v Department of Earth Sciences Švýcarského ústavu technologie v Curychu, Švýcarsko. Abstrakt: Těkavost (devolatilization) hornin při metamorfóze produkuje kapalinu a pórovitost v měřítku daném zrnitostí. Vysoký tlak kapaliny svědčí o tom, že devolatilizace probíhá v podmínkách slabé propustnosti. Uvolňování kapaliny je omezeno buď schopností reagujících hornin odolávat kompakci, nebo rychlostí deformace modifikující propustnost nadložních hornin. V prvním případě časové měřítko kompakce musí být větší než časové měřítko pro metamorfózu, při tom pohyby kapaliny jsou diktovány detaily v propustnosti horniny. Jiná možnost je u hornin, kde kompakční 10

11 procesy jsou rychlejší než metamorfní přeměny. V takovém případě je pohyb kapaliny ovládán kompakcí a je ustálený vlnitostí pórovitosti vyplněné kapalinou. Názvy kapitol: Úvod (citována literatura o hydrogeologii a reologii zemské kůry; o čem článek pojednává: o rychlosti metamorfózy hornin v hloubce zemské kůry, o změnách tektonických tlaků a způsobech deformace a o modelu vytlačování ohřáté kapaliny k zemskému povrchu). Rychlosti regionální metamorfózy hornin. Hydraulické vlastnosti: propustnost a pórovitost. Reologie: přechod mezi křehkostí a tvárností hornin. Měřítka kompakce (pro reologii zemské kůry, vyjádřená matematicky). Systémy omezující tok kapaliny (s uplatněním Darcyho zákona; pět obrázků může zaujmout odborníky a zájemce o zdroje geotermální vody k ohřevu domů). Pohled na velká boční tečení kapaliny. Diskuse (zřejmě je třeba jít do větších detailů v terénu i v laboratořích; o rozdílech mezi klasickou a moderní školou metamorfózy hornin). Bach W., Früh-Green G. L. (2010): Alteration of the oceanic lithosphere and implications for seafloor processes. - Elements, 6: W. Bach pracuje v Geoscience Department, Univerzita v Brémách, Německo. Gretchen L. Früh- Greenová v Institutu geochemie a petrologie, ETH Zürich, Švýcarsko. Abstrakt: Tři čtvrtiny globálního magmatismu a jedna čtvrtina globální ztráty tepla jsou spojeny s tektonomagmatickými a hydrotermálními procesy, jež řídí nárůst oceánské litosféry a stárnutí litosféry od oceánských hřbetů k prohlubním. Hydrotermální reakce mezi mořskou vodou a oceánskou litosférou v podmínkách od zeolitové facie ke granulitové facii jsou spojeny s magmatickými a deformačními procesy, avšak liší se v podstatě závislostí na rychlostech roztahování. Rychle se roztahující podmořské hřbety, s častými erupcemi, mají následné (telescoped) metamorfní gradienty a hydrotermální systémy krátkého trvání. Méně magmaticky robustní, pomalu se roztahující podmořské hřbety jsou obvykle proťaty kolmými zlomy, vyplněnými ultramafickými horninami na mořském dně a udržují dlouhodobé hydrotermální systémy s určitou sopouchovou faunou a také roztoky o určitém složení (uvedeny názorné obrázky). Názvy kapitol: Úvod (v podstatě rozšiřuje abstrakt). Stavba oceánské litosféry (a lokalizace oceánských hřbetů rychleji a pomaleji se roztahujících): Tok kapaliny v dělících zlomech a kanálech. Proces serpentinizace. Axiální hydrotermální systémy: (Hydrotermální kupa [s názorným obrázkem]. Systémy obsahující serpentinit.) Výměna mezi oceánem a jeho zemskou kůrou (s názorným obrázkem). Průduchy na mořském dně a život (mikroorganismy). Svensen H., Jamtveit B. (2010): Metamorphic fluids and global environmental changes. - Elements, 6: Autoři pracují v Centru pro fyziku a geologické procesy (CPGP) na Univerzitě v Oslo, Norsko. Abstrakt: Oxid uhličitý je produkován metamorfními reakcemi v orogenních pásech a v systémech s vysokým teplotním tokem. Část takto vázaného uhlíku se dostává do atmosféry, avšak dlouhé časové měřítko regionální metamorfózy hornin naznačuje, že krátkodobé vlivy tohoto CO 2 jsou méně významné. Naproti tomu kontaktní metamorfóza hornin okolo žilných intruzí vyvřelin v pánvích sedimentů, bohatých organickou substancí, může vydat obrovské objemy CH 4 a CO 2. Tyto plyny se dostávají rychle do atmosféry vertikálními rourovitými strukturami. Mohutný tok a uvolněné objemy skleníkových plynů potvrzují, že procesy kontaktní metamorfózy hornin by mohly mít prvořadý vliv na globální oteplování a masový zánik organismů. Názvy kapitol: Úvod (hlavní poznatky z literatury). Vulkanické pánve a okraje (s mapkou světového rozšíření). Kontaktně metamorfované horniny a odplynění uhlíku. Složení sedimentů a vlivy na prostředí (jeden obrázek znázorňuje žilnou intruzi magmatu do málo propustných sedimentů, z nichž se uvolňují kontaktní metamorfózou do ovzduší následující plynné fáze: H 2 O [z jílových sedimentů a psamitů], CH 4 [zejména z tmavých břidlic a ropy], CO 2 [z uhlí, vápenců/dolomitů], CH 3 Cl, SO 4 a HCl [z evaporitů]). Kontaktní versus regionální metamorfóza hornin. Jiří Konta PÁTÁ MEZINÁRODNÍ STŘEDOEVROPSKÁ JÍLOVÁ KONFERENCE, MAĎARSKO, BUDAPEŠŤ, Pátá středoevropská jílová konference byla organizována spolu s konferencí Mezinárodní mineralogické asociace v Budapešti. Obě konference byly pořádány na Eötvös Loránd Universitě (ELTE) v Budapešti, Danube Riverside kampusu (Lágymányos) v severní a jižní budově, při příležitosti oslav 375 let od vzniku university (viz Obr. 1). V jižní budově se konaly přednášky a posterová sekce MECC. Účastníci obou konferencí měli výhodu v možnosti navštěvovat přednášky a postery (Obr. 2) obou konferencí, přičemž plenární přednášky byly společné. Díky tomu došlo k mnoha neplánovaným a milým setkáním již známých kolegů z různých oblastí mineralogie, ale rovněž i k mnoha novým setkáním a inspiracím. Na úspěšné a organizačně vydařené 5. MECC se podílelo 230 registrovaných odborníků z 38 zemí celého světa. 16 vědeckých sekcí zahrnovalo 14 unikátních témat, obecnou jílovou vědu a výuku jílů v celkovém počtu 272 příspěvků. Abstrakty příspěvků byly vydány jako speciální číslo Acta Mineralogica-Petrographica, abstract series, 2010, vol. 6, Acta Universitatis Szegediensis, HU ISSN a HU ISSN Po skončení přednášek bylo možno se zúčastnit exkurze jejíž název byl: Clays, (palaeo) environment and culture: Field trip in Southern Transdanubia a zároveň se mohli účastníci MECC přihlásit do libovolné exkurze pořádané v rámci 20. konference IMA. Česká společnost pro výzkum a využití jílů rozvinula při přípravách konference širší spolupráci s Maďarskou geologickou společností, jíž je Maďarská jílová společnost součástí, vyjádřením podpory nejen formou Letter of intent. Zároveň zajistila doporučující dopisy při podání žádosti o 11

12 grant z Visegrádského fondu na finanční podporu účasti mladých vědců na konferenci, který byl rovněž za současné podpory Polské a Slovenské jílové skupiny získán. Tuto spolupráci ocenila Maďarská jílová společnost děkovným dopisem adresovaným České společnosti pro výzkum a využití jílů a věříme, že vzájemná užší spolupráce a podpora nejen naší a maďarské skupiny bude i nadále pokračovat, a to v celém středoevropském regionu. Středoevropské jílové konference se stávají stále více oblíbeným místem setkání odborníků na jílové minerály, o čemž svědčí neustále se zvyšující počet účastníků, jak ze středoevropského regionu, tak z celého světa. Příští, 6. středoevropská jílová konference se uskuteční v České republice, nedaleko Prahy, v kongresovém centru Průhonice v termínu od 4. do 9. září Na tuto konferenci Vás za Českou společnost pro výzkum a využití jílů srdečně zveme; více informací získáte na stránkách Následující, 7. středoevropská jílová konference se uskuteční v Německu v roce Miroslav Pospíšil Obr. 1 Pohled na jižní a severní budovu university. Obr. 2 Záběr jedné z místností posterové sekce. 12

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

MECHANIKA HORNIN A ZEMIN

MECHANIKA HORNIN A ZEMIN MECHANIKA HORNIN A ZEMIN podklady k přednáškám doc. Ing. Kořínek Robert, CSc. Místnost: C 314 Telefon: 597 321 942 E-mail: robert.korinek@vsb.cz Internetové stránky: fast10.vsb.cz/korinek Katedra geotechniky

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM Pavla Rovnaníková, Martin Sedlmajer, Martin Vyšvařil Fakulta stavební VUT v Brně Seminář Vápno, cement, ekologie, Skalský Dvůr 12. 14.

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Voda jako životní prostředí ph a CO 2

Voda jako životní prostředí ph a CO 2 Hydrobiologie pro terrestrické biology Téma 8: Voda jako životní prostředí ph a CO 2 Koncentrace vodíkových iontů a systém rovnováhy forem oxidu uhličitého Koncentrace vodíkových iontů ph je dána mírou

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Rentgenová difrakce a spektrometrie

Rentgenová difrakce a spektrometrie Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

VLASTNOSTI DRCENÉHO PÓROBETONU

VLASTNOSTI DRCENÉHO PÓROBETONU VLASTNOSTI DRCENÉHO PÓROBETONU (zkoušky provedené ke 4.4.2012) STANOVENÍ ZÁKLADNÍCH FYZIKÁLNÍCH VLASTNOSTÍ 1. Vlhkostní vlastnosti (frakce 2-4): přirozená vlhkost 3,0% hm. nasákavost - 99,3% hm. 2. Hmotnostní

Více

Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:

Více

Funkční nanostruktury Pavla Čapková

Funkční nanostruktury Pavla Čapková Funkční nanostruktury Pavla Čapková Centrum nanotechnologií na VŠB-TU Ostrava. Centrum nanotechnologií na VŠB-TUO Nanomateriály Sorbenty Katalyzátory a fotokatalyzátory Antibakteriální nanokompozity Nové

Více

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ

www.zlinskedumy.cz Inovace výuky prostřednictvím šablon pro SŠ Název projektu Číslo projektu Název školy Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Vzdělávací obor Tematický okruh Inovace výuky prostřednictvím šablon pro SŠ CZ.1.07/1.5.00/34.0748

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Tavení skel proces na míru?

Tavení skel proces na míru? Laboratoř anorganických materiálů Společné pracoviště Ústavu anorganické chemie AVČR, v.v.i a Vysoké školy chemicko-technologick technologické v Praze Technická 5, 166 28 Praha 6, Česká Republika Tavení

Více

Magda Součková. Cílem této práce bylo zjistit, do jaké míry brání vybrané obalové materiály průchodu polutantů ke skladovanému materiálu.

Magda Součková. Cílem této práce bylo zjistit, do jaké míry brání vybrané obalové materiály průchodu polutantů ke skladovanému materiálu. Výzkumný záměr Výzkum a vývoj nových postupů v ochraně a konzervaci vzácných písemných památek Zkvalitnění vlastností krabic pro ochranu písemných památek Zpráva za rok 2009 Krabice jako ochrana proti

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Chemie (CHE) Obecná chemie 1. ročník a kvinta 2 hodiny týdně Školní tabule, interaktivní tabule, tyčinkové a kalotové modely molekul, zpětný projektor, transparenty,

Více

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová

Počítačová chemie. výpočetně náročné simulace chemických a biomolekulárních systémů. Zora Střelcová Počítačová chemie výpočetně náročné simulace chemických a biomolekulárních systémů Zora Střelcová Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, 611 37 Brno, Česká Republika

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

11. Chemické reakce v roztocích

11. Chemické reakce v roztocích Roztok - simila similimbus solventur Typy reakcí elektrolytů Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti roztok - simila similimbus solventur rozpouštědla (nečistoty vůči rozpuštěným

Více

Studentská vědecká konference 2004

Studentská vědecká konference 2004 Studentská vědecká konference 2004 Sekce: ANORGANICKÉ NEKOVOVÉ MATERIÁLY I, 26.11.2004 Zahájení v 9:00 hodin, budova A, posluchárna A02 Komise (ústav 107): Prof.Ing. Josef Matoušek, DrSc. - předseda Ing.

Více

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní). CHROMATOGRAFIE ÚOD Existují různé chromatografické metody, viz rozdělení metod níže. Společný rys chromatografických dělení: vzorek jako směs látek - složek se dělí na jednotlivé složky působením dvou

Více

Extrakce. Dělení podle způsobů provedení -Jednostupňová extrakce - mnohastupňuvá extrakce - kontinuální extrakce

Extrakce. Dělení podle způsobů provedení -Jednostupňová extrakce - mnohastupňuvá extrakce - kontinuální extrakce Extrakce Slouží k izolaci, oddělení analytu nebo skupin látek s podobnými vlastnostmi od matrice a ostatních látek, které nejsou předmětem analýzy (balasty). Extrakce je založena na ustavení rovnováhy

Více

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra

37 MOLEKULY. Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra 445 37 MOLEKULY Molekuly s iontovou vazbou Molekuly s kovalentní vazbou Molekulová spektra Soustava stabilně vázaných atomů tvoří molekulu. Podle počtu atomů hovoříme o dvoj-, troj- a více atomových molekulách.

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1

Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 Horniny Zdroj: 1.název: Stavební hmoty autor: Luboš svoboda a kolektiv nakladatelství: Jaga group, s.r.o., Bratislava 2007 ISBN 978-80-8076-057-1 2.www.unium.cz/materialy/cvut/fsv/pr ednasky- svoboda-m6153-p1.html

Více

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Sekce X: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Rostislav Šulc, Pavel Svoboda 1 Úvod V rámci společného programu Katedry technologie staveb FSv ČVUT a Ústavu skla

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice RADON - CHARAKTERISTIKA Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2 Syntéza leucitové suroviny pro dentální kompozity 1 Ústav skla a keramiky VŠCHT Praha VYSOKÁ ŠKOLA CHEMICKO- TECHNOLOGICKÁ V PRAZE Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír

Více

chemického modulu programu Flow123d

chemického modulu programu Flow123d Testovací úlohy pro ověření funkčnosti chemického modulu programu Flow123d Lukáš Zedek, Jan Šembera 20. prosinec 2010 Abstrakt Předkládaná zpráva představuje přehled funkcionalit a výsledky provedených

Více

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Laboratoř Metalomiky a Nanotechnologií Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Vyučující: Ing. et Ing. David Hynek, Ph.D., Prof. Ing. René

Více

Oddělení fyziky vrstev a povrchů makromolekulárních struktur

Oddělení fyziky vrstev a povrchů makromolekulárních struktur Oddělení fyziky vrstev a povrchů makromolekulárních struktur Témata diplomových prací 2014/2015 Studium změn elektrické vodivosti emeraldinových solí vystavených pokojovým a mírně zvýšeným teplotám klíčová

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA

Veličiny- základní N A. Látkové množství je dáno podílem N částic v systému a Avogadrovy konstanty NA YCHS, XCHS I. Úvod: plán přednášek a cvičení, podmínky udělení zápočtu a zkoušky. Základní pojmy: jednotky a veličiny, základy chemie. Stavba atomu a chemická vazba. Skupenství látek, chemické reakce,

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Techniky prvkové povrchové analýzy elemental analysis

Techniky prvkové povrchové analýzy elemental analysis Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded

Více

Chemická vazba Něco málo opakování Něco málo opakování Co je to atom? Něco málo opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI

MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI Technická univerzita v Liberci MODELOVÁNÍ MIGRAČNÍCH SCHOPNOSTÍ ŽELEZNÝCH NANOČÁSTIC A OVĚŘENÍ MODELU PŘI PILOTNÍ APLIKACI J. Nosek, M. Černík, P. Kvapil Cíle Návrh a verifikace modelu migrace nanofe jednoduše

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

HLINÍK A JEHO SLITINY

HLINÍK A JEHO SLITINY HLINÍK A JEHO SLITINY Označování hliníku a jeho slitin dle ČSN EN a) Označování hliníku a slitin hliníku pro tváření dle ČSN EN 573-1 až 3 Tyto normy platí pro tvářené výrobky a ingoty určené ke tváření

Více

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU

TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU TEPLOTNÍ ODOLNOST PVD VRSTEV VŮČI LASEROVÉMU POVRCHOVÉMU OHŘEVU Beneš, P. 1 Sosnová, M. 1 Kříž, A. 1 Vrstvy a Povlaky 2007 Solaň Martan, M. 2 Chmelíčková, H. 3 1- Katedra materiálu a strojírenské metalurgie-

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o. POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH Libor Lenža Hvězdárna Valašské Meziříčí, p. o. Obsah 1. Co jsou to spektrální čáry? 2. Historie a současnost (přístroje, družice aj.) 3. Význam pro sluneční fyziku

Více

Voltametrie (laboratorní úloha)

Voltametrie (laboratorní úloha) Voltametrie (laboratorní úloha) Teorie: Voltametrie (přesněji volt-ampérometrie) je nejčastěji používaná elektrochemická metoda, kdy se na pracovní elektrodu (rtuť, platina, zlato, uhlík, amalgamy,...)

Více

STAVBA ZEMĚ MECHANISMUS ENDOGENNÍCH POCHODŮ (převzato a upraveno dle skript pro PřFUK V. Kachlík Všeobecná geologie)

STAVBA ZEMĚ MECHANISMUS ENDOGENNÍCH POCHODŮ (převzato a upraveno dle skript pro PřFUK V. Kachlík Všeobecná geologie) 2. PŘEDNÁŠKA Globální tektonika Země cíl : pochopení dynamického vývoje planety Země a s ním spojené endogenní procesy jako je magmatismus- metamorfismus- zemětřesení porušení horninových těles STAVBA

Více

Nanokompozity na bázi polymer/jíl

Nanokompozity na bázi polymer/jíl Nanokompozity na bázi polymer/jíl Nanokompozity Nanokompozity se skládají ze dvou hlavních složek polymerní matrice a nanoplniva. Nanoplniva můžeme rozdělit na organická a anorganická, podle výskytu na

Více

Infračervená spektrometrie

Infračervená spektrometrie Podstata infračervené absorpce jednofotonový přechod mezi dvěma vibračními (vibračně-rotačními) rotačními) stavy molekuly, jejichž energie jsou E 1 a E 2, vyvolaný interakcí s fotonem dopadajícího záření

Více

STANOVENÍ EMISÍ LÁTEK ZNEČIŠŤUJÍCÍCH OVZDUŠÍ Z DOPRAVY

STANOVENÍ EMISÍ LÁTEK ZNEČIŠŤUJÍCÍCH OVZDUŠÍ Z DOPRAVY STANOVENÍ EMISÍ LÁTEK ZNEČIŠŤUJÍCÍCH OVZDUŠÍ Z DOPRAVY Původní Metodika stanovení emisí látek znečišťujících ovzduší z dopravy, která je schválená pro výpočty emisí z dopravy na celostátní a regionální

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Důkaz C, H, N a halogenů v organických sloučeninách autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: Obecná chemie Chemie Mgr. Soňa Krampolová 01 - Látkové množství, molární hmotnost VY_32_INOVACE_01.pdf

Více

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6

Úloha 3-15 Protisměrné reakce, relaxační kinetika... 5. Úloha 3-18 Protisměrné reakce, relaxační kinetika... 6 3. SIMULTÁNNÍ REAKCE Úloha 3-1 Protisměrné reakce oboustranně prvého řádu, výpočet přeměny... 2 Úloha 3-2 Protisměrné reakce oboustranně prvého řádu, výpočet času... 2 Úloha 3-3 Protisměrné reakce oboustranně

Více

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU Znázornění odporů způsobujících snižování průtoku permeátu nástřik porézní membrána Druhy odporů R p blokování pórů R p R a R m R a R m R g R cp adsorbce membrána

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE

LABORATOŘ KOVŮ A KOROZE VZDĚLÁVÁNÍ ODBORNÉ KURZY A SEMINÁŘE ODBORNÉ KURZY A SEMINÁŘE Vysoké učení technické v Brně Fakulta chemická Purkyňova 464/118 612 00 Brno wasserbauer@fch.vutbr.cz Využijte bohaté know-how odborných pracovníků Laboratoře kovů a koroze při

Více

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Organická chemie 1. ročník studijního oboru - gastronomie.

Organická chemie 1. ročník studijního oboru - gastronomie. Organická chemie 1. ročník studijního oboru - gastronomie. T-4 Metody oddělování složek směsí. Zpracováno v rámci projektu Zlepšení podmínek ke vzdělávání Registrační číslo projektu: CZ.1.07/1.5.00/34.0639

Více

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VIII. Chemie. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Úvod IX. -ukázka chem.skla přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce-práce s dostupnými a běžně používanými látkami, hodnocení jejich rizikovosti, posoudí bezpečnost vybraných

Více

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: PRVKY PÁTÉ SKUPINY Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np: Obecná konfigurace: ns np Nejvyšší kladné

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava roztoků a měření ph autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Vnitřní geologické děje

Vnitřní geologické děje Vznik a vývoj Země 1. Jak se nazývá naše galaxie a kdy pravděpodobně vznikla? 2. Jak a kdy vznikla naše Země? 3. Jak se následně vyvíjela Země? 4. Vyjmenuj planety v pořadí od slunce. 5. Popiš základní

Více

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST MINERÁLY (NEROSTY) PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VY_52_INOVACE_263 VZDĚLÁVACÍ OBLAST: ČLOVĚK A PŘÍRODA VZDĚLÁVACÍ OBOR: PŘÍRODOPIS ROČNÍK: 9 CO JE MINERÁL

Více

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství.

Úvod. Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. Laserové kalení Úvod Povrchové vlastnosti jako jsou koroze, oxidace, tření, únava, abraze jsou často vylepšovány různými technologiemi povrchového inženýrství. poslední době se začínají komerčně prosazovat

Více

Středočeská pánev potenciální uložiště CO2

Středočeská pánev potenciální uložiště CO2 Středočeská pánev potenciální uložiště CO2 1 Obsah geologie, stratigrafie kolektory, izolanty žatecká pánev 2 Středočeská pánev (~6000 km 2 ) Komplex extenzních pánví s klastickou kontinentální výplní

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

Ch - Chemie - úvod VARIACE

Ch - Chemie - úvod VARIACE Ch - Chemie - úvod Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen,

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Pedologické praktikum - téma č.. 6: Práce v pedologické laboratoři - půdní fyzika Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Půdní

Více

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ

Více

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin

- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin 2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách

Více

Otázka: Vodík. Předmět: Chemie. Přidal(a): Anonym. Základní charakteristika

Otázka: Vodík. Předmět: Chemie. Přidal(a): Anonym. Základní charakteristika Otázka: Vodík Předmět: Chemie Přidal(a): Anonym Základní charakteristika Mezinárodní název: hydrogenium První člen periodické soustavy prvků Tvoří základ veškeré živé hmoty Izotopy vodíku Lehký vodík (protium)

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více