KMA/MDS Matematické důkazy a jejich struktura

Rozměr: px
Začít zobrazení ze stránky:

Download "KMA/MDS Matematické důkazy a jejich struktura"

Transkript

1 Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/ KMA/MDS Matematické důkazy a jejich struktura Seminář 1

2 Cílem tohoto semináře je efektivní uvedení do matematického uvažování, zejména matematického dokazování. Studenti matematiky zpravidla bývají seznamováni s důkazy za pochodu. Je jim přednášena ta která matematická teorie včetně důkazů a očekává se, že student časem vnikne do matematického uvažování, a sám se naučí důkazy číst 1, modifikovat i tvořit. Jiného názoru byli pánové Rowan Garnier a John Taylor, kteří napsali skvělou knihu 100% Mathematical Proof ([3]), jejíž hlavní cíl je seznámení čtenáře s hlavními principy axiomatické metody, která je matematice vlastní, a zejména představení struktury důkazů, jejich typů a tvorby. Kniha je psána velmi přístupným způsobem a pomalu a systematicky uvádí čtenáře do této problematiky. Je ji schopen číst každý maturant. Možná vhodnější knihou je How to prove it : a structured approach od D. Vellemana [7], kde je důraz kladen na naučení studentů tvořit vlastní důkazy. Jsou tam ukázány různé tipy a strategie při dokazování konkrétních i typových tvrzení. Obě tyto knihy naleznete v univerzitní knihovně. Zmiňme ještě do češtiny přeloženou knihu Matematické důkazy od německého autora R. Thieleho ([4]), kde je spíš vědecko-populárním způsobem čtenář seznámen se základními principy matematiky. Může se zde dovědět spoustu zajímavostí, které se na matematické přednášce nedozví, ale které by vědět mohl/měl. Pozornosti by vám nemělo uniknout ani skriptum Úvod do matematiky od M. Závodného [8]. Lze jen konstatovat, že česky psané literatury věnované principům matematického dokazování příliš mnoho není. Zato v angličtině je jich celá řada (stačí napsat v nějakém internetovém vyhledávači klíčová slova proof, mathematical proof, mathematical thinking, mathematical proving, apod.). Hlavním nástrojem používaným při usuzování je matematická logika. Pro naše potřeby bude stačit přečíst část první kapitoly elektronického skripta [1] nebo třeba úvod a první paragrafy první kapitoly knihy [5]. Studentům, které logika zaujala, je možno doporučit třeba poslední kapitolu skripta [2], stejně jako knihy [5] a [6] (vše je v češtině). Veškerá zde zmíněná literatura je dostupná v univerzitní nebo vědecké knihovně. Axiomatická metoda základní pojmy Ve zkratce zmiňme princip axiomatické metody, na které je založena každá moderní matematická teorie. Základem každé matematické teorie je tzv. axiomatický systém. Axiomatický systém je souhrn základních pojmů (tzv. primitiv) a axiomů. Základní pojem neboli primitivum je objekt axiomatického systému, popř. vlastnost objektu, vztah mezi objekty nebo operace nad nimi, který stojí na začátku teorie a je ponechán bez vysvětlení. Axiom je tvrzení o základních pojmech (popř. o pojmech odvozených viz dále), které opět stojí na počátku teorie a jsou považována za pravdivá. Dříve se axiomy chápaly jako něco natolik zřejmého, že to nebylo potřeba dokazovat. Dnes jsou chápány jako předpoklady příslušné teorie. 1 Čtením důkazu se rozumí jeho pochopení. 2

3 Matematická teorie kromě axiomatického systému obsahuje definované/odvozené pojmy a věty. Definovaný/odvozený pojem je pojem odvozený ze základních pojmů, nebo pojmů již dříve definovaných. Pojem je uveden v život v tzv. definici. Věta je pravdivé tvrzení o základních nebo definovaných pojmech, jejíž pravdivost logicky plyne z axiomů či jiných vět. Demonstraci pravdivosti se říká důkaz. Tvrzení o kterém nevíme, zda je v dané teorii pravdivé, říkáme hypotéza. Tento popis je velmi stručný. V následujících seminářích všechny pojmy postupně zpřesníme. Základním prostředkem vyjadřování a dokazování bude výrokový a zejména predikátový počet. Formální způsob vyjadřování byl zvolen proto, abychom se nemuseli zabývat různými logickými paradoxy. Z didaktických důvodů se prvních pár přednášek budeme bavit (jednodušším) výrokovým počtem, zpřesníme pojmy jako tvrzení, logicky plyne nebo důkaz atp. Výrokový počet základní pojmy Následuje suchý popis potřebných pojmů. Pro potřeby tohoto semináře je pár věcí zamlčeno a zjednodušeno. Pro korektnější výklad je vřele doporučena první kapitola skript [1]. Výrok Výrok budeme chápat jako tvrzení/větu, o které má smysl uvažovat, zda je pravdivé či nepravdivé. Přitom výrok není pravdivý ani nepravdivý současně. Pravdivostní hodnota výroku Každému výroku lze přiřadit tzv. pravdivostní hodnotu. A to bud pravda zkráceně 1 pokud je výrok pravdivý, nebo nepravda zkráceně 0 pokud je výrok nepravdivý. Logické spojky Ve výrokové logice nás budou zajímat logické spojky a jejich použití při vytváření nových výroků. Budou nás zajímat pouze ty nejznámější spojky a to unární spojka negace a binární spojky konjunkce, disjunkce, implikace a ekvivalence. Negace Jde o tzv. unární spojku, protože nepracuje s více výroky ale pouze s jedním. Negace se značí symbolem a používá se následovně. Je-li A výrok, pak jeho negace se značí A a čte neplatí A. Např. negaci výroku prší můžeme číst jako neplatí, že prší nebo neprší. Pravdivostní hodnoty negace: Je-li výrok A pravdivý, pak A je nepravdivý. 3

4 Je-li výrok A nepravdivý, pak A je pravdivý. Přehledně tato fakta můžeme zobrazit v tzv. pravdivostní tabulce: Konjunkce A A Konjunkce je tzv. binární spojka, protože spojuje dva výroky. Konjunkce se značí symbolem a používá se následovně. Jsou-li A, B výroky, pak jejich konjunkce se značí A B a čte platí A a (současně) platí B. Např. konjunkci výroků měl jsem na oběd knedlík a měl jsem na oběd zelí můžeme číst jako měl jsem na oběd knedlík a zelí. Pravdivostní hodnoty konjunkce: Výrok A B je pravdivý pouze v případě, že jsou pravdivé oba dva výroky A a B. Pravdivostní tabulka: Disjunkce A B A B Disjunkce se značí symbolem a používá se následovně. Jsou-li A, B výroky, pak jejich disjunkce se značí A B a čte platí A nebo platí B. Např. disjunkci výroků měl jsem na oběd knedlík a měl jsem na oběd zelí můžeme číst jako měl jsem na oběd knedlík nebo zelí. Pravdivostní hodnoty disjunkce: Výrok A B je nepravdivý pouze v případě, že jsou nepravdivé oba dva výroky A a B. Pravdivostní tabulka: A B A B U této spojky je nutné zdůraznit, že se nepoužívá ve smyslu vylučovacím, jak tomu většinou bývá při používání v běžné řeči. Např. je-li výrok měl jsem na oběd knedlík nebo zelí, znamená to, že jsem mohl mít oboje běžně bychom tento výrok pochopili tak, že jsem na oběd neměl tyto dvě jídla současně. Implikace Implikace se značí symbolem a používá se následovně. Jsou-li A, B výroky, pak jejich implikace se značí A B a čte platí-li A, pak platí i B nebo jestliže A, pak B. Dokonce se někdy říká platí B, jestliže platí A. Např. implikaci výroků měl 4

5 jsem na oběd knedlík a měl jsem na oběd zelí můžeme číst jako jestliže jsem měl na oběd knedlík, pak jsem měl (na oběd) i zelí. Pravdivostní hodnoty implikace: Výrok A B je nepravdivý pouze v případě, že A je pravdivý a B je nepravdivý. Tuto definici si lze pamatovat pomocí hesla pravda nemůže implikovat nepravdu, ale nepravda může implikovat cokoliv. Pravdivostní tabulka: A B A B Narozdíl od předchozích spojek je implikace pro začátečníka poměrně obtížnou spojkou. Je potřeba si uvědomit, že pravdivost výroku A B nic neříká o pravdivosti výroků A a B ale pouze o vztahu jejich pravdivostních hodnot. Zejména nic neříká o platnosti výroku A! V implikaci A B se výroku A říká předpoklad (premisa) a výroku B závěr. Dále, platí-li implikace A B, pak se říká, že výrok A je postačující podmínkou výroku B a také, že výrok B je nutnou podmínkou výroku A. Ekvivalence Ekvivalence se značí symbolem a používá se následovně. Jsou-li A, B výroky, pak jejich ekvivalence se značí A B a čte platí A právě tehdy, když platí B. Např. ekvivalenci výroků měl jsem na oběd knedlík a měl jsem na oběd zelí můžeme číst jako Měl na oběd knedlík právě tehdy, když jsem měl zelí. Pravdivostní hodnoty ekvivalence: Výrok A B je pravdivý pouze v případě, že A a B mají stejnou pravdivostní hodnotu. Pravdivostní tabulka: A B A B Stejně jako u implikace, pravdivost výroku A B nic neříká o pravdivosti výroků A a B ale pouze o vztahu jejich pravdivostních hodnot. Zajímavé je, že u ekvivalence nemá tolik lidí problém s pochopením, jako u implikace. Jednoduchý versus složený výrok Výroky typu měl jsem na oběd knedlík budeme chápat jako jednoduché výroky. Výroky poskládané z takových jednoduchých výroků pomocí logických spojek budeme nazývat složenými, např. výrok měl jsem na oběd knedlík a zelí lze chápat jako složený výrok vytvořený pomocí kojunkce z jednoduchých výroků měl jsem na oběd knedlík a měl jsem na oběd zelí. 5

6 Výroková forma Ve výrokové logice nás nebude zajímat smysl ani pravdivost jednoduchých výroků, ale jen tvar (forma) složených výroků. Například z hlediska výrokové logiky pro nás následující výroky mají stejný tvar: Jestliže jsem měl na oběd knedlíky a zelí, pak 2+2 = 4 a Jestliže včera svítilo slunce a pršelo, pak je sníh červený. Evidentně jde o úplně různé výroky mluvící o různých věcech, které mohou mít různou pravdivostní hodnotu. Něco mají ovšem společné a to tvar (formu). Oba se dají zapsat ve tvaru (A B) C, kde v prvním případě jsme označili písmenem A výrok měl jsem na oběd knedlíky, písmenem B výrok měl jsem na oběd zelí, písmenem C výrok = 4, a v druhém případě jsme označili písmenem A výrok včera svítilo slunce, písmenem B výrok včera svítilo slunce a pršelo, písmenem C výrok sníh je červený. Říkáme pak, že ty dva uvedené výroky jsou instancemi výrokové formy (a b) c, kde písmenům a, b, c se říká výrokové proměnné. Dostáváme se tak k pojmu formalizující pojem výrok ve výrokovém počtu. Výroková forma bude řetězec symbolů poskládaných z tzv. symbolů výrokové logiky, což jsou výrokové symboly, např. a, b, p, q,..., symboly výrokových spojek, a to,,,,, pomocné symboly, což jsou kulaté závorky (, ), popř. pro zvýšení přehlednosti lze použít i hranaté. Výroková forma neboli formule výrokového počtu nebo jen formule je bud výrokový symbol (tzv. výroková proměnná), nebo jsou-li α, β výrokové formy, pak jsou výrokovými formami i výrazy α, (α β), (α β), (α β), (α β), přitom vnější závorky formule lze vynechat. Například řetězec symbolů (a b) c je výrokovou formou. A to z toho důvodu, že 1. a, b jsou výrokové symboly, tedy i výrokové formy, 2. pak (a b) je také výrokové forma, 3. c je výrokový symbol, tedy i výroková forma, 4. pak ((a b) c) je výroková forma 5. a odebráním vnějších závorek dostáváme, že i (a b) c je výroková forma. 6

7 Nutno podotknout, že symboly výrokové logiky jsou opravdu jen symboly. Nejde tedy o logické spojky ale o jejich označení. Podrobnosti viz [1]. Popsali jsme tedy, jak vypadá výroková forma tj. popsali jsme její syntaxi. Nyní se podíváme na sémantiku 2 výrokových forem. K tomu je potřeba pojem pravdivostní ohodnocení. Tím budeme intuitivně rozumět přiřazení pravdivostních hodnot 1 a 0 k výrokovým proměnným. Detaily opět najdete v [1]. Při daném pravdivostním ohodnocení lze spočítat pravdivostní hodnotu dané formule a to podle již definovaných pravdivostních tabulek. Tzn. pro výrokové formule a, b definujeme a a a b a b a b a b a b Mějme například formuli (a b) c o třech výrokových proměnných. Jedním z pravdivostních ohodnocení je např., že symbolu a přiřadíme 1, symbolu b přiřadíme 0 a symbolu c přiřadíme 1. Pak podle výše uvedené tabulky má formule (a b) ohodnocení 0 a podle stejné tabulky má formule (a b) c ohodnocení 1. To lze přehledně zapsat do tabulky: a b c a b (a b) c Do formule lze za výrokové proměnné dosazovat jiné formule. Dostáváme tak další formuli. Značení: Výroky budeme značit velkými písmeny (tj. A, B, C,...), výrokové proměnné malými písmeny (a, b,..., p, q,...) a výrokové formy malými písmeny řecké abecedy (α, β,..., ϕ, η,...). Pokud by nám došly symboly, budeme používat dolní indexy (např. A 1, A 2,...). Pravidlo nahrazení Mějme formuli α s výrokovými proměnnými a 1,..., a n a formule β 1,..., β n. Pak nahrazením všech výskytů proměnných a 1,..., a n ve formuli α postupně formulemi β 1,..., β n vznikne opět formule. Instance výrokové formy Dosadíme li do výrokové formy za výrokové proměnné konkrétní výroky, vzniklému (složenému) výroku říkáme instance výrokové formy. Pravdivostní tabulka výrokové formy Tato tabulka podobně jako pravdivostní tabulky logických spojek dává pravdivostní hodnoty jakékoliv formule při všech možných pravdivostních ohodnoceních. Např. pravdivostní tabulka formule (a b) c vypadá takto 2 Zhruba řečeno, syntaxe je o zápisu a sémantika je o významu/smyslu. 7

8 a b c a b (a b) c V posledním sloupci jsou přehledně shrnuty pravdivostní hodnoty formulí při odpovídajícím pravdivostním ohodnocení výrokových proměnných (ve stejném řádku). Ostatní sloupce napravo od rozdělovací čáry jsou pouze pomocné. Tautologie Tautologie je výroková forma, která je pravdivá při každém pravdivostním ohodnocení. Prakticky to lze ověřit snadno. Stačí sestavit pravdivostní tabulku této formule. Formule je pak tautologií právě tehdy, když ve sloupci této formule jsou samé jedničky. Tautologiím se také říká logické zákony. Budou pro nás základním nástrojem při dokazování. Zde je seznam některých důležitých tautologií. 1. (p q) (q p) 2. (p q) (q p) 3. (p (q r)) ((p q) r) 4. (p (q r)) ((p q) r) 5. (p (q r)) ((p q) (p r)) 6. (p (q r)) ((p q) (p r)) 7. (p q) ( p q) 8. (p q) ( p q) 9. p p 10. (p q) ( p q) 11. (p q) ( q p) 12. (p (p q)) q 13. ( q (p q)) p 14. (p q) ((p q) (q p)) Ověření, že jde skutečně o tautologie, je dobrým cvičením na práci s pravdivostními tabulkami formulí. 8

9 Kontradikce Naopak kontradikce je výroková forma, která je nepravdivá při každém pravdivostním ohodnocení. Zřejmě platí, že negace tautologie je kontradikce a naopak. Ještě je nutno dodat, že vznikne-li formule z jiné nahrazením všech výskytů jejích proměnných formulemi, je tautologií (resp. kontradikcí), jestliže původní formule byla tautologií (resp. kontradikcí). Splnitelná formule Splnitelná formule je taková, která je pravdivá při alespoň jednom pravdivostním ohodnocení. Platí, že formule je splnitelná právě tehdy, když není kontradikce. Cvičení Následující cvičení jsou povětšinou převzaty (popř. přeloženy) z doporučené literatury, kde je jich možno najít více. Úloha 1.1 Vypočtěte, kolik existuje unárních a kolik binárních spojek. Úloha 1.2 Necht A, B jsou výroky. Odpovězte na následující otázky (při řešení je možno s výhodou použít pravdivostní tabulky příslušných spojek): 1. Známe-li pravdivostní hodnotu výroku A, co lze říct o pravdivostní hodnotě výroku A? 2. Je-li výrok A B pravdivý a B nepravdivý, co lze říct o pravdivosti výroku A? 3. Je-li výrok A B pravdivý a B pravdivý, lze něco říct o pravdivosti výroku A? 4. Je-li výrok A B nepravdivý a B pravdivý, co lze říct o pravdivosti výroku A? 5. Je-li výrok A B nepravdivý a B nepravdivý, lze něco říct o pravdivosti výroku A? 6. Je-li výrok A B pravdivý a A pravdivý, co lze říct o pravdivosti výroku B? 7. Je-li výrok A B nepravdivý a B nepravdivý, co lze říct o pravdivosti výroku A? Odpovědi na otázky je potřeba zažít (ale ne nabiflovat!), abyste je mohli kdykoliv v budoucnu bez přemýšlení použít. (Toto cvičení slouží k osvojení sémantiky základních spojek, zejména implikace.) Úloha 1.3 Uvažujme následující výroky: C: Budu mít více času. K: Naučím se hrát na klavír. P : Zdvojnásobím si plat. 9

10 Zapište pomocí symbolů C, K, P a logických spojek následující výroky: 1. Jestliže budu mít víc času, zdvojnásobím si plat, ale nebudu se učit hrát na klavír. 2. Jestliže budu mít víc času, pak se budu učit hrát na klavír, a když budu mít více času, pak si zdvojnásobím plat. 3. Jestliže se budu učit hrát na klavír, pak nebudu mít více času a ani si nezdvojnásobím plat. 4. Jestliže si zdvojnásobím plat a naučím se hrát na klavír, nebudu mít více času. 5. Jestliže budu mít více času, naučím se hrát na klavír, a jestli se naučím hrát na klavír, zdvojnásobím si plat. (Toto cvičení slouží k tomu, aby student byl schopen okamžitě překládat z běžné řeči do formálního jazyka výrokové logiky.) Úloha 1.4 Uvažujme následující výroky: S: Slunce svítí. V : Vítr fouká. D: Prší. T : Teplota roste. Proved te: 1. Napište česky následující složené výroky: (a) V ( S D), (b) (V D) S, (c) (V D) T, (d) (S V ) (D T ). 2. Za předpokladu, že výroky S, V, D, T jsou všechny pravdivé, zjistěte, která následující složené výroky jsou pravdivé a které ne: (a) (S V ) ( D T ), (b) (S D) (T V ), (c) ((D T ) (V S)). (Část 1. tohoto cvičení slouží k tomu, aby student byl schopen okamžitě překládat z formálního jazyka výrokové logiky do běžné řeči.) Úloha 1.5 Pomocí pravdivostní tabulky ověřte, že formule v části Tautologie jsou opravdu všechny tautologiemi. (Toto cvičení je zaměřeno k procvičení určování pravdivostních hodnot logických spojek a také k zapamatování důležitých tautologií, které budou hrát v dalším významnou roli.) 10

11 Reference [1] Bělohlávek, R., Vychodil, V., Diskrétní matematika pro informatiky I., UP Olomouc, [dostupné online: ] [2] Bělohlávek, R., Vychodil, V., Diskrétní matematika pro informatiky II., UP Olomouc, [dostupné online: ] [3] Garnier, R., Taylor, J., 100% Mathematical Proof, John Wiley & Sons, Chichester, [4] Thiele, R., Matematické důkazy, SNTL, Praha, [5] Sochor, A., Klasická matematická logika, Karolinum, Praha, [6] Švejdar, V., Logika: neúplnost, složitost a nutnost, Academia, Praha, [dostupné také online: svejdar/book/logikasve2002.pdf ] [7] Velleman, D.J., How to prove it : a structured approach, Cambridge University Press, New York, [8] Závodný, M., Úvod do matematiky, Přírodovědecká fakulta, UP v Olomouci, Olomouc,

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 2 Výroková logika pokračování Logické vyplývání

Více

1. Matematická logika

1. Matematická logika MATEMATICKÝ JAZYK Jazyk slouží člověku k vyjádření soudů a myšlenek. Jeho psaná forma má tvar vět. Každá vědní disciplína si vytváří svůj specifický jazyk v úzké návaznosti na jazyk živý. I matematika

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

ZÁKLADY LOGIKY A METODOLOGIE

ZÁKLADY LOGIKY A METODOLOGIE ZÁKLADY LOGIKY A METODOLOGIE Metodický list č. 1 Téma: Předmět logiky a metodologie, základy logiky a formalizace. Toto téma lze rozdělit do tří základních tématických oblastí: 1) Předmět logiky a metodologie

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

λογος - LOGOS slovo, smysluplná řeč )

λογος - LOGOS slovo, smysluplná řeč ) MATA P1: Výroky, množiny a operace s nimi Matematická logika (z řeckého slova λογος - LOGOS slovo, smysluplná řeč ) Výrok primitivní pojem matematické logiky. Tvrzení, pro které má smysl otázka o jeho

Více

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora

Jak jsem potkal logiku. Převod formule do (úplného) disjunktivního tvaru. Jan Hora Česká zemědělská univerzita 17. října 2011 U makléře Já: Dobrý den, rád bych koupil nějaký světlý byt. Chtěl bych, aby měl dvě koupelny a aby byl v domě výtah. A neměl by být nijak extrémně drahý. Makléř:

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

Nepřijde a nedám 100 Kč měl jsem pravdu, o této

Nepřijde a nedám 100 Kč měl jsem pravdu, o této 1.4.4 Implikace Předpoklady: 010403 Implikace Implikace libovolných výroků a,b je výrok, který vznikne jejich spojením slovním obratem jestliže, pak, píšeme a b a čteme jestliže a, pak b. Výroku a se říká

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY RADIM BĚLOHLÁVEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, 1 Matematická logika 1.1 Výroky, operace s výroky Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, měli být schopni

Více

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat,

Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, 1 Matematická logika 1.1 Výroky, operace s výroky Po prostudování této kapitoly byste měli porozumět základním definicím uvedených v této kapitole a měli je umět bezchybně interpretovat, měli být schopni

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška první Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

M - Výroková logika VARIACE

M - Výroková logika VARIACE M - Výroková logika Autor: Mgr. Jaromír Juřek Kopírování a další šíření povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

1. MATEMATICKÁ LOGIKA A MNOŽINY

1. MATEMATICKÁ LOGIKA A MNOŽINY . MATEMATICKÁ LOGIKA A MNOŽINY Průvodce studiem V následující kapitole si připomeneme některé význačné poznatky z matematické logiky a teorie množin, tvořící základ množinově logického aparátu. S celou

Více

Základy informatiky. Výroková logika

Základy informatiky. Výroková logika Základy informatiky Výroková logika Zpracoval: Upravila: Ing. Pavel Děrgel Daniela Sztrucová Obsah přednášky Výroková logika Výroky Pravdivostní ohodnocení Logické spojky Výrokově logická analýza Aristotelés

Více

Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o...

Logika 5. Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1. Logika je věda o... Logika 5 Základní zadání k sérii otázek: V uvedených tezích doplňte z nabízených adekvátní pojem, termín, slovo. Otázka číslo: 1 Logika je věda o.... slovech správném myšlení myšlení Otázka číslo: 2 Základy

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

4.9.70. Logika a studijní předpoklady

4.9.70. Logika a studijní předpoklady 4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,

Více

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy

Úvod do matematiky. Mgr. Radek Horenský, Ph.D. Důkazy Úvod do matematiky Mgr. Radek Horenský, Ph.D. Důkazy Matematika a matematické chápání jako takové je založeno na logické výstavbě. Základními stavebními prvky jsou definice, věty a důkazy. Definice zavádějí

Více

1. Predikátová logika jako prostedek reprezentace znalostí

1. Predikátová logika jako prostedek reprezentace znalostí 1. Predikátová logika jako prostedek reprezentace znalostí 1.1 Historie výrokové logiky Problém explicitních znalostí a údaj, kterých je obrovské množství, vedl ke vzniku výrokové logiky. lovk si obecn

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS

6. Logika a logické systémy. Základy logiky. Lucie Koloušková, Václav Matoušek / KIV. Umělá inteligence a rozpoznávání, LS Základy logiky Umělá inteligence a rozpoznávání, LS 2012 6-1 Logika je naukou, která se zabývá studiem lidského uvažování. Mezi základní úlohy logiky patří nalézání metod správného usuzování, tedy postupů,

Více

Logika a logické programování

Logika a logické programování Logika a logické programování témata ke zkoušce Poslední aktualizace: 16. prosince 2009 Zkouška je písemná, skládá se obvykle ze sedmi otázek (může být více nebo méně, podle náročnosti otázek), z toho

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Učební texty: http://www.cs.vsb.cz/duzi Tabulka Courses, odkaz Mathematical Učební texty, Presentace přednášek kursu Matematická logika, Příklady na cvičení + doplňkové texty.

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY I

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY I KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY I RADIM BĚLOHLÁVEK, VILÉM VYCHODIL VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM

Více

Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4.

Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4. Abstrakt Text je určen jako doplňkový k přednášce Matematická logika a Paradigmata programování 4. 1 Matematická logika - poznámky k přednáškám Radim Bělohlávek 29. května 2003 1 Co je (matematická) logika?

Více

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Úvod do logiky (VL): 8. Negace výroků

Úvod do logiky (VL): 8. Negace výroků Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (VL): 8. Negace výroků doc. PhDr. Jiří Raclavský,

Více

Studijní text. Co je výroková logika. Výrokem se již od dob staré antiky rozumí věta, která je pravdivá nebo nepravdivá, tj. má pravdivostní hodnotu.

Studijní text. Co je výroková logika. Výrokem se již od dob staré antiky rozumí věta, která je pravdivá nebo nepravdivá, tj. má pravdivostní hodnotu. Studijní text Co je výroková logika Výrokem se již od dob staré antiky rozumí věta, která je pravdivá nebo nepravdivá, tj. má pravdivostní hodnotu. Pravdivostní hodnoty jsou dvě: pravda (označujeme také

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Bakalářská matematika I

Bakalářská matematika I do předmětu Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Podmínky absolvování předmětu Zápočet Zkouška 1 účast na přednáškách alespoň v minimálním rozsahu,

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

1.4.6 Stavba matematiky, důkazy

1.4.6 Stavba matematiky, důkazy 1.4.6 tavba matematiky, důkazy Předpoklady: 1401, 1404 Pedagogická poznámka: Tato hodina se velmi liší od většiny ostatních neboť jde v podstatě o přednášku. Také ji neprobíráme v prvním ročníku, ale přednáším

Více

Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první

Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první Lehký úvod do výrokové logiky (nejen pro ty, kteří se připravují na TSP MU) část první PRACOVNÍ VERZE TEXTU, KTERÁ BUDE DÁLE UPRAVOVÁNA TEXT SLOUŽÍ PRO POTŘEBY ÚČASTNÍKŮ EMAILOVÉHO SEMINÁŘE RESENI-TSP.CZ

Více

Analytické myšlení TSP MU výroková logika II.

Analytické myšlení TSP MU výroková logika II. Analytické myšlení TSP MU výroková logika II. Lehký úvod do výrokové logiky pro všechny, kdo se hlásí na Masarykovu univerzitu Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

2 Důkazové techniky, Indukce

2 Důkazové techniky, Indukce Důkazové techniky, Indukce Náš hlubší úvod do matematických formalismů pro informatiku začneme základním přehledem technik matematických důkazů. Z nich pro nás asi nejdůležitější je technika důkazů matematickou

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Klasická predikátová logika

Klasická predikátová logika Klasická predikátová logika Matematická logika, LS 2012/13, závěrečná přednáška Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 6. 5. 2013 Symboly klasické predikátové logiky Poznámky Motivace

Více

Matematicko-fyzikální fakulta UK. Predikátová logika

Matematicko-fyzikální fakulta UK. Predikátová logika Matematicko-fyzikální fakulta UK Predikátová logika Praha 2000 Obsah 1 Úvod 3 1.1 Jazyk logiky.............................. 4 1.2 Formální systém logiky prvního řádu................ 10 2 Výroková logika

Více

4. blok část A Logické operátory

4. blok část A Logické operátory 4. blok část A Logické operátory Studijní cíl Tento blok je věnován představení logických operátorů AND, OR, NOT v jazyce SQL a práce s nimi. Doba nutná k nastudování 1-2 hodiny Průvodce studiem Při studiu

Více

Jak je důležité být fuzzy

Jak je důležité být fuzzy 100 vědců do SŠ 1. intenzivní škola Olomouc, 21. 22. 6. 2012 Jak je důležité být fuzzy Libor Běhounek Ústav informatiky AV ČR 1. Úvod Klasická logika Logika se zabývá pravdivostí výroků a jejím přenášením

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

Vysoké učení technické v Brně. Fakulta strojního inženýrství. Matematika. Příručka pro přípravu k přijímacím zkouškám

Vysoké učení technické v Brně. Fakulta strojního inženýrství. Matematika. Příručka pro přípravu k přijímacím zkouškám Vysoké učení technické v Brně Fakulta strojního inženýrství Matematika Příručka pro přípravu k přijímacím zkouškám Doc. PaedDr. Dalibor Martišek, Ph.D. RNDr. Milana Faltusová 5 Autoři: Lektorovala: Doc.

Více

1.4.2 Složené výroky konjunkce a disjunkce

1.4.2 Složené výroky konjunkce a disjunkce 1.4.2 Složené výroky konjunkce a disjunkce Předpoklady: 1401 Složené výroky = souvětí, výroky složené z více jednoduchých výroků Výrok: Číslo 5 je sudé a je prvočíslo. Sestavený ze dvou výroků: 1. výrok:

Více

09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika

09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele

Více

Pravda jako funkce - ano, nebo ne?

Pravda jako funkce - ano, nebo ne? Pravda jako funkce - ano, nebo ne? Nehledě na to, jestli jsou pravidla pro logickou platnost zabudována v našem myšlení, nebo nikoliv, máme velmi silné intuice o platnosti a neplatnosti nejrůznějších úsudků.

Více

6. blok část B Vnořené dotazy

6. blok část B Vnořené dotazy 6. blok část B Vnořené dotazy Studijní cíl Tento blok je věnován práci s vnořenými dotazy. Popisuje rozdíl mezi korelovanými a nekorelovanými vnořenými dotazy a zobrazuje jejich použití. Doba nutná k nastudování

Více

Formálnílogickésystémy pro aplikaci v informatice Martin Žáček

Formálnílogickésystémy pro aplikaci v informatice Martin Žáček ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ Formálnílogickésystémy pro aplikaci v informatice Martin Žáček PŘEDMĚTY NA OU Logické základy

Více

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek

UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE. 2009 Tomáš Michek UNIVERZITA PARDUBICE FAKULTA ELEKTROTECHNIKY A INFORMATIKY BAKALÁŘSKÁ PRÁCE 2009 Tomáš Michek Univerzita Pardubice Fakulta elektrotechniky a informatiky Program pro výuku a testování základů výrokové a

Více

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A)

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A) Funkce úvod Co je funkce Funkce je předpis, který číslu z množiny A přiřazuje právě jedno číslo z množiny B. Množina A je definiční obor funkce a množina B je obor hodnot funkce. Že tuto definici znáte,

Více

1.4.3 Složené výroky konjunkce a disjunkce

1.4.3 Složené výroky konjunkce a disjunkce 1.4.3 Složené výroky konjunkce a disjunkce Předpoklady: 010402 Složené výroky = souvětí, výroky složené z více jednoduchých výroků. Výrok: Číslo 5 je sudé a je prvočíslo. Sestavený ze dvou výroků: 1. výrok:

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

I. Úvodní pojmy. Obsah

I. Úvodní pojmy. Obsah I. Úvodní pojmy Obsah 1 Matematická logika 2 1.1 Výrok,logickéoperátory,výrokovéformuleaformy... 2 1.2 Logickávýstavbamatematiky... 3 1.2.1 Základnímetodydůkazůmatematickýchvět..... 3 1.2.2 Negacevýroků.....

Více

Seminář IVT. MS Excel, opakování funkcí

Seminář IVT. MS Excel, opakování funkcí Seminář IVT MS Excel, opakování funkcí Výuka Opakování z minulé hodiny. Založeno na výsledcích Vašich domácích úkolů, podrobné zopakování věcí, ve kterých děláte nejčastěji chyby. Nejčastější jsou následující

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Složené výroky Jsou tvořeny dvěma nebo více výroky jednoduššími. V : Číslo 8 je liché. V : 0,1 N. V : Paříž je hl. město Španělska.

Složené výroky Jsou tvořeny dvěma nebo více výroky jednoduššími. V : Číslo 8 je liché. V : 0,1 N. V : Paříž je hl. město Španělska. Výrok a jeho negace Výrokem se rozumí sdělení u něhož má smysl otázka zda je či není pravdivé. Budeme určovat tzv. pravdivostní hodnotu výroku (PH). Příklady výroků: V : Úhlopříčky čtverce jsou na sebe

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

DISKRÉTNÍ MATEMATIKA I

DISKRÉTNÍ MATEMATIKA I Fakulta pedagogická, Technická univerzita v Liberci DISKRÉTNÍ MATEMATIKA I Doc. RNDr. Miroslav Koucký, CSc. Prof. RNDr. Bohdan Zelinka, DrSc. Liberec, 4 Obsah Kap. Základní poznatky o množinách 7. Pojem

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

2. ÚVOD DO OVLÁDACÍ TECHNIKY

2. ÚVOD DO OVLÁDACÍ TECHNIKY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2. ÚVOD DO OVLÁDACÍ TECHNIKY OVLÁDACÍ TECHNIKA A LOGICKÉ ŘÍZENÍ 2.1.5 LOGICKÉ FUNKCE Cíle: Po prostudování

Více

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu:

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu: Základní pojmy výrokové logiky Výrok je každé sdělení, o němž má smysl říci, zda je pravdivé nebo nepravdivé. Přitom může nastat pouze jedna možnost. Výroky označujeme obvykle velkými písmeny A, B, C Pravdivému

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5.

Primární a sekundární výskyt označující fráze. Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. Primární a sekundární výskyt označující fráze Martina Juříková Katedra filozofie, FF UP v Olomouci Bertrand Russell, 17. - 18. 5. 2012 Russellovo rozlišení jména a popisu Označující fráze Primární a sekundární

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Lineární algebra : Úvod a opakování

Lineární algebra : Úvod a opakování Lineární algebra : Úvod a opakování (1. přednáška) František Štampach, Karel Klouda LS 013/014 vytvořeno: 19. února 014, 13:15 1 0.1 Lineární prostory R a R 3 V této přednášce si na jednoduchém příkladu

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Sémantika výrokové logiky

Sémantika výrokové logiky Sémantika výrokové logiky Matematická logika, LS 2012/13, přednáška 4 7 Libor Běhounek www.cs.cas.cz/behounek/teaching/malog12 PřF OU, 4. 25. 3. 2013 Osnova 1 Pravdivostní hodnoty v klasické výrokové logice

Více

Úvod do logiky (PL): negace a ekvivalence vět mimo logický

Úvod do logiky (PL): negace a ekvivalence vět mimo logický Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více