Lom vlny na rozhraní prostředí. lom podle Snellova zákona tlení optických
|
|
- Olga Navrátilová
- před 8 lety
- Počet zobrazení:
Transkript
1 Zobrazování - prvky
2 Lom vlny na rozhraní prostředí Časový průběh h lomu vlny rozhranní např.. světlo, vzduch lom podle Snellova zákona vlnové vysvětlen tlení optických Vlastností čočky
3 Snellův zákon n 1 n2 α β c = v = 1 µ 0ε 0 1 µ 0ε 0µ rεr = n = c c v µ rεr n = µ rεr Úhel dopadu rovná se úhlu odrazu Paprsek lomený i odražený jsou ve stejné rovině Totální odraz: β = 90 n 1 sin α = n 2 vakuum 1; vzduch 1; voda 4/3; sklo 1,5 ) Lom: n 1 < n 2 α> β.. 1. prostředí opticky řidší, lom ke kolmici n 1 > n 2 α< β.. 1. prostředí opticky hustší, lom od kolmice
4 Barevná disperze n 1 n2 α červený n = f (λ) n = µ rεr fialový Při přechodu mezi prostředími se nemění frekvence, ale vlnová délka tj. změna rychlosti c! Normální x anomální disperze Vznik barevnévady Rozklad bílého světla hranolem
5 Zobrazení čočkou
6 Spojná čočka a a 1 = f x.x =f.f y F F z, z f f a
7 Spojná čočka a a 1 = f x.x =f.f y F F z, z x f f a
8 Spojná čočka a a 1 = f x.x =f.f y F F z, z x f f a
9 Spojná čočka a a 1 = f x.x =f.f y F F z, z x f f a
10 Spojná čočka a a 1 = f x.x =f.f y F F z, z x f f a
11 Spojná čočka a a 1 = f x.x =f.f y F F y z, z x f f a a x
12 Rozpylná čočka a a 1 = f x.x =f.f y F F z, z x f f a
13 Rozpylná čočka a a 1 = f x.x =f.f y F F z, z x f f a
14 Rozpylná čočka a a 1 = f x.x =f.f y F F z, z x f f a
15 Rozpylná čočka a a 1 = f x.x =f.f y F F z, z x f f a
16 Rozpylná čočka a a 1 = f x.x =f.f y F y F z, z x f f a a
17 Soustava čoček y F F F F
18 Soustava čoček y y F F F F y
19 Soustava čoček y y F F F F y
20 Zobrazení zrcadlem
21 Fressnelova čočka F α 1) Fresnelova čočka se skládá z prizmatických mezikruží, jejichž vrcholový úhel α se volí tak, aby paprsek vycházející z ohniska F se pak šířil rovnoběžně s optickou osou. 2) Tato čočka se užívá jako velkoplošný kondenzor (zpětné projektory, reflektory, majáky, jako plochá lupa). 3) Tloušťka bývá menší asi 1 mm, šířka mezikruží asi 1mm.
22 Mezní rozlišovací schopnost ρ = λ f / D 1) Rozlišovací schopnost čoček je principiálně omezena difrakčním jevem na vstupní pupile. 2) Rozložení intenzity v ohniskové rovině při Fraunhoferově difrakce na kruhové pupile (λ=0,0005 mm, průměr pupily D=20 mm, f= 50mm). 3) Při zobrazování čočkou se podobně zobrazí každý bod předmětu v obrazové rovině (při výpočtu ρ dosadíme pak za f obrazovou vzdálenost).
23 Mezní rozlišovací schopnost y y > ρ y = ρ P2 π a b π y P1 D y 1) Každý bod předmětu předmětu se zobrazí jako ploška o průměru ρ = λb / D. 2) Velikost obrazu y = Γ y, kde Γ = b/a je zvětšení obrazu. 3) V obraze budou body P 1 a P 2 rozlišeny, když y > ρ.
24 Hloubka ostrosti R b π2 π1 π2 π1 P2 P1 D P2 P1 a a Fotografický objektiv b ρ film ρ 1) Mezní rozlišení čočky zobrazí bod předmětu na film jako kroužek o průměru ρ. Rozlišení v rovině filmu je dáno jeho rozlišovací schopností (udává se v počtu N rozlišených čar na 1 mm). 2) Pokud bude obraz bodu P2 daný kroužkem o průměru R menší než rozlišovací schopnost filmu, nepoznáme, že tento bod je rozostřený. Této situaci odpovídá hloubka ostrosti v předmětovém prostoru označená zde jako a. 3) Pro fotoaparáty je vzdálenost b přibližně rovna f. Pro hloubku ostrosti pak platí a =( CaR)/ f, kde C = f / D je clonové číslo objektivu..
25 Clonové číslo c=f/d menší clonové číslo (c) vyšší světelnost normalizovaná řada c~ 2 x x = -1; -0,5; 0; +0,5; +1; +1,5 c = 0,5; 0,7; 1; 1,4; 2; 2,8; 4; 5,6; 8; 11; 16; 22 jeden stupeň clonové číslo změna 2xosvětlení senzoru tj. poloviční expoziční čas τ osvětlení senzoru - propustnost objektivu E = 2 πτ D 4 L cos θ 4 f
26 Sférická vada bod na ose zobrazený širokým svazkem typické pro sférické nebo rovné čočky kaustická plocha (spojení ohnisek)
27 Sférická vada bod na ose zobrazený širokým svazkem typické pro sférické nebo rovné čočky kaustická plocha (spojení ohnisek) Minimalizace zacloněním vstupní pupily vhodnou orientací čočky (vypuklo ploská x plosko x vypuklá) Kombinace spojka + rozptylka (tmelený dublet rozptylka má opačný průběh vady)
28 Koma bod mimo osu zobrazený širokým svazkem kaustická plocha (spojení ohnisek) tvar podobný kometě projeví se i blízko osy! Minimalizace zacloněním vstupní pupily odstraněním spolu se sférickou v. aplanáty (aplanatické objektivy)
29 Astigmatismus bod mimo osu zobrazený úzkým svazkem různé zvětšení ve směru osy x a y neprotínání paprsků výrazné mimo osu měřeno astogmatickým rozdílem Minimalizace spojením dvou soustav s opačný astigm. rozdílem anastigmat válcová čočka
30 Zkreslení obrazu změna zvětšení pro různé vzdálenosti od osy soudkovité x poduškovité zkresl. opět monochromatická vada Minimalizace spojením dvou soustav soudk. + poduškovité vady nejdou plně odstranit, ale pouze částečně kompen.
31 Zklenutí obrazu kolmá plocha zobrazená kulovou plochou Monochromatická vada Obrazy leží na rotačně symetrické pl. Osově symetrické kroužky Na kolmém senzoru je ostrá (bodově) jen určitá oblast Ostatní oblasti jsou rozostřené (prstencové symetrické kroužky) Např. střed ostrý, okraje rozostřené Minimalizace Prohnutí (zakřivení) senzoru Zobrazení nekulovou plochou (Schmidt, Maksutov)
32 Chromatická (barevná) vada Změna indexu lomu čočku s vlnovou délkou Barevná vada Výskyt u všech prvků, kde prochází světlo s více frekvencemi skrz materiál Normální disperze n klesá pro lambda rostoucí f pro fialové světlo je kratší než pro červené Chrom. Vada zvětšení x polohy ohniska Minimalizace Použití odrazných ploch Volba materiálu s vhodným průběhem n, korekce na některé vl. délky Kombinace spojka, rozptylka Korigovaná soustava - achromáty
33 Chromatická (barevná) vada Změna indexu lomu čočku s vlnovou délkou
34 Difrakční člen Kompenzace chromatické aberace (Canon) optický prvek s difrakční mřížkou. Vykazuje přesně opačnou barevnou vadu než běžná čočka, zařazuje se proto pro korekci barevné vady.
35 Chromatická (barevná) vada Rozklad světla skleněným hranolem Delta úhel deviace Normální průběh indexu lomu Normální disperze n klesá pro lambda rostoucí Vlastnosti spektroskopie Menší disperze (počet čar na mm) Jedno spektrum (x optická mřížka)
36 Vinětace Změna osvětlení v závislosti na vzdálenosti od středu Snímek před úpravou Snímek po úpravě - Photoshop
37 Vinětace Změna osvětlení v závislosti na vzdálenosti od středu E = 2 πτ D 4 L cos θ 4 f 2 D E = c f 2 Minimalizace Vhodná konstrukce objektivu cl.číslo, průměr, ohnisko Korekce následným zpracováním θ Úhel paprsků, které vstupují do soustavy. Nevyhnutelná vada!
38 Optické přístroje
39 Dírková komora Camera obscura Historie: MuoTi (Čína) 5. stol. př. n. l. Aristoteles (hranaté díry v košíku kulatý stín) 4. stol. př. n. l. Alhazen (Arab) pozorování převráceného obrazu, šíření světla 10. stol. LeonardodaVinci Gemma Frisci (Německo) zatmění Slunce 1545 Johannes Kepler pozorování slunečních skvrn, termín Camera Obscura
40 Oko Zvláštní přednáška Minimální (rozlišení) úhlová vzdálenost objektů 1 úhlová minuta Konvenční zraková vzdálenost l = 25 cm
41 Lupa Obraz vzpřímený, skutečný a zvětšený Zvětšení lupy γ není konstantní, ale závisí na podmínkách - e l Konvenční zraková vzdálenost f Ohnisková vzdálenost lupy γ =1 l + e f
42 Dalekohledy
43 Dalekohledy
44 Dalekohledy
45 Parametry dalekohledu Velikost zorného pole tg w = h / f1 ; celé zorné pole je 2w Rozlišovací schopnost ( ) δ = 144/D, D je průměr objektivu v mm Zvětšení dalekohledu T = f 1 / f2 = tg w / tg w T = V P / V p Světelný zisk SZ = D/D OKA Poměr plochy oka a objektivu
46 Mikroskop Zvětšení mikroskopu ( x) Z = Z Z = OB OK t f OB d f OK t optický interval d konvenční zraková vzdálenost (250mm) Prázdné zvětšení (bez detailů, vlnová podstata světla)
47 Mikroskop Rozlišovací mez δ = λ nsinα α - polovina vrcholového úhlu kužele paprsků, které mohou vstoupit do objektivu n - index lomu prostředí před objektivem NA = nsinα NA numerická apertura, parametr objektivu
48 Mikroskop Numerická apertura objektivu Zvětšení objektivu NA = nsinα NA numerická apertura, parametr objektivu Z = OB t f OB
49 Mikroskop Imerzní objektiv NA numerická apertura, parametr objektivu NA = nsinα suchý objektiv n = 1 max. rozlišení: NA = 0,95, δ=0,6µm imerzní objektiv Mezi objektivem a vzorkem kapalina s n > 1 Cedrový olej n = 1,52 Do objektivu se dostanou i šikmé paprsky (mezní úhel)
50 Okuláry Huygensův okulár Ramsdenův okulár 1703 Christian Huygens Minimalizace barevné vady Zorné pole Jesse Ramsden Zorné pole až 60 Malá vzdálenost výstupní pupily od zadní čočky, nepraktické, malé zvětšení. Sférická vada, koma, zbytková barevná vada. Omezené použití.
51 Okuláry Kellnerův okulár 1849 Karl Kellner Tmelený dublet. Minimalizace vad Ramsd. ok. Rozšířený a levná varianta Zorné pole 45 Plősslův okulár Gustáv Simon Plössl Dvojitý dublet Zorné pole až 50 Univerzální a rozšířený ok.
52 Okuláry Abéův ortoskopický okulár 1880 Ernst Abbé pro firmu Zeiss Velký kontrast a kvalitní zobrazení Zorné pole 50 Barlow čočka Rozptylná soustava Prodloužení ohniskové vzdálenosti objektivu Jednoduchá i APOchromatická soustava Ovšem zhoršení kvality obrazu
53 Fotografické objektivy
54 Zorný úhel Zorný úhel objektivu a jeho ohnisková vzdálenost jsou vázany jednoduchým pravidlem: "Čím delší ohnisko objektivu, tím menší zorný úhel". Konkrétně pro 35mm film s polovinou úhlopříčky políčka filmu 21,6mm vztahem: Zorný úhel [º] = 2 * arctg ( 21,6 / f [mm] )
55 Zorný úhel Příklad perspektivy při použití objektivů s různým ohniskem.
56 Clona d=f/a 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22, 32, 45
57 Hloubka ostrosti Při vyšším clonovém číslu (zavřené cloně) prochází paprsky objektivem více "rovnoběžně" a proto stejná odchylka od roviny zaostření nezpůsobí v rovině filmu tak velké rozostření.
58 Hloubka ostrosti Při vyšším clonovém číslu (zavřené cloně) prochází paprsky objektivem více "rovnoběžně" a proto stejná odchylka od roviny zaostření nezpůsobí v rovině filmu tak velké rozostření.
59 Hloubka ostrosti Clona f/22 Clona f/2
60 Rozlišovací schopnost - MTF
61 Rozlišovací schopnost - MTF Canon EF mm f/ II USM c
62 Stabilizátor obrazu Stabilizace posunem senzoru: Minolta Dynax 7D
63 Stabilizátor obrazu Stabilizace posunem senzoru: Minolta Dynax 7D
64 Stabilizátor obrazu Stabilizace plovoucím členem: Nikkor AF VR mm F/ D ED Popis systému VR (Vibration Reduction systém) 1 - Senzor úhlového zrychlení pohybu předozadního náklonu (Pitching) 2 - Motory - pro řízení pohybu VR sestavy 3 - Pozice senzoru pohybu ve vertikální ose 4 - Skupina čoček systému VR 5 - Pozice senzoru pohybu v horizontální ose 6 - Senzor úhlového zrychlení pohybu bočního náklonu Yawing)
65 Dělení podle ohniskové vzdálenosti 1. Širokoúhlé objektivy (na obrázku vyznačeny modře a zlutě(rybí oka)) f = < 6mm; 50mm > 2. Základní (v obrázku červený) f = 50mm 3. Teleobjektivy (v obrázku zeleně a oranžově) f = < 50mm; 1200mm >
66 Dělení podle ohniskové vzdálenosti Vzdálenost objektu d ohniskovou vzdálenost f pak obraz objektu je na filmu ostrý, když vzdálenost roviny filmu r splňuje Gausovu formuli 1/d +1/r = 1/f Velikost obrazu objektu je nepřímo úměrná vzdálenosti objektu od objektivu. Velikost obrazu objektu je přímo úměrná ohniskové vzdálenosti objektivu.
67 Další parametry
68 Další parametry
69 Autofocus USM mikromotorek jeden ze systémů pohonu ostření objektivů Canon EF, využívající piezoelektrického ikromotorku. Výsledkem je velmi rychlé, prakticky neslyšitelné zaostření. USM kroužek jeden ze systémů pohonu ostření objektivů CanonEF. Využívá piezoelektrického principu a je tvořen dvěma na sebe doléhajícími kroužky, z nichž jeden se chová jako stator, druhý (pohánějící ostřící mechanismus) jako rotor.
Optika pro mikroskopii materiálů I
Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických
M I K R O S K O P I E
Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066
9. Geometrická optika
9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie
OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda
OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí
Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -
Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické
Optika. Zápisy do sešitu
Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá
Historie světelné mikroskopie. Světelná mikroskopie. Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie
Historie světelné mikroskopie Světelná mikroskopie Robert Hook (1670) a Antonie van Leeuwenhoek (1670) zakladatelé světelné mikroskopie 1 Historie světelné mikroskopie Světelná mikroskopie Robert Hook
Typy světelných mikroskopů
Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský
Rozdělení přístroje zobrazovací
Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní
Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková
Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula
VY_32_INOVACE_FY.12 OPTIKA II
VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných
Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje
Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH
SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má
Vady optických zobrazovacích prvků
Vady optických zobrazovacích prvků 1. Úvod 2. Základní druhy čoček a základní pojmy 3. Zobrazení pomocí čoček 4. Optické vady čoček 5. Monochromatické vady čoček 6. Odstranění monochromatických vad 7.
S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla
S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí
GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.
Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková
Optika nauka o světle
Optika nauka o světle 50_Světelný zdroj, šíření světla... 2 51_Stín, fáze Měsíce... 3 52_Zatmění Měsíce, zatmění Slunce... 3 53_Odraz světla... 4 54_Zobrazení předmětu rovinným zrcadlem... 4 55_Zobrazení
Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu
Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce
Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem
Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností
Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát
Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako
ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika
ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2
Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.
1. Podstata světla Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm. Vznik elektromagnetických vln (záření): 1. při pohybu elektricky nabitých částic s nenulovým zrychlením
Fyzika II. Marek Procházka Vlnová optika II
Fyzika II Marek Procházka Vlnová optika II Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení složek vlnění s různou
Světlo 1) Světlo patří mezi elektromagnetické vlnění (jako rádiový signál, Tv signál) elmg. vlnění = elmg. záření
OPTIKA = část fyziky, která se zabývá světlem Studuje zejména: vznik světla vlastnosti světla šíření světla opt. přístroje (opt. soustavami) Otto Wichterle (gelové kontaktní čočky) Světlo 1) Světlo patří
Centrovaná optická soustava
Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě
Přednáška 2_1. Konstrukce obrazu v mikroskopu Vady čoček Rozlišovací schopnost mikroskopu
Přednáška 2_1 Konstrukce obrazu v mikroskopu Vady čoček Rozlišovací schopnost mikroskopu Pavla Válová, 2018 Geometrie zobrazování spojnou čočkou: Paprsky důležité při konstrukci obrazů vytvořených čočkou*:
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:
F - Lom světla a optické přístroje
F - Lom světla a optické přístroje Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl
FYZIKA II. Marek Procházka 1. Přednáška
FYZIKA II Marek Procházka 1. Přednáška Historie Dělení optiky Základní pojmy Reflexe (odraz) Refrakce (lom) jevy na rozhraní dvou prostředí o různém indexu lomu. Disperze (rozklad) prostorové oddělení
3. Optika III. 3.1. Přímočaré šíření světla
3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na
Fokální korektory. Okuláry. Miroslav Palatka
Přednášky - Přístroje pro astronomii 1 Fokální korektory Příslušenství - doplňky Okuláry Miroslav Palatka Palatka SLO/PA1 2011 1 Fokální korektory korektory aberací v blízkosti ohniskové roviny Korektory
Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku
Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM
ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy
Optické vady. Martin Řeřábek CTU in Prague, Faculty of Electrical Engineering, Department of radioelectronics
Optické vady Martin Řeřábek (rerabem@fel.cvut.cz) CTU in Prague, Faculty of Electrical Engineering, Department of radioelectronics Co jsou optické vady (aberace)? Optické vady odchylky obrazu vytvořen
Odraz světla na rozhraní dvou optických prostředí
Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný
OPTIKA - NAUKA O SVĚTLE
OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790
Fyzika 2 - rámcové příklady Geometrická optika
Fyzika 2 - rámcové příklady Geometrická optika 1. Stanovte absolutní index lomu prostředí, jestliže rychlost elektromagnetických vln v daném prostředí dosahuje hodnoty 0,65c. Jaký je rozdíl optických drah
ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika
ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí
Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky
Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní
Optika OPTIKA. June 04, 2012. VY_32_INOVACE_113.notebook
Optika Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický
5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211
5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,
3. OPTICKÉ ZOBRAZENÍ
FYZIKA PRO IV. ROČNÍK GYMNÁZIA - OPTIKA 3. OPTICKÉ ZOBRAZENÍ Mgr. Monika Bouchalová Gymnázium, Havířov-Město, Komenského 2, p.o. Tento digitální učební materiál (DUM) vznikl na základě řešení projektu
Lupa a mikroskop příručka pro učitele
Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina
Elektromagnetické vlnění
Elektromagnetické vlnění kolem vodičů elmag. oscilátoru se vytváří proměnné elektrické i magnetické pole http://www.walter-fendt.de/ph11e/emwave.htm Radiotechnika elmag vlnění vyzářené dipólem můžeme zachytit
Základní pojmy. Je násobkem zvětšení objektivu a okuláru
Vznik obrazu v mikroskopu Mikroskop se skládá z mechanické části (podstavec, stojan a stolek s křížovým posunem), osvětlovací části (zdroj světla, kondenzor, clona) a optické části (objektivy a okuláry).
Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky
Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.
Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi
LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 6) Snímání obrazu Petr Lobaz, 24. 3. 2009 OBRAZOVÁ DATA OBRAZ statický dynamický bitmapový vektorový popis 2D 3D MHS Snímání obrazu 2 / 41 ZPRACOVÁNÍ OBRAZU pořízení
Bodový zdroj světla A vytvoří svazek rozbíhajících se paprsků, které necháme projít optickou soustavou.
Optické zobrazení Optické zobrazení je proces, kterým optické soustavy vytvářejí obrazy reálných předmětů. Tyto soustavy mění chod světelných paprsků. Obsahují zrcadla, čočky, odrazné hranoly aj. Princip
Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.
Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost
Světlo x elmag. záření. základní principy
Světlo x elmag. záření základní principy Jak vzniká a co je to duha? Spektrum elmag. záření Viditelné 380 760 nm, UV 100 380 nm, IR 760 nm 1mm Spektrum elmag. záření Harmonická vlna Harmonická vlna E =
Zákon lomu světla (Snellův zákon) lze matematicky vyjádřit vztahem: , n2. opticky řidšího do prostředí opticky hustšího, láme se ke kolmici.
26. Optické zobrazování lomem a odrazem, jeho využití v optických přístrojích Světlo je elektromagnetické vlnění, které můžeme vnímat zrakem. Rozsah jeho vlnových délek je 390 nm 760 nm. Prostředí, kterým
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM
MĚŘENÍ VLNOVÝCH DÉLEK SVĚTLA MŘÍŽKOVÝM SPEKTROMETREM Difrakce (ohyb) světla je jedním z několika projevů vlnových vlastností světla. Z těchto důvodů světlo při setkání s překážkou nepostupuje dále vždy
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1
Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické
7.ročník Optika Lom světla
LOM SVĚTLA. ZOBRAZENÍ ČOČKAMI 1. LOM SVĚTLA NA ROVINNÉM ROZHRANÍ DVOU OPTICKÝCH PROSTŘEDÍ Sluneční světlo se od vodní hladiny částečně odráží a částečně proniká do vody. V čisté vodě jezera vidíme rostliny,
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,
Laboratorní práce č.9 Úloha č. 8. Závislost indexu lomu skla na vlnové délce světla Měření indexu lomu refraktometrem:
Truhlář Michal 3.. 005 Laboratorní práce č.9 Úloha č. 8 Závislost indexu lomu skla na vlnové délce světla Měření indexu lomu refraktometrem: T p 3, C 30% 97,9kPa Úkol: - Proveďte justaci hranolu a změřte
Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů
Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY. 6) Snímání obrazu
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 6) Snímání obrazu Petr Lobaz, 23. 3. 2010 OBRAZOVÁ DATA OBRAZ statický dynamický bitmapový vektorový popis 2D 3D MHS Snímání obrazu 2 / 40 ZPRACOVÁNÍ OBRAZU pořízení
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA
Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA
Optická (světelná) Mikroskopie pro TM I
Optická (světelná) Mikroskopie pro TM I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Typy klasických biologických a polarizačních mikroskopů Přehled součástí
A HYPERMEDIÁLNÍ MULTIMEDIÁLNÍ SYSTÉMY OBRAZOVÁ DATA SVĚTLO ZPRACOVÁNÍ OBRAZU OBRAZ. Jak pořídit statický obraz
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 2) Jak pořídit statický obraz Petr Lobaz, 19. 2. 2008 ZPRACOVÁNÍ OBRAZU pořízení fotografie (kresba) + scan digitální fotografie rastrování vektorového popisu korekce
Zadání. Pracovní úkol. Pomůcky
Pracovní úkol Zadání 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. Odhadněte maximální chybu měření. 2. Změřte zvětšení a zorná pole
2. Optika II. 2.1. Zobrazování dutým zrcadlem
2. Optika II Popis stavebnice: jedná se o žákovskou verzi předcházející stavebnice, umístěné v lehce přenosném dřevěném kufříku. Experimenty, které jsou uspořádány v příručce, jsou určeny především pro
DUM č. 5 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 5 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 05.04.2014 Ročník: 4B Anotace DUMu: Písemný test navazuje na témata probíraná v hodinách
Praktická geometrická optika
Praktická geometrická optika Václav Hlaváč České vysoké učení technické v Praze Fakulta elektrotechnická, katedra kybernetiky Centrum strojového vnímání http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz
Neživá příroda I. Optické vlastnosti minerálů
Neživá příroda I Optické vlastnosti minerálů 1 Charakter světla Světelný paprsek definuje: vlnová délka (λ): vzdálenost mezi následnými vrcholy vln, amplituda: výchylka na obě strany od rovnovážné polohy,
VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník
VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy
Měření zvětšení dalekohledu a ohniskové vzdálenosti objektivů 1. Cíl úlohy 2. Úkoly Seznámení se základními prvky a stavbou teleskopických dalekohledů. A) Změřte ohniskovou vzdálenost předložených objektivů
Praktická geometrická optika
Praktická geometrická optika Václav Hlaváč České vysoké učení technické v Praze Centrum strojového vnímání (přemosťuje skupiny z) Český institut informatiky, robotiky a kybernetiky Fakulta elektrotechnická,
Historické brýle. 1690: brýle Norimberského stylu se zelenými čočkami. 1780: stříbrné brýle. konec 18. století: mosazné obruby, kruhové čočky
BRÝLOVÉ ČOČKY Historické brýle 1690: brýle Norimberského stylu se zelenými čočkami 1780: stříbrné brýle středověký čtecí kámen konec 18. století: mosazné obruby, kruhové čočky Bikonvexní a bikonkávní čočky
Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ. určeno pro studenty ČZU v Praze
Mikroskop ECLIPSE E200 STUDENTSKÝ NÁVOD K POUŽITÍ určeno pro studenty ČZU v Praze Mikroskop Nikon Eclipse E200 Světelný mikroskop značky Nikon (Eclipse E200) používaný v botanické cvičebně zvětšuje při
Přednáška č.14. Optika
Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)
Defektoskopie a defektometrie
Defektoskopie a defektometrie Aplikace počítačového vidění Karel Horák Skupina počítačového ového vidění Ústav automatizace a měřicí techniky Fakulta elektrotechniky a komunikačních technologií Vysoké
OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA
OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA Stavbu lidského oka znáte z vyučování přírodopisu. Zopakujte si ji po dle obrázku. Komorová tekutina, oční čočka a sklivec tvoří
R8.1 Zobrazovací rovnice čočky
Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt
FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška
Úloha 6: Geometrická optika
Úloha 6: Geometrická optika FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 1.3.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník: Štěpán Timr
Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr
Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření
Seznam součástek. A. Seznam prvků soupravy GON. Rozměry (cm) nebo Poloměry* (cm) Značka Název prvku
Seznam součástek Sklo, ze kterého jsou zhotoveny optické prvky, má index lomu 1, 5 a tloušťku 15 mm. V následujících tabulkách uvádíme seznam prvků v soupravách GON a GON+ a absolutní hodnoty velikostí
1. Teorie mikroskopových metod
1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno
Sada Optika. Kat. číslo 100.7200
Sada Optika Kat. číslo 100.7200 Strana 1 z 63 Všechna práva vyhrazena. Dílo a jeho části jsou chráněny autorskými právy. Jeho použití v jiných než zákonem stanovených případech podléhá předchozímu písemnému
Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití
OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla
Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová
Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která
od 70mm (měřeno od zadní desky s axiálním výstupem) interní prvky opatřeny černou antireflexní vrstvou, centrální trubice s vnitřní šroubovicí
Model QM-1 (s válcovým tubusem) QM-1 je základním modelem řady distančních mikroskopů Questar, které jsou celosvětově oceňovanými optickými přístroji zejména z hlediska extrémně precizní optiky a mechanického
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Zobrazení čočkou
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zobrazení čočkou Čočky, stejně jako zrcadla, patří pro mnohé z nás do běžného života. Někdo nosí brýle, jiný
Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov
Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou
5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102
5..3 Lom světla Předpoklady: 50, 50 Pokus s mincí a miskou: Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře ke mně, miska jim nesmí překážet v cestě. Posunu misku
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU MĚŘICKÝ SNÍMEK Základem měření je fotografický snímek, který je v ideálním případě
ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk
ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY
MULTIMEDIÁLNÍ A HYPERMEDIÁLNÍ SYSTÉMY 5) Statický bitmapový obraz (poprvé) Petr Lobaz, 17. 3. 2004 OBRAZOVÁ DATA OBRAZ statický dynamický bitmapový vektorový popis 2D 3D 2 /33 ZPRACOVÁNÍ OBRAZU pořízení
Jednoduchý elektrický obvod
21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod
rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9.
1 Transport světla Pro popis šíření světla se může použít více metod v závislosti na okolnostech. Pokud je vlnová délka zanedbatelně malá nebo překážky, které klademe světlu do cesty, jsou mnohem větší
7. Světelné jevy a jejich využití
7. Světelné jevy a jejich využití - zápis výkladu - 41. až 43. hodina - B) Optické vlastnosti oka Oko = spojná optická soustava s měnitelnou ohniskovou vzdáleností zjednodušené schéma oka z biologického
6. Geometrická optika
6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil