Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij"

Transkript

1 Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), které ověřují, zda reálné četnosti získané statistickým šetřením se statisticky významně odlišují od očekávaných četností, které vypočteme na základě platnosti nulové hypotézy. Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když se pozorované četnosti n ij budou významně lišit od očekávaných četností e ij.

2 Testovým kritériem je statistika, která má asymptoticky (tj. pro dostatečně velké četnosti) rozdělení χ 2 s (r - 1)(s - 1) stupni volnosti. r s ( nij eij ) 2 χ = e i= 1 j= 1 Stupeň volnosti - je počet řádků (sloupců) tabulky, do kterých je možno vložit libovolnou hodnotu a přitom dodržet stanovený řádkový (sloupcový) součet. Dostatečně velké četnosti jsou takové, kdy všechny očekávané četnosti jsou větší než 1 (>1) a naprostá většina očekávaných četností (alespoň 80%) je > 5. ij 2

3 2 Je-li testovací statistika větší než "kritická" hodnota rozdělení χ pro zvolenou hladinu významnosti, zamítáme nulovou hypotézu o shodě empirického a teoretického rozložení. Riziko, že hypotézu zamítneme neoprávněně, se rovná zvolené hladině významnosti α. V opačném případě přijímáme hypotézu o shodě. PŘÍKLAD: Chceme ověřit, zda hrací kostka je fair, tzn. že všech 6 možných výsledků má stejnou pravděpodobnost. Házíme tedy opakovaně kostkou a zaznamenáme četnosti dosažených výsledků: kód Suma počet hodů Testujeme nulovou hypotézu, že pravděpodobnosti p i = 1/6. Teoretické četnosti e i, které bychom očekávali za platnosti nulové hypotézy ze 120 hodů, vypočtem tedy jako e i = n p i = 120 (1/6) = 20.

4 Nulovou hypotézu zamítneme, když se pozorované četnosti n i budou významně lišit od očekávaných četností e i. k 2 ( ni ei ) Testovým kritériem je statistika X = e kde k je počet možných výsledků. V našem příkladu s hrací kostkou k = 6 Znamená to, že H 0 zamítneme, pokud testová statistika je větší než kritická hodnota rozdělení χ 2 pro zvolenou hladinou významnosti α. Řešení najdete v souboru 6c_hazeni_kostkou.xls (Hodnota testové statistiky je 7,7, kritická hodnota 11,07 - testová statistika neleží v kritickém oboru a nulovou hypotézu nemůžeme zamítnout). i= 1 i

5 Na základě našeho experimentu jsme prokázali, že kostka je fair, tj. že pro ni platí zákonitosti binomického rozdělení a výsledky hodů byly ovlivněny pouze náhodou. Rozdělení χ 2 má ještě jednu zvláštnost: kromě krajně vysoké pravděpodobnosti obsahuje i krajně nízké pravděpodobnosti. Představme si, že bychom při 120 hodech kostkou hodili přesně 20x jedničku, 20x dvojku, 20x trojku, 20x čtyřku, 20x pětku a 20x šestku. Na první pohled vidíme, že by se jednalo o velmi zvláštní náhodu.

6 Vypočtená statistika odchylek by byla 0,0. Počet stupňů volnosti je 5. Podíváme-li se do tabulek distribuční funkce χ 2 na hodnotu funkce pro pravděpodobnost 0,01, najdeme kritickou hodnotu statistiky 0,55 (nebo v programu funkci CHISQ.INV(0,01;5) = 0,554. Vidíme, že naše "vypočtená statistika = 0" nestačí na kritickou hodnotu a že požadovaný výsledek se hodí až příliš dobře, takže nebyl dán prostor náhodě a vzbuzuje to podezření, že se neuplatnilo binomické rozdělení a "hody byly zmanipulovány". Najdete v souboru 6c_hazeni_kostkou.xls na listu Hrací kostka-opačný test

7 Testy dobré shody pro spojité veličiny Pro spojité veličiny a spojitá rozdělení je test dobré shody podobný, jen postup o trochu pracnější. Testujeme shodu rozdělení našich pozorovaných hodnot s nějakým spojitým teoretickým rozdělením, známe tedy distribuční funkci F(x) tohoto rozdělení. Potřebujeme zjistit empirické četnosti n i a očekávané četnosti e i, tzn. předtím musíme obor hodnot empirických dat rozdělit na intervaly, v nich zjistit četnosti, spočítat očekávané četnosti a vyhodnotit testové kriterium k 2 ( ni ei ) X = e Současně potřebujeme, aby očekávané četnosti byly větší než 5. (Zjednodušeně - viz dále) V příkladech používáme tuto symboliku: označíme-li očekávané četnosti jako O i a skutečně pozorované četnosti jako P i, k 2 ( Pi Oi ) pak výpočet testovací statistiky T zapíšeme: T = O i= 1 i= 1 i i

8 OBECNÁ KONTINGENČNÍ TABULKA - sdružené rozdělení dvou diskrétních veličin Máme-li dvě nominální veličiny X, Y, kde X může nabývat hodnot x 1,x 2,..., x r a veličina Y může nabývat hodnot y 1, y 2,..., y s, pak rozdělení četností pozorovaných hodnot můžeme vyjádřit kontingenční tabulkou: Proměnná X v řádcích Proměnná Y - ve sloupcích y 1 y 2 y 3 y s Celkem x 1 n 11 n 12 n 13 n 1s n 1. x 2 n 21 n 22 n 23.. n 2. x 3 n 31 n 32 n 3.. n 3. X r n r1.... n rs n r. Celkem n.1 n.2 n.3 n.s n..

9 Hodnoty n ij jsou absolutní četnosti, tzn. počty sledovaných objektů, kdy veličina X má hodnotu x i a současně veličina Y má hodnotu y j. Četnosti v posledním řádku a v posledním sloupci se nazývají marginální a jsou definovány jako řádkové (sloupcové) součty. Obvyklou úlohou statistické analýzy je rozhodnout, zda náhodné veličiny X a Y jsou nezávislé či mezi nimi existuje nějaký vtah a také nějakou vhodnou charakteristikou případnou závislost kvantifikovat. Test nezávislosti dvou nominálních náhodných veličin X, Y je založen na tom, že můžeme odhadnout četnosti, které bychom pozorovali, kdyby opravdu veličiny X, Y nezávislé byly. Jsou-li X, Y nezávislé, pak pravděpodobnost jevu, že současně nastane jev X = x i a Y = y j lze vyjádřit jako součin P ( X = xi ) ( Y = yj) = P( X = xi ) P( Y = yj) kde i = 1, 2,,r, j = 1, 2,,s

10 Očekávané četnosti vypočteme z marginálních řádkových a sloupcových četností tak, že očekávanou četnost pro i-tý řádek a j-tý sloupec vypočteme jako součin (n i.. n.j ) dělený počtem všech pozorování n Nulovou hypotézu H 0, že veličiny X, Y jsou nezávislé, zamítneme, když se pozorované četnosti n ij budou významně lišit od očekávaných četností e ij. ni. n. j 2 r s 2 ( n r s ij ) ( n Testovým kritériem je statistika ij eij ) 2 n.. χ = = n i= j= eij i= j= i n j n která má asymptoticky (tj. pro dostatečně velké četnosti) rozdělení χ 2 s (r - 1)(s - 1) stupni volnosti. n i. n n... j..

11 Při užití tohoto testu je nutno posoudit, zda je splněna podmínka, že četnosti v tabulce jsou dostatečně velké. Obvykle se pro užití tohoto testu požaduje podmínka, aby všechny očekávané četnosti e ij > 1 a naprostá většina (alespoň 80%) očekávaných četností byla e ij > 5. Kritickým oborem proto tento test nezávislosti je : X Є [ χ 2 (r-1)(s-1) (α) ; + ) Zamítneme-li hypotézu o nezávislosti veličin X a Y, pak nás obvykle zajímá, které pozorované četnosti (která políčka kontingenční tabulky) se od četností očekávaných při nezávislosti veličin významně odchylují. Říkáme, že vyhledáváme zdroje závislosti. Jedna z nejjednodušších metod posouzení těchto zdrojů závislosti je posouzení příspěvků jednotlivých políček tabulky k hodnotě testové statistiky r s 2 ( nij eij ) 2 χ = e i= 1 j= 1 ij

12 Velikost tohoto příspěvku je významná, když rozdíl pozorované a očekávané četnosti nelze považovat za náhodný, tj. tehdy, když pro obvykle užívanou hodnotu α = 0,05 je χ 2 = 3,84 (viz tabulky χ 2 rozdělení pro F(x) = 0,95). Pohodlnější je užít tzv. standardizovaná residua nij eij, která mají přibližně normované normální rozdělení, eij tzn. významná jsou políčka s absolutní hodnotou standardizovaných residuí větší než 2. Užijeme-li standardizovaná residua, podle jejich znaménka vidíme, zda pozorovaná četnost je větší či menší než očekávaná. Příklad: Máme posoudit, zda veličiny Lokalita a Odruda (data BI97) jsou nezávislé. Jinými slovy, zda zastoupeni obou odrůd ve všech čtyřech lokalitách můžeme považovat za shodné. Nulová hypotéza H 0 : Lokalita a Odruda jsou nezávislé veličiny. Výpočet provedeme s pomocí programu NCSS.

13 Cross Tabulation Report Counts Section lokal odruda Total Total Expected Counts Assuming Independence Section lokal odruda Total 1 14,8 14, , ,2 5,9 8 6,8 27 Total Chi-Square Contribution Section lokal odruda Total 1 1,83 0,09 0,21 0,30 2,42 2 4,36 0,21 0,50 0,71 5,78 Total 6,19 0,29 0,71 1,01 8,20 Chi-Square Statistics Section Chi-Square 8,2002 Degrees of Freedom 3 Probability Level 0,04205 Reject Ho WARNING: At less one cell had a value less than 5 V řádku Chi-Square vidíme, že hodnota testové statistiky je 8,20, odpovídající p = 0,042, tedy je menší než hladina významnosti a = 0,05. Hypotézu o nezávislosti veličin Lokalita a Odruda můžeme zamítnout, k čemuž nás ostatně nabádá i vysvětlující text ve výstupu, Reject Ho.

14 Všechny očekávané četnosti jsou větší než 5, jak vidíme v části Expected Counts Assuming Independence Section. Podíváme-li se na zdroje závislosti (Chi-Square Contribution Section), vidíme, že pouze v jednom políčku (odruda = 2, lokalita = 1) je hodnota příspěvku políčka větší než 3,84. Celkově můžeme shrnout, že hypotézu o nezávislosti veličin Lokalita a Odruda jsme sice zamítli na hladině významnosti a = 0,05, ale jen s odřenýma ušima (hodnota p = 0,042 je jen o málo menší, než hladina významnosti) a navíc pouze jedno políčko tabulky přispívá významně k celkové hodnotě testové statistiky, takže zjištěnou závislost veličin Lokalita a Odruda můžeme přičítat jen malé četnosti odrůdy 2 v lokalitě 1.

15 Standardizované příspěvky políček odruda Total 1 1,35-0,29-0,46-0,55 0,05 2-2,09 0,45 0,71 0,84-0,08 Total - 0,74 0,16 0,25 0,30-0,03 Pokud příspěvky políček standardizujeme (viz vzorec pro výpočet standardizovaných reziduí), můžeme najít stejné políčko (odrůda 2 v prvním sloupci), kde je příspěvek políčka výrazně vyšší zde znamená odchylku více než 2σ, protože porovnáváme se standardizovaným normálním rozdělením. Jelikož víme, že test je asymptotický, tedy pouze přibližný, je nutno se závěrem, že sledované veličiny nejsou nezávislé, zacházet velmi opatrně.

16 KONTINGENČNÍ TABULKA 2 x 2 Kontingenční tabulky často používáme v EPIDEMIOLOGII. Velmi často používáme právě tabulku 2 x 2 k zjištění, zda - výskyt vybrané diagnózy závisí na uvažované expozici - léčba nebo změna životního stylu má vliv na zdraví jedince - osvětové programy ovlivnily zdraví populace Náhodná veličina Y - např. onemocnění Náhodná veličina X - obvykle expozice ANO NE Celkem ANO a b a + b NE c d c + d Celkem a + c b + d a + b + c + d = n

17 K popisu četností v této tzv. čtyřpolní tabulce používáme pouze 4 hodnoty, proto je i pro zápis zjednodušeného výpočtu označujeme a, b, c, d χ 2 test nezávislosti v tabulce 2 x 2 Vzorec pro výpočet statistiky chí-kvadrát se zjednoduší na tvar: 2 2 ( ad bc) χ = n ( a + b)( a + c)( b + d)( c + d) Na příkladu testování vrozené vady kyčlí u dívek a chlapců (viz "6d_vady_kycli.xls") vidíme, že pro velké počty pozorovaných (a očekávaných) hodnot vychází CHITEST stejně jako výpočet podle zjednodušeného vzorce.

18 Pro malé pozorované (očekávané) četnosti můžeme test nezávislosti zpřesnit tzv. Yatesovou korekcí. Yatesova korekce 2 χ n 2 ( ad bc ) = 2 ( a + b)( a + c)( b + d)( c + d) n Tato veličina má opět rozdělení chí-kvadrát s jedním stupněm volnosti

19 Fischerův exaktní test Oba předchozí testy byly pouze přibližné a pro malé četnosti nejsou vhodné. V případě, že nejméně jedna očekávaná četnost je < 5 používáme Fischerův exaktní faktoriálový test. Spočívá v tom, že sestrojíme všechny možné tabulky, které mají stejné marginální četnosti jako původní tabulka a vybereme z nich ty, které jsou "vzdálenější" od hypotézy nezávislosti než původní tabulka, tj. jsou méně pravděpodobnější, pokud skutečně platí hypotéza nezávislosti. Sečteme-li pravděpodobnosti těchto tabulek, získáme tak součet P, který je hodnotou Fischerova testu. V praxi se tento přesný test používá opravdu pro malé četnosti, protože s rostoucím n roste dramaticky i počet možných tabulek. Pokud i nejmenší hodnota ve čtyřpolní tabulce je dostatečně velká (> 5), zmíněné testy chí-kvadrát nebo Yatesova korekce jsou pro tyto četnosti dostatečně blízké přesnému testu.

20 Princip Fisherova exaktního testu si ukážeme na příkladu této tabulky: Sportuje ano ne Suma ano ne Suma ano ne Suma ano ne Suma Kouří ano ano ano ano ne ne ne ne Suma Suma Suma Suma V první tabulce jsou naměřené četnosti u 32 studentů právnické fakulty a chceme zjistit, zda spolu souvisí sport a kouření u studentů. Četnosti jsou pro test chí-kvadrát malé - nelze jej použít. Vypočteme proto pravděpodobnost pro všechny tabulky podle vzorce: ( a + b)!( c + d)!( a + c)!( b + d)! p i = n! a! b! c! d!, kde n je celková četnost v tabulce a a,b,c,d je označení políček zleva doprava a dolů. Výsledná pravděpodobnost se určí jako součet pravděpodobností ve všech tabulkách, tj. p p = i

21 V našem příkladu je to p = 0, , , , = 0,041 Vypočtený výsledek nám sděluje, že první tabulka a tabulky ještě méně příznivé pro platnost hypotézy H 0 mohou nastat s pravděpodobností 0,041, tj. 4,1 %. Na hladině významnosti α = 0,05 tedy zamítáme nulovou hypotézu a přijímáme alternativní hypotézu, že sportování a kouření u studentů spolu souvisí.

22 MÍRY VZTAHU DVOU ALTERNATIVNÍCH VELIČIN Předchozí teorie testovala jen závislost nebo nezávislost dvou diskrétních veličin. Neříkala však nic o míře závislosti. Uvažujme opět čtyřpolní tabulku. a Vzorcem a + b vypočteme pravděpodobnost onemocnění u skupiny exponovaných, vzorcem c c + d u neexponovaných. Náhodná veličina Y - např. onemocnění Náhodná veličina X - obvykle expozice ANO NE Celkem ANO a b a + b NE c d c + d Celkem a + c b + d a + b + c + d

23 RELATIVNÍ RIZIKO Relativní riziko RR je podíl pravděpodobnosti onemocnění u exponovaných a neexponovaných: RR = a a + b c c + d = a ( c + d) c ( a + b) Pokud platí model nezávislosti, je očekávaná četnost v prvním políčku ( a + b)( a + c) O11 = a + b + c + d, analogicky vypočteme očekávané četnosti v ostatních polích a dosadíme je do vzorce pro relativní riziko. Dostaneme RR=1. Pokud nemoc nezávisí na expozici, RR -> 1. Pokud je onemocnění u exponovaných osob častější než u neexponovaných, je RR > 1. Opačně RR < 1 by znamenalo, že onemocnění nastalo častěji u osob neexponovaných.

24 KŘÍŽOVÝ POMĚR, PODÍL ŠANCÍ, SÁZKOVÝ POMĚR - anglicky ODDS RATIO Tato charakteristika (častěji používaná v anglosaských zemích) není založena na pojmu pravděpodobnosti, ale na pojmu ŠANCE NA ONEMOCNĚNÍ. Termín je převzat z oblasti sázek, kde se nepoužívá termín pravděpodobnost výhry, ale ŠANCE NA VÝHRU, tj. poměr mezi "výhrou" a "prohrou". Vypočteme podíl nemocných a zdravých a c u exponovaných osob i neexponovaných osob. Křížový poměr je b d Křížový poměr, podobně jako relativní riziko, je roven jedné, pokud jsou sledované veličiny nezávislé. a OR = b = c d ad bc

25 Jinak se ale hodnoty RR a OR liší: OR nabývá v případě kladné závislosti (vzniku onemocnění na expozici) vyšší hodnoty než než RR. V případě, že onemocnění nastalo častěji u osob neexponovaných, je OR nižší než RR (obě hodnoty jsou menší než jedna).

26 HYPOTÉZA SYMETRIE Mc Nemar Zatím jsme se zabývali hypotézou nezávislosti, ale v praxi nás zajímají i jiné hypotézy. Chceme například porovnat efekt léčby. Vlastně chceme pomocí tabulky četností provést obdobu "párového" testu, přestože nemáme jednotlivé páry hodnot, ale pouze počty naměřených hodnot. Na rozdíl od hypotézy nezávislosti zde naopak víme, že veličiny jsou závislé, protože jsme měřili na stejných datech. Představme si, že zjišťujeme, zda u dětí vybraného okresu závisí výskyt infektů horních cest dýchacích na věku. Výskyt onemocnění byl zjišťován v šesti měsících a ve třech letech věku.

27 Použití testu nezávislosti chí-kvadrát by bylo zcela chybné. U dětí, které byly zdravé v 6 měsících je zřejmě vyšší pravděpodobnost, že budou zdravé i ve 3 letech a naopak. Příslušné pozorované hodnoty jsou v tabulce: Onemocnění v 3. roce věku Onemocnění v 6. měsíci věku ANO NE Celkem ANO NE Celkem Nás spíše zajímá, zda jsou stejné pravděpodobnosti že děti, které byly zdravé v 6 měsících, jsou nemocné ve 3 letech a že děti, které byly nemocné v 6 měsících, jsou zdravé ve 3 letech. Porovnáváme tedy políčka b a c v kontingenční tabulce.

28 Hypotéza vlastně ověřuje, zda je tabulka symetrická kolem hlavní úhlopříčky - platí-li p 12 = p 21. Takováto hypotéza je odlišná od hypotézy nezávislosti. Navíc nás v podstatě nezajímají hodnoty v polích a, d (p 11 a p 22 ), zajímají nás pouze případy, kdy došlo ke změně v jednom nebo druhém směru. 2 ( b c) K tomuto testu používáme tzv. Mc Nemarův test symetrie: M = b + c, kde M má rozložení chí-kvadrát s jedním stupněm volnosti viz 6e_symetrie_mcnemar.xls. Pokud test vyjde statisticky významný, znamená to, že tabulka není symetrická podle hlavní osy významně převažují děti, kterých je více (které nebyly nemocné ve 3 měsících, ale byly nemocné ve 3 letech).

29 Na podobném principu jako Yatesova korekce je založena přesnější varianta Mc 1 2 ( b c ) Nemarova testu: M = 2 b + c, kde M má opět rozložení chí-kvadrát s jedním stupněm volnosti. Testujeme vlastně hypotézu, zda pravděpodobnosti π 1, jejíž odhad je a π 2, jejíž odhad je c p2 = b + c, se rovnají. p 1 = b b + c Protože π 1 +π 2 = 1, testujeme hypotézu, že π 1 = 0,5 O Mc Nemarově testu se často hovoří jako o testu pro "párová" data.

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy.

Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Pozn. přeskakuji zde popisnou statistiku, jinak by měla být součástí každé analýzy. Z pastí na daném území byla odhadnuta abundance několika druhů: myšice lesní 250, myšice křovinná 200, hraboš polní 150,

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

05/29/08 cvic5.r. cv5.dat <- read.csv(cvic5.csv) Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Statistika. Semestrální projekt

Statistika. Semestrální projekt Statistika Semestrální projekt 18.5.2013 Tomáš Jędrzejek, JED0008 Obsah Úvod 3 Analyzovaná data 4 Analýza dat 6 Statistická indukce 12 Závěr 15 1. Úvod Cílem této semestrální práce je aplikovat získané

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU

KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU KVANTITATIVNÍ METODY V PEDAGOGICKÉM VÝZKUMU RADEK KRPEC CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVEN 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004.

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004. ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 04 Marie Budíková Katedra aplikované matematiky, Přírodovědecká fakulta, Masarykova

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

ADZ základní statistické funkce

ADZ základní statistické funkce ADZ základní statistické funkce Základní statistické funkce a znaky v softwaru Excel Znak Stručný popis + Sčítání buněk - Odčítání buněk * Násobení buněk / Dělení buněk Ctrl+c Vyjmutí buňky Ctrl+v Vložení

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

IV. CVIENÍ ZE STATISTIKY

IV. CVIENÍ ZE STATISTIKY IV. CVIENÍ ZE STATISTIKY Vážení studenti, úkolem dnešního cviení je nauit se analyzovat data kvantitativní povahy. K tomuto budeme opt používat program Excel 2007 MS Office. 1. Jak mžeme analyzovat kvantitativní

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více