Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo"

Transkript

1 Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: Klasifikace: Část I Lineární harmonický oscilátor 1 Zadání 1. Změřte tuhost pružiny statickou metodou a vypočtěte vlastní úhlovou frekvenci pro dvě různá závaží. 2. Změřte časový průběh tlumených kmitů pro dvě závaží, ověřte platnost rovnice (14) v [1] proložením dat a z parametrů proložené vypočtěte vlastní frekvenci volného oscilátoru. 3. Změřte závislost Amplitudy vynucených kmitů na frekvenci vnější síly v okolí rezonance pro dvě závaží a proložením dat ověřte platnost vztahu (19) v [1], z parametrů proložení vypočtěte vlastní frekvenci volného oscilátoru. 4. Porovnejte výsledky vlastní frekvence ze všech tří předchozích úkolů. 2 Vypracování 2.1 Použité přístroje Experimentální stojan s pružinou a motorkem, tlumící magnety, rotační pohybové senory Pasco, sada závaží, regulovatelný zdroj 0-20 V, PC, program DataStudio a Gnuplot, analytické váhy. 2.2 Teoretický úvod Potenciál lineárního harmonického oscilátoru můžeme zapsat rovnicí U(x) = 1 2 kx2. (1) V našem případě je harmonickým oscilátorem závaží zavěšené na pružině. Konstanta k má pak význam tuhosti pružiny, pro kterou platí Hookův zákon F = kx, (2) kde x je prodloužení pružiny vyvolané působením síly F Netlumené kmity Pohybová rovnice pro těleso hmotnosti m příslušná potenciálu (1) má tvar mẍ + kx = 0, (3) respektive k kde ω = m. Obecné řešení pohybové rovnice (4) je ẍ + ω 2 x = 0, (4) x(t) = C 1 cos(ωt) + C 2 sin(ωt), (5) 1

2 které je možné přepsat jako kde A = C1 2 + C2 2 frekvence. x(t) = A cos(ωt + α), (6) a tan α = C2 C 1. A má pak význam amplitudy oscilací, α je počáteční fáze a ω je úhlová Netlumené kmity s budící silou Působí-li na harmonický oscilátor vnější síla F (t), nabývá příslušná pohybová rovnice tvaru ẍ + ω 2 x = F (t) m. (7) Řešením této rovnice je součet obecného řešení homogenní rovnice a partikulárního řešení nehomogenní rovnice. Uvažujeme-li periodickou sílu F (t) = f cos(γt + β), (8) máme partikulární řešení Tedy celkové řešení zní Tuto rovnici můžeme přepsat na kde z limity γ ω dostáváme x = B cos(γt + β), kde B = f 1 m ω 2 γ 2. (9) x(t) = A cos(ωt + α) + B cos(γt + β). (10) x(t) = Ã cos(ωt + α) + f 1 m ω 2 [cos(γt + β) cos(ωt + β)], (11) γ2 f x(t) = Ã cos(ωt + α) + t sin(ωt + β). (12) 2mω Při rezonanci tedy s časem amplituda oscilací netlumeného systému roste lineárně Tlumené kmity Tlumení harmonického oscilátoru zahrneme do pohybové rovnice třecí silou, která závisí na rychlosti kmitání. mẍ = kx hẋ. (13) Zavádíme také dekrement útlumu δ a frekvenci volného oscilátoru bez tření ω 0 : V tomto značení má pohybová rovnice tlumeného oscilátoru tvar 2δ = h m, ω2 0 = k m. (14) ẍ = 2δẋ + ω 2 0x = 0. (15) kde Obecné řešení je tvaru x(t) = c 1 e λ1t + c 2 e λ2t, (16) λ 1,2 = δ ± δ 2 ω0 2. (17) Můžeme rozlišit tři případy. 1. Slabý útlum: Je-li δ < ω 0 má obecné řešení rovnice (15) tvar x(t) = Ae δt cos(ωt + α), (18) kde ω = ω 2 0 δ2 a A a α jsou reálné konstanty. V systému tedy dochází k periodickým kmitům s exponenciálně klesající amplitudou a sníženou frekvencí. 2

3 2. Silný útlum: Je-li δ > ω 0 má obecné řešení rovnice (15) tvar x(t) = c 1 e (δ δ 2 ω 2 0 )t + c 2 e (δ+ δ 2 ω 2 0 )t. (19) Výchylka tedy klesá jako x a asymptoticky se blíží rovnovážné poloze. Nastává tzv. aperiodický útlum. 3. Kritický útlum: Je-li δ = ω 0 má obecné řešení rovnice (15) tvar což je zvláštní případ aperiodického útlumu Tlumené kmity s budící silou x(t) = (c 1 + c 2 t)e δt, (20) Přidáním vnější periodické síly F (t) = f cos(γt) do rovnice (15) dostáváme pohybovou rovnici Pro δ < ω 0 pomocí postupu uvedeného např v??? dostáváme ẍ = 2δẋ + ω0x 2 = f cos(γt). (21) m x(t) = Ae δt cos(ωt + α) + B cos(γt + ξ), (22) kde 2δγ ξ = arctan γ 2 ω0 2. (23) Přitom první člen exponenciálně klesá s rostoucím časem, takže po dostatečně dlouhé době tento člen zanedbáme a řešením rovnice (21) je x(t) = B cos(γt + ξ). (24) Při rezonanci nabývá amplituda maxima, ale neroste nade všechny meze a má maximum v bodě γ = ω 2 0 2δ 2 Při všech výpočtech používáme dále vztah mezi úhlovou rychlostí, frekvencí a periodou f = 1 T = ω 2π (25) 2.3 Postup měření Aparatura je sestavena podle obrázku 2 v [1]. Skládá se z dvou senzorů pro měření výchylky, z pružinky s proměnným závažím a motorku, který vyrábí vnější sílu. Tlumení je realizováno magnety, které indukují vířivé proudy v hliníkovém tělese, které je zavěšeno jako závaží. Senzor S1 měří časový průběh vnější síly, senzor S2 oscilace. Oba jsou připojeny k počítači, data zaznamenává program DataStudio. Návod k ovládání tohoto programu je lehce k nalezení na internetu, pro nás potřebné úkony jsou vypsány v [1]. Oproti návodu jsme vzorkovací frekvenci nastavili na 50 Hz abychom zaznamenávali průběh kmitů v lepším rozlišení Měření časového průběhu tlumených kmitů ˆ Na držák umístíme zvolené závaží, vynulujeme senzory. ˆ Zapneme ukládání dat. ˆ Systému udělíme počáteční výchylku a necháme volně kmitat do zastavení. ˆ Vypneme ukládání dat, vymažeme nepotřebné úseky Měření časového průběhu tlumených kmitů s budící silou Nejdříve postupně zvyšujeme napětí a zjišt ujeme, kde (při jakém napětí) přibližně nastává rezonance. Další postup opakujeme vždy pro různé hodnoty napětí v okolí rezonance. Po nastavení daného napětí vyčkáme, než se amplituda kmitů více-méně ustálí a až poté začneme zaznamenávat data. Měříme maximální amplitudu a frekvenci budící síly. ˆ Na držák umístíme zvolené závaží, vynulujeme senzory. 3

4 ˆ Nastavíme napětí na zdroji. ˆ Zapneme ukládání dat. ˆ Zaznamenáme 20 period kmitů. ˆ Vypneme ukládání dat, vymažeme nepotřebné úseky Měření tuhosti pružiny statickou metodou Z hodnoty lineární výchylky senzoru oscilací S2 určíme prodloužení pružinky x po přidání závaží o hmotnosti m. Tuhost k získáme podle vztahu mg = kx, (26) kde g je tíhové zrychlení. 2.4 Naměřené hodnoty Měření časového průběhu tlumených kmitů Měření časového průběhu tlumených kmitů s budící silou γ [Hz] B [mm] Tabulka 1: Tabulka naměřených hodnot při tlumených kmitech s budící silou; γ je frekvence budící síly, B je maximální amplituda Měření tuhosti pružiny statickou metodou x [mm] m [g] k [N/m] ω 0 [rad/s] k 11.2 ± 0.2 Tabulka 2: Tabulka naměřených hodnot při určování tuhosti pružiny; x je prodloužení, m hmotnost závaží, k k koeficient tuhosti, ω 0 vlastní úhlová frekvence spočítaná na základě vztahu ω 0 m+m m, kde m 0 = 21.84g je hliníkový blok v soustavě oscilátoru 4

5 Obrázek 1: Průběh tlumených kmitů s přídavným závažím o hmotnosti m = 1 g, fit je tvaru f(x) = ae lx cos(ox + h) + d a konstanty a = ± , l = ± , o = ± , h = ± 0.017, d = ±

6 Obrázek 2: Průběh tlumených kmitů s přídavným závažím o hmotnosti m = 6 g, fit je tvaru f(x) = ae lx cos(ox + h) + d a konstanty a = ± , l = ± , o = ± , h = ± , d = ±

7 Obrázek 3: Průběh tlumených kmitů s přídavným závažím o hmotnosti m = 11 g, fit je tvaru f(x) = ae lx cos(ox + h) + d a konstanty a = ± 1.352, l = ± , o = ± , h = ± , d = ±

8 Obrázek 4: Průběh tlumených kmitů s přídavným závažím o hmotnosti m = 21 g, fit je tvaru f(x) = ae lx cos(ox + h) + d a konstanty a = ± , l = ± , o = ± , h = ± , d = ±

9 Obrázek 5: Průběh tlumených kmitů s budící silou; s přídavným závažím o hmotnosti m = 21 g, fit je tvaru a b(γ) = a konstanty a = ± , o = ± , d = ± (o γ2 ) 2 +dγ 9

10 3 Diskuze a Závěr Platnost zmíněných rovnic jsme ověřili, ve všech případech je vidět, že tyto rovnice dobře předpovídají výsledky měření. Změřili jsme tuhost pružiny (k = 11.2 ± 0.2) N/m a určili vlastní úhlovou frekvenci pro oscilátor s různými závažími. 4 Použitá literatura Reference [1] Kolektiv KF, Návod k úloze: Akustika [Online], [cit. 16. listopadu 2012] resource/content/4/10-lho pdf Část II Pohlovo kyvadlo 5 Zadání 1. Změřte tuhost pružiny Pohlova kyvadla. 2. Naměřte časový vývoj výchylky kmitů kyvadla pro netlumené kmity. Za použití výsledku tohoto a minulého úkolu vypočítejte moment setrvačnosti kyvadla I. 3. Změřte koeficient útlumu pro několik zvolených hodnot tlumícího proudu. Závislost vyneste do grafu. 4. Extrapolací určete hodnotu tlumícího proudu, při kterém dochází ke kritickému tlumení. Nastavte tuto hodnotu, změřte průběh při rychlostní a polohové počáteční podmínce a ověřte, že je kyvadlo skutečně kriticky tlumeno. 6 Vypracování 6.1 Použité přístroje Pohlovo kyvadlo, sada závaží, senzor PASCO, program DataStudio, PC. 6.2 Teoretický úvod Kmity kyvadla zajišt uje pružina. Výsledný moment sil bude zahrnovat moment sil generovaných pružinou a případně moment sil tlumících generovaných vířivými proudy indukovanými cívkami. Platí N = N P + N T. Abychom dokázali vyřešit pohybovou rovnici, předpokládáme ˆ moment sil generovaných pružinou při vychýlení je přímo úměrný odpovídajícímu úhlu ϕ pootočení kyvadla N p = Dϕ, (27) kde D > 0 se nazývá tuhost pružiny torzního kyvadla. ˆ moment tlumících sil při pohybu kyvadla je přímo úměrný odpovídající úhlové rychlosti kyvadla kde C 0. Pohybovou rovnici zapíšeme ve tvaru kde δ = C 2I a ω2 0 = D I. Rozlišuje dva typy počátečních podmínek: N T = C ϕ(t), (28) ϕ(t) + 2δ ϕ(t) + ω 2 0ϕ(t) = 0, (29) 10

11 ˆ podmínka polohová ˆ podmínka rychlostní ϕ(0) = ϕ 0 > 0, ϕ(0) = 0 (30) ϕ(0) = 0, ϕ(0) = Ω 0 > 0. (31) Řešení závisí na vztahu konstant δ a ω 0. Rozlišujeme tři případy 1. Případ malého útlumu (ω 0 > δ 0): ϕ(t) = ϕ max e δt sin(ωt + ϕ 0 ), (32) kde platí ω = ω 2 0 δ2. (33) 2. Případ kritického útlumu (ω 0 = δ): Při počáteční polohové podmínce platí ϕ(t) = ϕ 0 (1 + δt)e δt, (34) při počáteční rychlostní podmínce ϕ(t) = Ω 0 te δt, (35) 3. Případ silného útlumu(ω 0 < δ): Při počáteční polohové podmínce platí [ ϕ(t) = ϕ 0 e δt cosh(dt) + δ ] d sinh(dt), (36) při počáteční rychlostní podmínce kde ϕ(t) = Ω 0 d e δt sinh(dt), (37) d = δ 2 ω 2 0. (38) 6.3 Postup měření Měření tuhosti pružiny Pohlova kyvadla Na pružinu jsme přes kladku zavěsili postupně 4 závaží a odečítali aktuální úhlovou výchylku Netlumené kmity Pomocí počáteční výchylky nebo rychlosti jsme kyvadlo uvedli do kmitavého pohybu, přes senzor úhlové změny a úhlové rychlosti jsme data sbírali v programu DataStudio. 6.4 Naměřené hodnoty Měření tuhosti pružiny Pohlova kyvadla ϕ [rad] m [g] D D ± Tabulka 3: Tabulka naměřených hodnot výchylky ϕ při zatížení Pohlova kyvadla o poloměru r = 93.9 mm hmotností m, D je vypočítaná tuhost pružiny 11

12 6.4.2 Netlumené kmity Se závažím o hmotnosti m = g jsme určili vlastní úhlovou frekvenci ω 0 = při polohové počáteční podmínce a ω 0 = při rychlostní počáteční podmínce. Se závažím o hmotnosti m = g jsme určili vlastní úhlovou frekvenci ω 0 = při polohové počáteční podmínce a ω 0 = při rychlostní počáteční podmínce. Ověřili jsme tedy předpoklad, že frekvence nezávisí na typu počáteční podmínky a rovněž na hmotnosti závaží. Průměrná hodnota vlastní frekvence je ω 0 = (3.48 ± 0.05) [rad/s]. Spočítáme moment setrvačnosti jako I = D = ( ± )kgm 2 ω Tlumené kmity I [A] δ [rad/s] T [s] ω [rad/s] Tabulka 4: Tabulka naměřených hodnot koeficientu útlumu δ vypočteného z periody T a vlastní frekvence ω 0 7 Diskuze a Závěr Fit závislosti dektrementu útlumu na proudu protékajícím v tlumících cívkách má takovou chybu, že nemá cenu z něj odhadovat kdy nastane kritické tlumení. Experimentálně jsme ověřili, že kritický útlum nastává při hodnotě proudu A. Moment setrvačnosti jsme určili jako I = D = ( ± )kgm 2. Určitá ω0 2 chyba měření určitě nastává ve chvíli, kdy považujeme tlumené kmity (přestože jen mírně) za netlumené a námi určená vlastní frekvence je tak nižší, než opravdová. 8 Použitá literatura Reference [1] Kolektiv KF, Návod k úloze: Akustika [Online], [cit. 16. listopadu 2012] resource/content/5/10-tk pdf Část III Zpracování výsledků Pro statistické zpracování budeme potřebovat následující vztahy [1]: ˆ Aritmetický průměr x = 1 n x i (39) n i=1 ˆ Směrodatná odchylka σ x = 1 n (x i x) 2, (40) n 1 kde x i jsou jednotlivé naměřené hodnoty, n je počet měření, x aritmetický průměr a σ x směrodatná odchylka. i=1 12

13 Obrázek 6: Závislost dekrementu útlumu na proudu v tlumících cívkách, fit je tvaru f(x) = ax + b a konstanty a = ± b = ±

14 Jedná-li se o nepřímé měření, spočítáme výslednou hodnotu a chybu dle následujících vztahů: Necht u = f(x, y, z,...) (41) x = (x ± σ x ), y = (y ± σ y ), z = (z ± σ z ),..., kde u je veličina nepřímo určovaná pomocí přímo měřených veličin x, y, z,... Pak u = f(x, y, z,...) σ u = 9 Použitá literatura Reference ( f x ) 2 σ 2 x + ( ) 2 f σy y 2 + u = (u ± σ u ), [1] Kolektiv KF, Chyby měření [Online], [cit. 16. listopadu 2012] ( ) 2 f σz z (42) 14

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

Mechanické kmitání a vlnění, Pohlovo kyvadlo

Mechanické kmitání a vlnění, Pohlovo kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Mechanické kmitání a vlnění, Pohlovo kyvadlo Číslo úlohy: 10 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 26. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Lineární harmonický oscilátor. Pohlovo torzní kyvadlo. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Lineární harmonický oscilátor. Pohlovo torzní kyvadlo. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 1: Lineární harmonický oscilátor Datum měření: 4. 12. 29 Pohlovo torzní kyvadlo Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek,

Více

Lineární harmonický oscilátor

Lineární harmonický oscilátor FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #1 Harmonické oscilace, Pohlovo torzní kyvadlo Datum m ení: 25.1.213 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace:

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

Rezonanční jevy na LC oscilátoru a závaží na pružině

Rezonanční jevy na LC oscilátoru a závaží na pružině Rezonanční jevy na LC oscilátoru a závaží na pružině M. Stejskal, K. Záhorová*, J. Řehák** Gymnázium Emila Holuba, Gymnázium J.K.Tyla*, SPŠ Hronov** Abstrakt Zkoumali jsme rezonanční frekvenci závaží na

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí

Necht na hmotný bod působí pouze pružinová síla F 1 = ky, k > 0. Podle druhého Newtonova zákona je pohyb bodu popsán diferenciální rovnicí Počáteční problémy pro ODR2 1 Lineární oscilátor. Počáteční problémy pro ODR2 Uvažujme hmotný bod o hmotnosti m, na který působí síly F 1, F 2, F 3. Síla F 1 je přitom úměrná výchylce y z rovnovážné polohy

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Práce tepelného stroje

Práce tepelného stroje Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 12 : Práce tepelného stroje Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 23.11.2012 Klasifikace: Část I Práce tepelného stroje 1 Zadání

Více

2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané.

2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané. FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #1 Cavendishův experiment Datum měření: 15.11.013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace: 1 Pracovní

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Mechanické pokusy na vzduchové dráze

Mechanické pokusy na vzduchové dráze Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 3 : Mechanické pokusy na vzduchové dráze Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 14.12.2012 Klasifikace: Část I Mechanické pokusy

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení 1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

KMS cvičení 5. Ondřej Marek

KMS cvičení 5. Ondřej Marek KMS cvičení 5 Ondřej Marek Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ ABSOLUNÍ SOUŘADNICE Pohybová rovnice: mx + b x x + k x x = mx + bx + kx = bx + kx Partikulární řešení: x = X e iωt x = iωx e iωt k m b x(t)

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Fyzikální praktikum FJFI ČVUT v Praze. a modulu pružnosti ve smyku. l l

Fyzikální praktikum FJFI ČVUT v Praze. a modulu pružnosti ve smyku. l l Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 2 : Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 7.12.2012 Klasifikace:

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

9.7. Vybrané aplikace

9.7. Vybrané aplikace Cíle V rámci témat zaměřených na lineární diferenciální rovnice a soustavy druhého řádu (kapitoly 9.1 až 9.6) jsme dosud neuváděli žádné aplikace. Je jim společně věnována tato závěrečné kapitola, v níž

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 8 : Studium ultrazvukových vln

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 8 : Studium ultrazvukových vln Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 8 : Studium ultrazvukových vln Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 26.10.2012 Klasifikace: 1 Zadání 1. Změřte velikost přijímaného

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L.

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L. 1 Pracovní úkoly 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,1; 0,3; 0,5; 1,0; 3,0; 5,0 µf, R = 20 Ω). Výsledky měření

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008

Více

Harmonický pohyb tělesa na pružině

Harmonický pohyb tělesa na pružině EVROPSKÝ SOCIÁLNÍ FOND Harmonický pohyb tělesa na pružině PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky Posílení vazby teoretických

Více

Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky

Téma 13, Úvod do dynamiky stavebních konstrukcí dynamiky Statika staveních konstrukcí II., 3.ročník akalářského studia Téma 3, Úvod do dynamiky staveních konstrukcí dynamiky Úvod Vlastní kmitání Vynucené kmitání Tlumené kmitání Podmínky dynamické rovnováhy konstrukcí

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 1: Akustika Datum měření: 4. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Spočítejte, jakou

Více

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 19 Název úlohy: Měření s torzním magnetometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 12.10.2015 Datum odevzdání:... Připomínky

Více

8.6 Dynamika kmitavého pohybu, pružinový oscilátor

8.6 Dynamika kmitavého pohybu, pružinový oscilátor 8.6 Dynamika kmitavého pohybu, pružinový oscilátor a) dynamika zkoumá příčiny pohybu b) velikost síly vyvolávající harmonický kmitavý pohyb F = ma = mω 2 y pohybová rovnice (II. N. z. a = ω 2 y m sin ωt

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Cavendishův experiment

Cavendishův experiment Číslo úlohy: 1 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 19. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Cavendishův

Více

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 18 Název úlohy: Přechodové jevy v RLC obvodu Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí

Více

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona. 1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření

Více

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8.

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8. VY_52_INOVACE_2NOV42 Autor: Mgr. Jakub Novák Datum: 15. 11. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Zvukové děje, Energie Téma: Kmitání kyvadla Metodický

Více

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN ANNA MOTYČKOVÁ 2015/2016, 8. Y Obsah Teoretický rozbor... 3 Zjištění tuhosti pružiny... 3 Sériové zapojení pružin... 3 Paralelní zapojení pružin... 3 Praktická část...

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu

Více

galvanometrem a její zobrazení na osciloskopu

galvanometrem a její zobrazení na osciloskopu Úloha 2: Měření hysterézní smyčky alistickým galvanometrem a její zorazení na osciloskopu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 26.4.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník

Více

Dynamika rotačního pohybu

Dynamika rotačního pohybu Číslo úlohy: 11 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 2. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Dynamika rotačního

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 9: Základní experimenty akustiky Datum měření: 27. 11. 29 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:3 Spolupracovala:

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více

PRAKTIKUM I Mechanika a molekulová fyzika

PRAKTIKUM I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..

Více

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.

m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice. Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka

Více

Praktická úloha celostátního kola 48.ročníku FO

Praktická úloha celostátního kola 48.ročníku FO 1 Praktická úloha celostátního kola 48.ročníku FO Pomůcky: dvě různé pružiny o neznámých tuhostech k 1 a k 2, k 1 < k 2,dvě závaží o hmotnostech m 1 = 0,050 kg a m 2 = 0,100 kg, kladka o známé hmotnosti

Více

1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli

1.3 Pohyb hmotného nabitého bodu v homogenním magnetickém poli Klasická mechanika analytická řešení pohybu částic a těles 1. Pohyb v odporujícím prostředí 1.1 Odporující síla je úměrná rychlosti pohybujícího se tělesa 1.2 Pohyb hmotného nabitého bodu v homogenním

Více

Protokol o provedeném měření

Protokol o provedeném měření Fyzikální laboratoře FLM Protokol o rovedeném měření Název úlohy: Studium harmonického ohybu na ružině Číslo úlohy: A Datum měření: 8. 3. 2010 Jméno a říjmení: Viktor Dlouhý Fakulta mechatroniky TU, I.

Více

Sestavení diferenciální a diferenční rovnice. Petr Hušek

Sestavení diferenciální a diferenční rovnice. Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek Sestavení diferenciální a diferenční rovnice Petr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVU v Praze MAS 1/13 ČVU

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 1: Mechanické pokusy na vzduchové dráze Datum měření: 1. 11. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Zopakujte si,

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření teploty wolframového vlákna Datum měření: 1. 4. 2016 Doba vypracovávání: 12 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Cavendishův experiment

Cavendishův experiment FJFI ČVUT v Praze Fyzikální praktikum I Úloha 4 Verze 171001 Cavendishův experiment Abstrakt: Jednou z fundamentálních interakcí je interakce gravitační. Ta má přitažlivý charakter a působí na všechny

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

Tíhové zrychlení na několik žákovských způsobů

Tíhové zrychlení na několik žákovských způsobů Tíhové zrychlení na několik žákovských způsobů VOJTĚCH ŽÁK Katedra didaktiky fyziky, Matematicko-fyzikální fakulta Univerzity Karlovy V tomto příspěvku jsou popsány a diskutovány tři žákovské experimenty,

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fzikálních praktik při Kabinetu výuk obecné fzik MFF UK Praktiku I Mechanika a olekulová fzika Úloha č. II Název: Studiu haronických kitů echanického oscilátoru Pracoval: Matáš Řehák stud.sk.:

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 11: Sériový a vázaný rezonanční obvod Datum měření: 29. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Vyhledejte příklad

Více

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP očekávané výstupy RVP témata / učivo 1. Časový vývoj mechanických soustav Studium konkrétních příkladů 1.1 Pohyby družic a planet Keplerovy zákony Newtonův gravitační zákon (vektorový zápis) pohyb satelitů

Více