Fázové změny. Manuál k programu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Fázové změny. Manuál k programu"

Transkript

1 Fázové změny Manuál k programu Jiří Mazurek 2009

2 OBSAH Úvod O programu Kapitoly programu Jak pracovat s programem Úvodní kapitola Tání Tuhnutí Změny objemu těles při tání a tuhnutí, závislost teploty tání na tlaku Sublimace a desublimace Vypařování a var Kapalnění (kondenzace) Fázový diagram Vodní pára v atmosféře Změny skupenství v praxi Výstupní test Pojmová mapa změn skupenství Laboratorní práce Dotazník k programu

3 Úvod Manuál k programu Fázové změny obsahuje údaje o samotném programu, jeho lokalizaci, účelu a určení, a také kompletní obsah programu včetně odkazů na internetové zdroje (obrázky, videa apod.). Manuál je určen především učitelům, kteří zvaţují uţití programu ve výuce fyziky. 1 O programu Program Fázové změny byl vytvořen v rámci disertační práce Počítačem podporovaná výuka fyziky v tématu fázové změny v průběhu studia oboru Teorie vzdělávání fyzice na Přírodovědecké fakultě Ostravské univerzity Mgr. Jiřím Mazurkem. Práce na programu začaly na začátku roku 2008, první první verze programu byla vyzkoušena během dvou fází předvýzkumu na jaře a na podzim roku Program byl dokončen v prosinci 2008, poté byla provedena jeho validace a nový software byl úspěšně vyzkoušen během pedagogického experimentu na vzorku cca 150 ţáků gymnázií. Program je vytvořen v jazyce HTML a je umístěn na adrese Funguje pod operačními systémy Windows XP a vyšších verzích, a je optimalizován pro prohlíţeče Mozilla Firefox 1.5 a vyšší, a Internet Explorer 6. S programem je spojena databáze MySQL, v níţ se ukládají výsledky výstupního testu ţáků a odpovědi na dotazník. Program je určen ţákům druhého ročníku čtyřletých gymnázií a odpovídajícím ročníkům víceletých gymnázií. Obsahuje změny skupenství s přesahem na změny klimatu (tání ledovců vlivem globálního oteplování). Rozsah jím dodané výuky je 6 aţ 8 vyučovacích hodin. Obsah programu byl zpracován na základě učebnice Molekulová fyzika a termika autorů Bartušky a Svobody. Program je určen k samostatné práci ţáků, ale můţe být pouţit i jako opora pro výklad učitele. Text k jednotlivým kapitolám je namluven ve formátu MP 3, je moţné jej z programu stáhnout do přehrávače MP 3 (nebo jiného) a učit se například cestou autobusem do školy. Program můţe slouţit k učení i nevidomým. Součástí programu je registrace, login a následující kapitoly: Úvod aneb Jak pracovat s programem, Úvodní kapitola, Tání, Tuhnutí, Změny objemu těles při tání a tuhnutí, závislost teploty tání na tlaku, Sublimace a desublimace, Vypařování a var, Kapalnění, Fázový diagram, Vodní pára v atmosféře, Změny skupenství v praxi, Laboratorní práce na určení měrného skupenského tepla tání ledu, 3

4 Pojmová mapa Fázových změn (ţáci mohou být pobídnuti k tomu, aby se pokusili vytvořit svou vlastní pojmovou mapu změn skupenství), Interaktivní výstupní test, Elektronický dotazník. Kaţdou kapitolu tvoří čtyři základní bloky: Úvod obsahuje vstup do dané problematiky, otázky a fotografie, které by měly podnítit zvědavost ţáků a motivovat je k dalšímu učení. Učivo obsahuje výukový text, fotografie, animace, videa a také odkazy na některé internetové adresy, například v elektronické encyklopedii Wikipedia. V programu je zařazeno celkem 22 statických obrázků, 2 vytvořené animace tuhnutí vody a vypařování, 3 vlastními silami natočená videa kondenzace, varu vody za sníţeného tlaku a regelace ledu, a dalších 8 videí z jiných webových stránek, například na tání ledovců nebo tuhnutí vody. Úkoly jsou formulovány v podobě otázek a úloh. Jejich součástí je i nápověda a výsledky. Při tvorbě a výběru úloh byly zohledněny jednak kurikulární poţadavky (RVP, ŠVP, poţadavky ke státní maturitě), a také bylo přihlédnuto k podobě a mnoţství úloh ve stávající učebnici Bartušky a Svobody Molekulová fyziky a termika. Soubor úloh v programu byl zpracován tak, aby obsahoval i problémy vyšších kategorií podle Bloomovy taxonomie kognitivních cílů, resp. taxonomie učebních úloh podle Tollingerové, převládají zde úlohy na porozumění a aplikaci. Program obsahuje 25 úloh, z toho 8 výpočtových, 16 problémových a 1 experimentální (ve formě laboratorní práce na určení měrného skupenského tepla tání ledu). Ke všem úlohám je ţákovi poskytnuta nápověda a řešení. Shrnutí poskytuje přehled toho nejdůleţitějšího z kaţdé kapitoly, slouţí ţákům jako opora pro samostatný zápis do sešitu a také k opakování učiva. Uvedné bloky jsou pro přehlednost uvozeny ikonami a je moţné jimi procházet v libovolném pořadí (je aplikován konstruktivistický přístup). Ţáci jsou vedeni instrukcemi uvedenými v oddíle Jak pracovat s programem. Učitel nemusí do procesu učení zasahovat. Z didaktického hlediska je funkcí Úvodu motivace ţáka, funkcí Učiva a Úkolů expozice, a funkcí Shrnutí fixace učební látky. Formativní hodnocení ţáka poskytují odpovědi uvedené u kaţdé otázky a úlohy v Úkolech, sumativní hodnocení ţáka je realizováno výstupním testem na stránkách programu. 2 Kapitoly programu V následujících kapitolách je uvedeno přesné znění textu a rozloţení obrázků, animací a videí v jednotlivých kapitolách programu. Modře vybarvené pojmy obsahují odkaz na jiné webové stránky. 2.1 Jak pracovat s programem Kaţdá kapitola obsahuje: - Co se v hodině naučíš - Otázky a Úkoly - Učivo - Shrnutí na konci kapitoly - Ikony, které pomáhají v orientaci. 4

5 - Úvod. - Otázky. - Učivo. - Úkoly. - Problémová úloha. - Shrnutí kapitoly. Při práci s programem postupuj následovně: 1. Přečti si Úvod kapitoly, Otázky a Úkoly, ať víš, co budeš během hodiny řešit. 2. Prostuduj si celou kapitolu a najdi v ní odpovědi na zadané otázky. 3. Udělej si do sešitu stručný zápis (můţeš pouţít shrnutí na konci kapitoly, ale vlastní zápis je mnohem lepší) 4. Vyřeš do sešitu zadané úkoly. 2.2 Úvodní kapitola Látky se v přírodě mohou vyskytovat v různých skupenstvích. Například látka voda (H 2 O) se vyskytuje ve formě ledu, vody nebo páry. Jaká skupenství látek znáš? Jaká je jejich vnitřní struktura? Jak se nazývají děje, při kterých se mění skupenství? Dokáţeš uvést nějaké příklady? Pevné látky Většina pevných látek je sloţena z částic atomů nebo molekul, které jsou pravidelně uspořádány v takzvané krystalové mříţce. Částice v krystalové mříţce chaoticky kmitají kolem rovnováţné polohy. S rostoucí teplotou se amlitudy výchylky kmitů zvětšují. Střední vzdálenosti mezi částicemi jsou malé, potenciální energie částic je větší neţ jejich kinetická energie. Některé pevné látky, jako např. vosk nebo sklo, nemají pravidelně uspořádáné částice. Takovým látkám se říká amorfní (beztvaré). Pevné látky mají stálý tvar i objem. Kapalné Molekuly kapalin jsou k sobě přitahovány slaběji neţ částice pevných látek. Mohou se tedy volněji pohybovat a měnit si svá místa kapaliny jsou tekuté. Potenciální energie molekul kapalin je přibliţně rovna jejich kinetické energii. Kapaliny mají stálý objem, 5

6 ale nemají stálý tvar. Volný povrch kapaliny je v klidu vodorovný a nazývá se hladina. Kapalné skupenství kovů, např.ţeleza, se označuje pojmem tavenina. Plynné Molekuly plynů jsou od sebe vzdáleny více neţ u pevných látek nebo kapalin a působí na sebe jen při vzájemných sráţkách. Pohybují se náhodně všemi směry a jejich rychlost roste s teplotou. Kinetická energie molekul je mnohem vyšší neţ jejich potenciální energie. Plyny nemají stálý ani tvar ani objem. Plazma Bývá často uváděno jako čtvrté skupenství látek. Je to ionizovaný plyn o vysoké teplotě. Plazma můţe mít formu blesku nebo polární záře, také Slunce a jiné hvězdy je tvořeno plazmou. Děje, při kterých se mění skupenství látek, se nazývají změny skupenství. Jednotlivé děje znázorňuje tento diagram: Červené šipky znázorňují děje, při kterých se musí energie látce dodávat. Modré šipky znamenají, ţe látka teplo odevzdává svému okolí. 1. Do sešitu si obkresli diagram se změnami skupenství. 2. Ke kaţdé změně skupenství si uveď jeden příklad z běţného ţivota, (pokud tě ţádný nenapadá, zkus nějaký najít zde). Pro zvídavé: Změny skupenství se řadí mezi fázové změny. Fází se ve fyzice rozumí část termodynamického systému, která má všude stejné vlastnosti. Změna fáze se nazývá fázový přechod. Mezi fázové přechody patří všechny změny skupenství, ale také například změna vodiče v supravodič nebo paramagnetického materiálu na feromagnetický. 6

7 Látky se v přírodě vyskytují ve třech skupenstvích: pevném, kapalném a plynném (za 4. skupenství je povaţována plazma). Děje, při kterých se mění skupenství látek, se nazývají změny skupenství. Známe 6 změn skupenství: tání, tuhnutí, vypařování, kondenzace, sublimace a desublimace. V dalších kapitolách postupně probereme všech šest změn skupenství a povíme si o jejich uţití v kaţdodenním ţivotě. 2.3 Tání 7

8 Tání je jev, s nímţ se setkáváme v přírodě především na jaře. Sníh v údolích taje, řeky se plní vodou a na některých místech dochází k povodním. Koncem dubna uţ bývá sněhu málo i na našich nejvyšších horách a lyţařská sezóna končí. Tání pozorujeme i u horských ledovců, například v Alpách (viz fotografie výše). Tyto ledovce se během posledních 150 let značně zkrátily. V posledních letech se zmenšuje i rozloha ledu v Arktidě. Příčinou je globální oteplování zemského povrchu a atmosféry. Můţe nás tání ledovců v budoucnosti nějak ohrozit? Co je to vlastně tání? A za jakých podmínek probíhá? V této kapitole se dozvíš, co se děje, kdyţ látka taje. Naučíš se spočítat teplo potřebné k roztání ledu. Zjistíš, co by se stalo s hladinou moří, kdyby najednou roztál veškerý led v Grónsku. Je moţné nějak změnit teplotu tání ledu? Co se děje uvnitř krystalické látky, kdyţ taje? Co vyjadřuje veličina měrné skupenské teplo tání? Je měrné skupenské teplo tání ledu vysoké, nebo nízké? Co by se dělo na jaře, kdyby tato hodnota byla menší? Proč na světě v současnosti taje většina horských ledovců? Zvýšila by se hladina moří, kdyby roztál všechen mořský led (= led na moři) v Arktidě? tání ledovců (video), tání ledovců (wikipedia) Kdyţ zahříváme led, při teplotě 0 C začne tát. Tato teplota se nazývá teplota tání ledu a značí se t t. Jiné krystalické látky mají jiné teploty tání (viz tabulka). Amorfní látky, jako je sklo nebo vosk, nemají určitou teplotu tání. Při zahřívání měknou, aţ se přemění v kapalinu. Teplota tání závisí na tlaku, u většiny látek se s rostoucím tlakem teplota tání zvyšuje. Teplotu tání ledu je moţné sníţit tím, ţe se posype solí. Směs ledu a soli taje při niţší teplotě neţ 0 C. Led taje, i kdyţ je mráz, a dá se snadno odhrabat a uklidit. Těleso o teplotě tání potřebuje k přeměně na kapalinu určité mnoţství tepla. Toto teplo se nazývá skupenské teplo tání L t. Je tím větší, čím větší je hmotnost tělesa (eskymácké iglů určitě spotřebuje při tání více tepla neţ kostka ledu v dlani). Jeho jednotkou je joule (J) 8

9 Teplo, které potřebuje ke změně skupenství jeden kilogram dané látky, se nazývá měrné skupenské teplo tání l t (l t pro jednotlivé látky viz tabulka). Jednotkou je J/kg. Tabulka tání látka teplota tání ( C) měrné skup. teplo tání (kj/kg) led olovo cín ţelezo měď Skupenské teplo a měrné skupenské teplo spolu souvisí podle vztahu: kde m je hmotnost látky, která roztála. Co se děje v krystalické látce, kdyţ taje? Nejprve ji musíme zahřát na teplotu tání. Částice v krystalové mříţce při tomto zahřívání získávají kinetickou energii a kmitají kolem rovnováţných poloh se stále větší amlitudou výchylky. Při teplotě tání uţ mají částice takovou energii, ţe se začínají uvolňovat z mříţky. Ta se hroutí a látka taje. Během tání se teplota látky nezvyšuje, i kdyţ se látce dodává skupenské teplo tání. Toto teplo se přemění na vnitřní energii látky. To znamená, ţe voda o teplotě 0 C má vyšší vnitřní energii neţ stejné mnoţství ledu o teplotě 0 C., Pokud by roztál veškerý led v Grónsku, o kolik by se zvýšila hladina moří? Stalo by se totéţ, pokud by roztál mořský led v Arktidě? Největší obavy vzbuzuje tání ledovců kvůli zvýšení hladiny moří. Pak by hrozilo zaplavení nízko poloţených oblastí souše a některých ostrovů. Údaje o růstu hladiny moří lze zjistit například z Wikipedie. - O kolik se zvýšila hladina moří za 20. století? (odpověď najdi na obrázku Recent sea level rise v anglické wikipedii. - Kdy začalo zvyšování hladiny moří? (prohlédni si obrázek Post-Glacial sea level rise na 9

10 téţe stránce). Z obrázku navíc zjisti, jestli se hladina moří v průběhu tisíciletí zrychluje nebo zpomaluje. - Jak se bude zvyšovat hladina moří ve 21. století? (vyhledej tento údaj v odstavci Future sea level rise na téţe stránce) - Co si myslíš ty sám? Jsou zjištěné údaje důvodem k obavám? 1. Vypočti, kolik tepla je zapotřebí k roztání 4 kg ledu o teplotě 0 C. 2. Vypočti teplo nutné k přeměně 2 kg ledu o teplotě 10 C na vodu o teplotě 50 C, c ledu = 2100 J/kgK, c vody = 4200 J/kgK. 3. Ledu o hmotnosti 1 kg bylo dodáváno teplo. Situaci zachycuje tento graf. Popiš, co se dělo v jednotlivých částech grafu. 4. Do sklenice s vodou o teplotě 0 C nasypeme sníh o teplotě 0 C. Co se bude dít? Zmrzne voda? Nebo naopak sníh roztaje? Vysvětli. 5. Ve sklenici naplněné po okraj vodou plave kousek ledu. Sklenici začneme zahřívat, led bude tát. Přeteče voda sklenici, nebo ne? [Voda nepřeteče. Při tání se led mění na vodu, která má menší objem. Objem takto vzniklé vody přesně vyplní objem ponořené části ledu.] Při tání se mění pevná látka v kapalnou. Tání krystalických látek probíhá při určité teplotě teplotě tání. Teplota tání ledu je 0 C. Při tání je látce nutné dodávat teplo skupenské teplo tání. 10

11 2.4 Tuhnutí Jak probíhá tuhnutí? Za jaké teploty látky tuhnou? Kdy vzniká tuhnutím polykrystal a kdy monokrystal? Jak se nazývá kapalné skupenství kovů? Je skupenské teplo tuhnutí pro danou látku stejné jako skupenské teplo tání? Je moţné ochladit vodu pod 0 C? Opakem tání je tuhnutí. Kdyţ ochlazujeme kapalinu o teplotě tuhnutí, mění se v pevnou látku. Teplota tuhnutí je shodná s teplotou tání, pro vodu je to 0 C. Při tuhnutí vznikají v kapalině nejprve zárodky krystalické struktury, tzv. krystalizační jádra (krystalizačními jádra vznikají kolem drobných zrnek a jiných nečistot v kapalině). Tato jádra rostou a spojují se, aţ se objem celé kapaliny promění v polykrystal. Pokud v kapalině vznikne jen jedno krystalizační jádro, promění se kapalina v monokrystal. Toho se vyuţívá v technické praxi. Do taveniny kovu se vloţí malé krystalizační jádro, kolem kterého tavenina ztuhne v mnohem větší monokrystal. Pokud je kapalina velmi čistá a neobsahuje krystalizační jádra, je moţné ji přechladit pod teplotu tuhnutí. Vodu je moţné přechladit aţ na -15 C. (Pak do ní stačit vhodit zrnko a téměř okamţitě zmrzne...) Při tuhnutí látka odevzdává teplo do okolí. Toto Skupenské teplo tuhnutí L t je stejné jako skupenské teplo tání. Zde můţete najít videa z tn.cz ukazující tuhnutí v praxi. Animace tuhnutí 1. Vypočti, kolik tepla se uvolní do okolí, jestliţe při teplotě 0 C zmrzne kaluţ vody o ploše 2 m 2 a hloubce 1 cm. 2. Proč musí být skupenské teplo tání stejné jako skupenské teplo tuhnutí? (uvaţuj zákon zachování energie) 11

12 Tuhnutí je opakem tání, v látce se tvoří krystalická struktura. Teplota tání je rovna teplotě tuhnutí (0 C pro vodu). Při tuhnutí látka odevzdává svému okolí skupenské teplo tuhnutí, které je rovno skupenskému teplu tání. 2.5 Změny objemu těles při tání a tuhnutí, závislost teploty tání na tlaku Láhev naplníme vodou, uzavřeme zátkou a dáme ji do mrazničky (nebo na balkón, pokud venku mrzne). Voda v láhvi zmrzne a led láhev roztrhne. Podobný jev můţeme pozorovat i v přírodě: mrznutí vody způsobuje rozrušování skal, ale také praskání vozovky nebo zdí domů. Co je příčinou výše zmíněných jevů? Jak se mění objem většiny látek při tání? Má větší hustotu voda nebo led? Čím je to způsobeno? Proč led zabraňuje promrzání jezer a rybníků? Jak souvisí tání ledu s bruslením? Většina látek zvětšuje při tání svůj objem, např. olovo o 3,4 %. Led patří mezi látky, které naopak při tání svůj objem zmenšují. Kdyţ do mezer mezi skalami pronikne voda a poté zmrzne na led, ten při zvětšování objemu skálu trhá a rozrušuje. Podobně působí led na silnice. Proto bývají silnice po zimě ve špatném stavu a musí se v nich lepit díry. Z většího objemu ledu v porovnání s vodou vyplývá jeho niţší hustota (led 918 kg/m 3, voda 1000 kg/m 3 ). Ta je způsobena zvláštní krystalovou strukturou ledu: jsou v ní prázdné dutiny, částice jsou tak od sebe vzdáleny více neţ ve vodě. Díky niţší hustotě led na vodě plave. Led je dobrým tepelným izolantem (viz iglů), a proto zabraňuje promrzání vody do větších hloubek. Tím umoţňuje vodním ţivočichům přečkat zimu. Teplota tání krystalické látky závisí na okolním tlaku. U látek, které při tání zvětšují svůj objem, vede zvýšení tlaku ke zvýšení teploty tání. U ledu je to naopak: zvýšením tlaku se teplota tání sniţuje. 12

13 Kluzkost ledu při bruslení se dříve vysvětlovala tak, ţe led pod bruslemi taje díky většímu tlaku. Toto vysvětlení ale není správné. Ve skutečnosti led pod bruslemi taje kvůli teplu vznikajícímu třením bruslí o led. 1. Hmotnost bruslaře je 70 kg, plocha noţů bruslí, na kterých stojí, je 2 cm 2. Vypočti, o kolik se sníţí teplota tání ledu pod bruslemi vlivem zvýšeného tlaku na led. (U ledu způsobuje zvýšení tlaku o 10 5 Pa pokles teploty tání o 0,0075 C). 2. Následující graf zachycuje závislost teploty tání na tlaku jisté látky křivku tání. Jedná se o látku, u které se s rostoucím tlakem teplota tání sniţuje, nebo zvyšuje? Při tání látky mění svůj objem: led svůj objem zmenšuje, většina látek naopak zvětšuje. Teplota tání látek závisí na vnějším tlaku. Při zvyšování tlaku se teplota tání ledu sniţuje, u většiny látek je to naopak. 2.6 Sublimace a desublimace 13

14 Jak vzniká jinovatka? Proč schne prádlo i při teplotě pod bodem mrazu? Proč ubývá na polích sněhu i při teplotách pod bodem mrazu? Přeměna pevné látky přímo na plynnou se nazývá sublimace. Můţeme ji pozorovat především u látek vonných nebo zapáchajících, ale také u sněhu nebo jódu. K sublimaci je látce nutné dodat skupenské teplo sublimační L s. Platí: kde l s je měrné skupenské teplo sublimační. Pro led při teplotě 0 C je l s = 2,8 MJ/kg. Příkladem sublimace je mizení sněhu za teplot niţších neţ 0 C nebo schnutí prádla při teplotách pod bodem mrazu. Sublimují také vonné nebo zapáchající pevné látky. Přeměna látky ze skupenství plynného přímo na pevné se nazývá desublimace. Měrné skupenské teplo desublimační je pro danou látku stejné jako měrné skupenské teplo sublimační. Při desublimaci se teplo uvolňuje. Příkladem desublimace je tvorba jinovatky vodní pára se za teplot niţších neţ 0 C proměňuje na povrchu pevných látek v jemné ledové krystalky, viz obrázek níţe., 14

15 1. Vypočti, kolik tepla je zapotřebí k sublimaci 10 kg sněhu o teplotě 0 C. Shrnutí kapitoly Přeměna pevné látky přímo na plynnou se nazývá sublimace. Opačný děj se nazývá desublimace. Při sublimaci se spotřebovává skupenské teplo sublimační, při desublimaci se naopak totéţ skupenské teplo uvolňuje do okolí. Díky sublimaci cítíme vůně a zápach pevných látek, příkladem desublimace jinovatka. 2.7 Vypařování a var Co je to vypařování? Kde se s ním v ţivotě setkáváme? Proč nás voda osvěţuje během horkých letních dní? Proč horolezcům v Himalájích vře voda na čaj uţ při 70 C? Vypařování je přeměna kapalného skupenství v plynné (například vody v páru, viz obrázek na následující straně). Vypařování probíhá z povrchu kapaliny a probíhá při kaţdé teplotě, při níţ existuje kapalina. Rychlost vypařování závisí na: -teplotě kapaliny: s rostoucí teplotou kapaliny se výpar zvětšuje. -druhu kapaliny: těkavé kapaliny jako ether se vypařují rychleji, voda pomaleji -na povrchu kapaliny: větší plocha hladiny znamená větší výpar -na odsávání par: pokud páry odsáváme nebo odfoukáme, výpar se zvětšuje Při vypařování je nutné kapalině dodat skupenské teplo vypařování L v (skupenské teplo výparné). Platí vztah: kde l v je měrné skupenské teplo vypařování. Měrné skupenské teplo vody závisí na teplotě. Při teplotě 0 C je l v = 2,51 MJ/kg, při teplotě 100 C je l v = 2,26 MJ/kg., 15

16 Vypařování pomáhá lidem regulovat tělesnou teplotu. Kdyţ je příliš horko, člověk se potí, pot se vypařuje a přitom se tělu odnímá skupenské teplo vypařování kůţe i tělo se ochlazují. Podobně je moţné se ochladit tím, ţe se postříkáme vodou, která se v horku začne vypařovat (a nemusí jít o vodu přímo studenou). Molekuly kapaliny vykonávají neustálý neuspořádaný pohyb. Při vypařování se z kapaliny uvolňují nejrychlejší molekuly, dostávají se nad hladinu a vytvářejí páru. Tím klesá střední rychlost molekul kapaliny a kapalina se ochlazuje. Vypařování má tedy ochlazující efekt. Probíhá-li vypařování z celého objemu kapaliny, nazývá se tento děj var. V kapalině vznikají bubliny páry, které vystupují k hladině. Teplota, při níţ nastává var, se nazývá teplota varu (nebo také bod varu). Za normálního atmosferického tlaku je teplota varu vody 100 C. Teplota varu však závisí i na vnějším tlaku. K varu dochází tehdy, kdyţ se vyrovná tlak páry v kapalině s vnějším tlakem. Proto ve vysokých horách, kde je niţší tlak, vře voda při méně neţ 100 C (ve výšce m.n.m. je teplota varu asi 95 C). Var využíváme například: -K vaření. Speciálním případem je vaření v tlakovém (Papinově) hrnci, ve kterém vře voda aţ při 130 C. Tlakový hrnec umoţňuje vaření při vyšší teplotě, coţ zkracuje dobu vaření. -Ke sterilizace obvazů a chirurgických nástrojů. Jestliţe necháme kapalinu vypařovat v uzavřené nádobě, po čase se nad hladinou vytvoří pára, jejíţ hustota se uţ nebude měnit. Kapalina a její pára budou v rovnováze. Páru, která je v rovnováze s kapalinou, nazýváme Sytá pára. Při dané teplotě a tlaku je to maxmální moţné mnoţství páry nad kapalinou (proto se nazývá sytá nebo také nasycená pára). S rostoucí teplotou roste i tlak syté páry. Závislost tlaku syté páry na teplotě se nazývá křivka syté páry, značí se k p. Křivka syté páry je součástí fázového diagramu (viz 7. kapitola). Pára, která není sytá, se označuje jako přehřátá (přehřátou páru je moţné změnit na sytou páru ochlazením). 16

17 Animace: vypařování a kondenzace Video: var vody při sníţeném tlaku 1. Urči, kolik tepla je zapotřebí k vypaření čaje o teplotě 100 C, jestliţe šálek obsahuje 4 dl vody. 2. Proč se obrací a rozhazuje posekaná tráva, kdyţ se suší? 3. Proč na horký čaj nebo kávu foukáme, kdyţ je chceme ochladit? 4. V létě se lidé ochlazují tím, ţe se stříkají vodou. Voda nemusí být studená, a přesto má osvěţující efekt. Proč?(odpověď) Vypařování je přeměna kapalného skupenství v plynné (například vody v páru). K vypaření je nutné kapalině dodat skupenské teplo vypařování L v.vypařování probíhá z povrchu kapaliny a probíhá při kaţdé teplotě. Vypařování z celého objemu kapaliny se nazývá var. Teplota, při které kapalina vře, se nazývá teplota (bod) varu. Vypařováním vzniká pára. Pokud se kapalina vypařuje v uzavřené nádobě, ustálí se po čase rovnováha mezi vypařováním a kapalněním. Nad kapalinou vznikne sytá pára pára o maximální moţné hustotě pro danou teplotu. 2.8 Kapalnění (kondenzace) Kapalnění je přeměna plynné látky v kapalnou. Při kapalnění dochází k uvolnění skupenského tepla kondenzačního L k, které je rovno skupenskému teplu vypařování téţe látky při stejné teplotě. Platí: 17

18 Páru je moţné zkapalnit buď jejím ochlazením nebo stlačením. Ke kapalnění dochází na povrchu pevných látek, které se pokrývají kapičkami vody nebo ve volném prostoru takto vznikají oblaka nebo mlha. Video: kondenzace vodní páry kolem křídel proudového letadla Kapalnění a vypařování se vyuţívá také k získávání pitné vody z mořské vody. Tento proces se nazývá odsolování. Vyuţívá se ve státech s nedostatkem pitné vody: např. v Izraeli, Kuvajtu nebo Saudské Arábii. Video: kondenzace vodní páry na sklenici 1. Vypočti teplo, které se uvolní do okolí, jestliţe na zrcadle zkondenzuje 50 g vodní páry o teplotě 50 C (l t 50 = 2,4 MJ/kg). 2. Vodní pára o hmotnosti 2 kg a teplotě 100 C se nejprve kapalněním přemění ve vodu stejné teploty a potom ochladí na teplotu 60 C. Urči teplo, které se při tomto ději uvolní do okolí. Kapalnění (kondenzace) je přeměna plynné látky v kapalnou. Při kapalnění dochází k uvolnění skupenského tepla kondenzačního, které je rovno skupenskému teplu vypařování téţe látky při stejné teplotě. Kapalněním vznikají mlhy nebo oblaka. 18

19 2.9 Fázový diagram Jak se dají přehledně znázornit všechny stavy dané látky? Kde ve fázovém diagramu najdeme jednotlivá skupenství? Které křivky rozdělují fázový diagram na tři části? Jak se ve fázovém diagramu znázorní jednotlivé změny skupenství? Fázový diagram znázorňuje rovnováţné stavy různých skupenství (fází) jedné a téţe látky. Je rozdělen na tři části: Křivky oddělující jednotlivé části jsou: k t - křivka tání, k s křivka sublimační, k p křivka syté páry. Na křivce tání mohou vedle sebe existovat pevné a kapalné skupenství dané látky. Na křivce sublimační plyn a pevná látka a na křivce syté páry kapalina a plyn. Všechny tři křivky se protínají v bodě A, který se nazývá trojný bod. V tomoto bodě mohou vedle sebe existovat všechna tři skupenství. (Trojný bod vody má hodnotu T k = 273,16 K a p k = 610 Pa). Křivka syté páry končí v bodě K, který se nazývá kritický bod. V tomto bodě mizí rozhraní mezi kapalinou a párou, obě skupenství od sebe nelze rozeznat. Z fázového diagramu je vidět, ţe je moţné (i kdyţ v praxi obtíţné) přeměnit páru na kapalinu (nebo obráceně) bez změny skupenství tak, ţe se obejde kritický bod K! V obrázku níţe je tento děj znázorněn zelenou křivkou. 19

20 Ve fázovém diagramu můţeme znázornit děje, při kterých dochází ke změnám skupenství. Tři takové příklady (modré křivky) jsou i v obrázku výše: - Pevná látka ve stavu S 1 se zahříváním při stálém tlaku (izobarickém ději) přivede do stavu S 2, kdy dochází k jejímu tání. Po dalším zahřátí látka skončí ve stavu S 3 jako kapalina. -Bod S 7 označuje látku v kapalném skupenství. Sniţováním tlaku při stálé teplotě (izotermický děj) látka přejde do bodu S 8 na křivce syté páry, kdy proběhne změna skupenství všechna kapalina se postupně promění v sytou páru. Dalším sníţením tlaku se pára změní v páru přehřátou a přejde do stavu označeném bodem S Která skupenství mohou existovat vedle sebe v rovnováze na křivce syté páry? 2. Popiš, k jakému ději dochází na křivce S 4 aţ S Do fázového diagramu zakresli děj, při kterém dochází k sublimaci pevné látky při stálé teplotě. Fázový diagram slouţí ke znázornění rovnováţných stavů dané látky. Je rozdělen na tři části podle skupenství na pevnou látku, kapalinu a páru. Jednotlivé oblasti jsou od sebe odděleny křivkou tání, křivkou sublimační a křivkou syté páry Vodní pára v atmosféře 20

21 Jak popisujeme mnoţství vodní páry v atmosféře? Jaká relativní vlhkost je pro člověka ideální? Jak vznikají mraky? V dolních vrstvách atmosféry je vţdy přítomna vodní pára. Vodní pára se dostává do atmosféry vypařováním moří, jezer a dalších vodních ploch. Mnoţství vodní páry závisí na denní i roční době a na poloze na Zemi. Největší je odpoledne a nejniţší k ránu, v létě je větší neţ v zimě, a v přímořských oblastech větší neţ ve vnitrozemských. Existence vodní páry se nejviditelněji projevuje tvorbou oblačnosti (viz obrázek níţe, různé druhy oblaků lze najít zde: cs.wikipedia.org/wiki/oblak) nebo mlhy (viz obrázek na následující straně vpravo) K vyjádření mnoţství vodní páry ve vzduchu se pouţívají veličiny absolutní a relativní vlhkost vzduchu. Absolutní vlhkost vzduchu (kg/m 3 ) udává hmotnost vodních par v jednotce objemu (v 1 m 3 ). Je to tedy zároveň hustota vodních par. Vypočte se ze vztahu: Maximální absolutní vlhkost za daných podmínek (teploty a tlaku) se značí dalším zvyšování mnoţství vodní páry by uţ docházelo k její kondenzaci.. Při Relativní vlhkost vzduchu se vypočte ze vztahu nasycení vzduchu vodní párou.. Udává v procentech Př.: Je-li relativní vlhkost vzduchu 50 %, znamená to, ţe je ve vzduchu obsaţeno poloviční mnoţství vodní páry v porovnání s maximální moţnou hodnotou. 21

22 Vlhkost vzduchu se měří vlhkoměrem (na obrázku vlevo). Nejlepší relativní vlhkost pro práci nebo sport je %. 1. Zkus odhadnout mnoţství vodní páry v oblaku, který má tvar válce o obsahu podstavy 12 km 2 a výšce 6 km. Uvaţuj absolutní vlhkost. 2. Vypočti relativní vlhkost vzduchu, je-li hustota vodní páry 12 g/m 3. Podle MFCH tabulek je za stejných podmínek. Mnoţství vodní páry v atmosféře popisují veličiny absolutní a relativní vlhkost. Relativní vlhkost měříme vlhkoměrem. K práci nebo sportu je nejvhodnější relativní vlhkost %. Při 100 % vlhkosti se člověk nemůţe ochladit pocením, coţ působí nepříznivě na organismus. Při 100 % vlhkosti začíná vodní pára v atmosféře kondenzovat a vznikají mraky nebo mlhy Změny skupenství v praxi Změny skupenství jsou děje, s nimiţ se lidé běţně střetávají v nejrůznějších situacích a podobách. Asi nenajdeme člověka, který by se dosud nesetkal s táním sněhu na jaře, vypařováním vody při vaření nebo zamlţeným oknem či zrcadlem. Změny skupenství však hrají důleţitou roli i v celosvětovém měřítku. Vodní pára se podílí zhruba šedesáti procenty na skleníkovém efektu, který umoţňuje ţivot na naší planetě. Bez vodní páry by průměrná teplota Země byla niţší asi o 30 C, a nemohl by na ní vzniknout ani existovat ţivot takový, jaký jej známe. 22

23 Změny skupenství vody v atmosféře jsou klíčové pro formování oblačnosti, vznik a vypadávání sráţek, a tím jsou předmětem studia meteorologie. Oblaka se vytvářejí v místech, kde vlivem vyšší teploty vznikají výstupné proudy vzduchu. Vzduch obsahující vodní páru se výstupem ochlazuje a v určité výšce (kondenzační hladině) se mění v kapičky vody. Ke vzniku sráţek je však v mírném a arktickém podnebném pásu ještě zapotřebí přeměna kapiček vody v ledové krystalky. Ty pak narůstají na úkor kapalné fáze a vypadávají v podobě sráţek na zadní straně oblaků typu nimbostratus nebo cumulonimbus. Při zamrzání vody v přírodě hraje významnou roli anomálie vody - objemová roztaţnost vody není lineární, voda má největší hustotu při 4 C. Ochlazování vody pod bod mrazu se na hladině tvoří vrstva ledu, zatímco u dna má voda zmíněné 4 C. Led je dobrým teplotním izolantem a tím brání dalšímu zamrzání vodní masy do hloubky. Výsledkem tohoto mechanismu je udrţení příznivých podmínek pro vodní ţivočichy i během zimy. V průmyslu (např. metalurgii) je změn skupenství vyuţíváno především při výrobě slitin (nejen) kovů a výrobě oceli. Ve sklářství se vyuţívá kapalné fáze skla k jeho formování do ţádoucích tvarů a velikostí. Tuhnutí vody a následné rozpínání ledu v puklinách a prasklinách je příčinou eroze skal a rozrušování povrchu silnic. Aplikací vypařování v běţném ţivotě je sušení prádla. Varu mořské vody za sníţeného tlaku a následné kondenzace vodní páry se vyuţívá k získávání pitné vody odsolováním mořské vody v nejsušších regionech světa (např. na Arabském poloostrově). Částicová fyzika vyuţívá změn skupenství k detekci elementárních částic pomocí Wilsonovy mlţné komory. V ní se nachází podchlazená pára, která při interakci s částicí kondenzuje v podobě kapiček vody, které lze následně vyfotografovat a zkoumat. Opačně funguje dokonalejší bublinková komora, v níţ je přehřátá kapalina a stopa částice je vytvořena bublinkami páry. Kalení oceli a zapisování dat na CD a DVD disků patří mezi příklady fázových změn, při nichţ dochází ke změnám v uspořádání částic látek. Jako poslední vyuţití změn skupenství v praxi je moţné uvést umělé zasněžování lyţařských svahů pomocí sněhových děl. 23

24 2.12 Výstupní test 1. Jak se nazývá děj opačný k vypařování? a) var b) kapalnění c) desublimace d) tuhnutí 2. Jaká je teplota tuhnutí vody za normálních podmínek? a) 0 C b) 0 K c) 1 C d) 1 C 3. Jakou jednotku má měrné skupenské teplo tání? a) J/K b) J kg -1 K -1 c) J kg d) J kg Co se děje s objemem většiny látek při tání? a) objem se zvětšuje b) objem se zmnšuje c) objem zůstává stejný 5. Led se mění táním ve vodu. Jaká je hustota vznikající vody? a) menší neţ hustota ledu b) stejná jako hustota ledu c) větší neţ hustota ledu 6. Kolik tepla se uvolní při zmrznutí 2 kg vody o teplotě 0 C? (měrné skupenské teplo tání ledu l t = 334 kj/kg) a) 167 kj b) 334 kj c) 668 kj d) 522 kj 7. Závisí teplota tání látek na vnějším tlaku? a) ano b) ne 8. Má skupenské teplo tání dané látky stejnou velikost jako skupenské teplo tuhnutí? a) ano b) ne c) jak kdy, záleţí na podmínkách tání/tuhnutí 9. Je moţné zchladit vodu na teplotu niţší neţ 0 C? a) ano b) ne 10. Do sklenice teplé vody přidáme kousek ledu. Tím se hladina ve sklenici zvedne aţ po okraj. Přeteče voda, aţ všechen led roztaje? a) ano b) ne 11. Do nádoby s kapalnou vodou o teplotě 0 C vloţíme led o teplotě 0 C. Co se bude dít? a) voda v nádobě zmrzne b) led roztaje c) nebude se dít nic, voda a led jsou v rovnováze 12. Ve fázovém diagramu na obrázku 1 jsou písmeny (a), (b), (c) a (d) znázorněny 4 děje. Který z nich představuje izobarické ohřátí kapaliny a její přeměnu v páru? a) (a) b) (b) c) (c) d) (d) Obr. 1 24

25 13. Ve fázovém diagramu na obrázku 2 označují římské číslice I, II a III oblasti, v nichţ se nacházejí různá skupenství. Jaké je správné označení jednotlivých skupenství? a) I pevné, II plynné, III - kapalné b) I pevné, II kapalné, III - plynné c) I kapalné, II pevné, III - plynné d) I kapalné, II plynné, III pevné Obr Co představují bod X, bod Y a symbol? ve fázovém diagramu na obrázku 3? a) bod X: kritický bod, bod Y: trojný bod,? : křivka tání b) bod X: trojný bod, bod Y: kritický bod,? : křivka tání c) bod X: trojný bod, bod Y: bod varu vody,? : křivka tání d) bod X: kritický bod, bod Y: trojný bod,? : křivka sublimační Obr Na čem nezávisí rychlost vypařování kapaliny? a) na teplotě kapaliny b) na odsávání par c) na objemu kapaliny d) na ploše hladiny 16. Který jev je typickým příkladem desublimace? a) schnutí prádla při teplotě niţší neţ 0 C b) zamlţování oken v autobuse c) tvorba námrazy (jíní a jinovatky) na povrchu těles d) mizení sněhu při teplotách niţších neţ 0 C 17. Co platí pro bod varu kapaliny? a) nezávisí na vnějším tlaku b) závisí na vnějším tlaku, s rostoucím tlakem se zvyšuje c) závisí na vnějším tlaku, s rostoucím tlakem se sniţuje d) nezávisí na vnějším tlaku, ale na vnější teplotě 25

26 18. Při kterých změnách skupenství se teplo uvolňuje do okolí? a) tuhnutí, vypařování, desublimace b) kondenzace, var, tuhnutí a sublimace c) tání, kondenzace, desublimace d) kondenzace, tuhnutí, desublimace 19. Jestliţe se sníţí teplota vzduchu a vodní páry v něm obsaţené, vodní pára zkapalní. Který jev nesouvisí s popsaným dějem? a) vznik rosy b) vznik mlhy c) vznik námrazy d) zamlţení skel aut 20. Jaké teplo se uvolní do okolí, jestliţe 200 g páry o teplotě 100 C zkondenzuje na kapalinu o stejné teplotě? (Měrné skupenské teplo vypařování vody při 100 C: l V = 2,26 MJ/kg). a) 4,52 MJ b) 452 kj c) 452 MJ d) 45,2 MJ 21. Vodu o teplotě 50 C a objemu 0,5 l cheme přivést k bodu varu a proměnit v páru. Kolik tepla je k tomu zapotřebí? (l V 100 C = 2,26 MJ/kg, c = J kg -1 K -1 ) a) 1,4 MJ b) 14 MJ c) 2,7 MJ d) 2,3 MJ 22. Kolik tepla je zapotřebí k přeměně 2 kg ledu o teplotě 10 C na vodu o teplotě 0 C? a) 42 kj b) 374 kj c) 670 kj d) 710 kj 23. Jakým dějem lze přehřátou páru proměnit v páru sytou? a) zvýšením teploty b) sníţením tlaku c) sníţením teploty nebo zvýšením tlaku d) přehřátou páru nelze ţádným dějem změnit v sytou páru 24. Která skupenství spolu mohou existovat v rovnováze na křivce syté páry? a) plynné a pevné skupenství b) pevné a kapalné skupenství c) plynné a kapalné skupenství d) všechna tři skupenství Pojmová mapa změn skupenství 26

27 2.14 Laboratorní práce Určení měrného skupenského tepla tání ledu Úkol Určete měrné skupenské teplo tání ledu pomocí kalorimetrické rovnice Pomůcky Směšovací kalorimetr, váhy, teploměr, led, miska, voda, piják nebo filtrační papír Postup 1. Neprve určete tepelnou kapacitu C k kalorimetru: zjistěte hmotnost kalorimetru m k a kov, z něhoţ je vyroben (většinou hliník). Pro tento kov najděte v tabulkách hodnotu měrné tepelné kapacity c k. Pak ze vztahu C k = c k m k vypočtěte C k. 2. Připravte si led, nejlépe ve formě kostek v miskách, které se pouţívají v mrazničkách. Jednu kostku ledu vloţte do nádobky s chladnou vodou a počkejte, aţ se led ohřeje na teplotu tání t 2 = 0 C. 3. Mezitím do kalorimetru nalijte přiměřené mnoţství vody o měrné tepelné kapacitě c 1, hmotnosti m 1 a teplotě t Vyjměte kostku ledu z nádobky, osušte ji pijákem nebo filtračním papírem a změřte její hmotnost m Kostku ledu vloţte do kalorimetru a počkejte, aţ všechen led roztaje a ustaví se rovnováţný 27

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

SKUPENSTVÍ LÁTEK Prima - Fyzika

SKUPENSTVÍ LÁTEK Prima - Fyzika SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0215 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0215 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

4IS09F8 změna skupenství.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/21.3075. Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 09

4IS09F8 změna skupenství.notebook. Registrační číslo projektu: CZ.1.07/1.4.00/21.3075. Šablona: III/2. Sada: VY_32_INOVACE_4IS Pořadové číslo: 09 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_4IS Pořadové číslo: 09 Ověření ve výuce Třída: 8.A Datum: 20.2.2013 1 Změna skupenství Předmět: Fyzika Ročník: 8. ročník

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára Zěny skupenství átek Zěna skupenství, Tání a tuhnutí, Subiace a desubiace Vypařování a kapanění Sytá pára, Fázový diagra, Vodní pára Zěna skupenství = fyzikání děj, při které se ění skupenství átky Skupenství

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

Vnitřní energie, teplo, změny skupenství Pracovní listy pro samostatnou práci

Vnitřní energie, teplo, změny skupenství Pracovní listy pro samostatnou práci Vnitřní energie, teplo, změny skupenství Pracovní listy pro samostatnou práci Oblast: Člověk a příroda Předmět: Fyzika Tematický okruh: Tělesa, látky a síla Ročník: 8. Klíčová slova: změny skupenství,

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Termika (Fyzika zajímavě) Pachner Úvodní obrazovka Obsah učebnice (vlevo) Seznamy a přehledy (tlačítka dole) Teorie Zajímavosti Osobnosti Úlohy Pokusy Pojmy Animace Lišta s nástroji (vpravo nahoře) Poznámky

Více

Změna skupenství - přehled Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/

Změna skupenství - přehled Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Změna skupenství - přehled Převzato z materiálů ZŠ Ondřejov - http://www.zsondrejov.cz/vyuka/ Skupenství látek Látky se vyskytují ve třech skupenstvích pevné, kapalné, plynné. Základní vlastnosti látek

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie

vzdělávací oblast vyučovací předmět ročník zodpovídá ČLOVĚK A PŘÍRODA FYZIKA 8. JOSKA Pohybová a polohová energie Přeměna polohové a pohybové energie Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky Uvede hlavní jednotky práce a výkonu, jejich díly a násobky

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

SEZNAM PRO ARCHIVACI

SEZNAM PRO ARCHIVACI SEZNAM PRO ARCHIVACI Název školy Číslo projektu Číslo a název šablony KA Identifikační číslo Tematická oblast Základní škola Mánesova Otrokovice, příspěvková organizace CZ.1.07/1.4.00/21.3763 III/2 Inovace

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Název a adresa školy: Střední škola průmyslová a uměleká Opava příspěvková organizae Praskova 399/8 Opava 7460 Název operačního programu: OP Vzdělávání pro konkureneshopnost oblast podpory.5 Registrační

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu

Speciální ZŠ a MŠ Adresa. U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu Subjekt Speciální ZŠ a MŠ Adresa U Červeného kostela 110, 415 01 TEPLICE Číslo op. programu CZ. 1. 07 Název op. programu OP Vzdělávání pro konkurenceschopnost Číslo výzvy 21 Název výzvy Žádost o fin. podporu

Více

3.1 Základní poznatky

3.1 Základní poznatky 3.1 Základní poznatky 3.1 Určete klidovou hmotnost m a atomu uhlíku a atomu ţeleza. 3.2 Určete klidovou hmotnost m m molekuly vody H 2 O a molekuly oxidu uhličitého CO 2. 3.3 Určete molární hmotnost M

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

2 v 1 úlohy experimentální i teoretické

2 v 1 úlohy experimentální i teoretické 2 v 1 úlohy experimentální i teoretické VOJTĚCH ŢÁK Matematicko-fyzikální fakulta UK, Praha Abstrakt V tomto příspěvku jsou uvedeny tři úlohy, které je moţné v rámci středoškolské fyziky řešit jak experimentálně,

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Tekutý sendvič. Jak pokus probíhá 1. Nalijte do lahve stejné množství oleje a vody. 2. Uzavřete láhev a obsah důkladně protřepejte.

Tekutý sendvič. Jak pokus probíhá 1. Nalijte do lahve stejné množství oleje a vody. 2. Uzavřete láhev a obsah důkladně protřepejte. Tekutý sendvič Mnoho kapalin se podobá vodě a lze je s ní snadno míchat. Stejně tak ale najdeme kapaliny, u kterých to není možné. Jednou z nich je olej. Potřebné vybavení: voda (obarvená inkoustem), olej,

Více

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek Fyzika 6. ročník Očekávaný výstup Školní výstup Učivo Mezipředmětové vztahy, průřezová témata Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí.

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Experiment C-16 DESTILACE 2

Experiment C-16 DESTILACE 2 Experiment C-16 DESTILACE 2 CÍL EXPERIMENTU Získání informací o třech klasických skupenstvích látek, změnách skupenství (jedné z fázových změn), křivkách ohřevu a ochlazování a destilační křivce. Prozkoumání

Více

VY_32_INOVACE_04.13 1/8 3.2.04.13 Činnost ledovce, větru Činnost ledovců

VY_32_INOVACE_04.13 1/8 3.2.04.13 Činnost ledovce, větru Činnost ledovců 1/8 3.2.04.13 Činnost ledovců cíl analyzovat činnost ledovců - rozlišit typy ledovců a rozdíl v jejich činnosti - důležitým modelačním prvkem - ve vysokých horách horské ledovec, pevninské ledovce (ledové

Více

Charakteristika vyučovacího předmětu Fyzika

Charakteristika vyučovacího předmětu Fyzika Charakteristika vyučovacího předmětu Fyzika Obsahové, časové a organizační vymezení vyučovacího předmětu Fyzika Obsahem předmětu Fyzika je oblast neživé přírody a současných technologií. Žák si osvojí

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V).

W = p. V. 1) a) PRÁCE PLYNU b) F = p. S W = p.s. h. Práce, kterou může vykonat plyn (W), je přímo úměrná jeho tlaku (p) a změně jeho objemu ( V). 1) a) Tepelné jevy v životě zmenšení objemu => zvětšení tlaku => PRÁCE PLYNU b) V 1 > V 2 p 1 < p 2 p = F S W = F. s S h F = p. S W = p.s. h W = p. V 3) W = p. V Práce, kterou může vykonat plyn (W), je

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Voda 1. Najdi na internetu pojem acidifikace vody a vysvětli. Je to jev pozitivní nebo negativní? 2. Splaškové odpadní vody obvykle reagují a. Kysele b. Zásaditě c. Neutrálně 3.

Více

Zjišťování vlastností různorodých látek pomocí žákovské soupravy pro chemii (laboratorní práce)

Zjišťování vlastností různorodých látek pomocí žákovské soupravy pro chemii (laboratorní práce) Zvyšování kvality výuky v přírodních a technických oblastech CZ.1.07/1.128/02.0055 Zjišťování í různorodých látek pomocí žákovské soupravy pro chemii (laboratorní práce) Označení: EU-Inovace-Ch-8-01 Předmět:

Více

4.5.7 Magnetické vlastnosti látek

4.5.7 Magnetické vlastnosti látek 4.5.7 Magnetické vlastnosti látek Předpoklady: 4501 Předminulá hodina magnetická indukce závisí i na prostředí, ve kterém ji měříme permeabilita prostředí = 0 r, r - relativní permeabilita prostředí (zda

Více

sníh pracovní - výukový list doporučené období: prosinec-leden zpracováno pro domácí přípravu žáků souhrnné téma sníh žákům 6.

sníh pracovní - výukový list doporučené období: prosinec-leden zpracováno pro domácí přípravu žáků souhrnné téma sníh žákům 6. pracovní - výukový list sníh doporučené období: prosinec-leden zpracováno pro domácí přípravu žáků souhrnné téma sníh žákům 6.ročníku Milá badatelé, žáci, mladí přírodovědci víte z čeho je sníh? Určitě

Více

Termika PROJEKT VĚDA A TECHNIKA NÁS BAVÍ! BYL PODPOŘEN:

Termika PROJEKT VĚDA A TECHNIKA NÁS BAVÍ! BYL PODPOŘEN: Termika PROJEKT BYL PODPOŘEN: Cílem projektu je prostřednictvím vzdělávacích (vzdělávací programy, materiály) a popularizačních ( vědecké road-show) nástrojů a přeshraniční motivační soutěže zvýšit zájem

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Jak správně provést retrofit. Když se to dělá správně, potom všechno funguje 2014

Jak správně provést retrofit. Když se to dělá správně, potom všechno funguje 2014 Jak správně provést retrofit Když se to dělá správně, potom všechno funguje 2014 Výzva poslední doby-náhrada chladiv R404A Jako náhrada za R404a jsou preferována chladiva R407A a R407F Problém teploty

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.6.2013

Více

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles 6.ročník Výstupy Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles určí, zda je daná látka plynná, kapalná či pevná, a popíše rozdíl ve vlastnostech správně používá pojem

Více

2.2.5 Přenos vnitřní energie

2.2.5 Přenos vnitřní energie 2.2.5 Přenos vnitřní energie Předpoklady: 2204 Pomůcky: zkumavka, matice (nebo jiné závaží, které se do zkumavky vejde), kousek ledu, kahan železná a dřevěná tyčka, papír, kahan kádinka, hypermangan, plotýnka

Více

Experimenty se systémem Vernier

Experimenty se systémem Vernier Experimenty se systémem Vernier Tuhnutí vody Petr Kácovský, KDF MFF UK Tyto experimenty vznikly v rámci diplomové práce Využívání dataloggerů ve výuce fyziky, obhájené v květnu 2012 na MFF UK v Praze.

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

Kde se vzala v Asii ropa?

Kde se vzala v Asii ropa? I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Pracovní list č. 24 Kde se vzala v Asii ropa? Pro

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

6_1_Molekulová fyzika a termodynamika

6_1_Molekulová fyzika a termodynamika Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 6_1_Molekulová fyzika a termodynamika Ing. Jakub Ulmann MOLEKULOVÁ FYZIKA A TERMIKA 1 Molekulová fyzika

Více

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země Třída: Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země 1) Zemské těleso je tvořeno vyber správnou variantu: a) kůrou, zrnem a jádrem b) kůrou, slupkou a pláštěm c) kůrou, pláštěm a jádrem

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

Význam vody pro chlazení povrchu Země a minimalizaci klimatických extrémů Globe Processes Model Verze 14

Význam vody pro chlazení povrchu Země a minimalizaci klimatických extrémů Globe Processes Model Verze 14 Význam vody pro chlazení povrchu Země a minimalizaci klimatických extrémů Globe Processes Model Verze 14 Ing. Jaromír Horák, jaromir.horak@equica.cz Prof. Ing. Petr Grau, DrSc, grau08@aquanova.cz léto

Více

Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti

Název: Měření příkonu spotřebičů, výpočet účinnosti, hledání energetických úspor v domácnosti Název: Měření příkonu spotřebičů výpočet účinnosti hledání energetických úspor v domácnosti Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy škola hl. města Prahy Předmět (mezipředmětové vztahy)

Více

1.03 Důkaz tuků ve stravě. Projekt Trojlístek

1.03 Důkaz tuků ve stravě. Projekt Trojlístek 1. Chemie a společnost 1.03 Důkaz tuků ve stravě. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika je určena

Více

Voda jako životní prostředí fyzikální a chemické vlastnosti obecně

Voda jako životní prostředí fyzikální a chemické vlastnosti obecně Hydrobiologie pro terrestrické biology Téma 4: Voda jako životní prostředí fyzikální a chemické vlastnosti obecně voda jako životní prostředí : Fyzikální a chemické vlastnosti vody určují životní podmínky

Více

3.07 Sublimace kofeinu. Projekt Trojlístek

3.07 Sublimace kofeinu. Projekt Trojlístek 3. Separační metody 3.07 Sublimace kofeinu. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika je určena pro žáky

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 20. 3. 2013 Pořadové číslo 15 1 Energie v přírodě Předmět: Ročník: Jméno autora:

Více

ODBORNÁ TERMINOLOGIE V JAZYCÍCH ZAČLENĚNÍ ODBORNÉ TERMINOLOGIE DO VÝUKY CIZÍCH JAZYKŮ

ODBORNÁ TERMINOLOGIE V JAZYCÍCH ZAČLENĚNÍ ODBORNÉ TERMINOLOGIE DO VÝUKY CIZÍCH JAZYKŮ ODBORNÁ TERMINOLOGIE V JAZYCÍCH ZAČLENĚNÍ ODBORNÉ TERMINOLOGIE DO VÝUKY CIZÍCH JAZYKŮ Únor 2011 V únoru začali ţáci v týdnech odborného výcviku pod vedením svých učitelů odborného výcviku připravovat v

Více

ročník 6. č. 14 název

ročník 6. č. 14 název č. 14 název Význam vody anotace V pracovních listech se žáci seznámí se základními podmínkami života na zemi. Testovou i zábavnou formou si procvičují získané znalosti na dané téma. Součástí pracovního

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Tematické okruhy průřezových témat zařazené do předmětu fyzikální praktika

Tematické okruhy průřezových témat zařazené do předmětu fyzikální praktika Vzdělávací oblast Člověk a příroda Vyučovací předmět Fyzikální praktika Charakteristika předmětu Obor, vzdělávací oblasti Člověk a příroda, Fyzika, jehož součástí je předmět Fyzikální praktika, svým činnostním

Více

DOPAD FISKÁLNÍ/MONETÁRNÍ POLITIKY NA ŘÍZENÍ PODNIKU. seminární práce

DOPAD FISKÁLNÍ/MONETÁRNÍ POLITIKY NA ŘÍZENÍ PODNIKU. seminární práce DOPAD FISKÁLNÍ/MONETÁRNÍ POLITIKY NA ŘÍZENÍ PODNIKU seminární práce OBSAH ÚVOD... 1 1. Fiskální politika... 1 2. Monetární politika... 3 3. Dopad nástrojů fiskální politiky na řízení podniku... 4 4. Dopad

Více

AQUANAL FISHWATERLAB, souprava pro analýzu vody Kat. číslo 100.3732

AQUANAL FISHWATERLAB, souprava pro analýzu vody Kat. číslo 100.3732 AQUANAL FISHWATERLAB, souprava pro analýzu vody Kat. číslo 100.3732 Strana 1 z 22 Voda je naprosto zvláštní látka! - Voda je životní prostor ryb 1. Úvod To nejlepší je koneckonců stejně voda. To řekl již

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_Z678HO_13_02_07

Více

MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMIKA FYZIKA pracovní sešit pro ekonomické lyceum. 1 Jiří Hlaváček, OA a VOŠ Příbram, 2015 Molekulová fyzika studuje tepelné děje a děje s nimi související tak, že zkoumá pohyb částic, z nichž se tělesa skládají,

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

FYZIKA. 6. 9. ročník Charakteristika předmětu. Obsahové, organizační a časové vymezení. Výchovné a vzdělávací strategie pro rozvoj kompetencí žáků

FYZIKA. 6. 9. ročník Charakteristika předmětu. Obsahové, organizační a časové vymezení. Výchovné a vzdělávací strategie pro rozvoj kompetencí žáků FYZIKA 6. 9. ročník Charakteristika předmětu Obsahové, organizační a časové vymezení Fyzika je samostatně vyučována v 6., 7., 8., 9. ročníku po dvou hodinách týdně. Časová dotace byla posílena v 6. a 8.

Více

Autor Použitá literatura a zdroje Metodika

Autor Použitá literatura a zdroje Metodika Poř. číslo III-2-F-II-1-7r. III-2-F-II-2-7.r. Název materiálu Vlastnosti kapalin Hydraulická zařízení Autor Použitá literatura a zdroje Metodika http://www.quido.cz/osobnosti/pascal.htm. http://black-hole.cz/cental/wp-content/uploads/2011/04/spojene_nadoby.pdf

Více

DUM VY_52_INOVACE_12CH36

DUM VY_52_INOVACE_12CH36 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH36 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 8. a 9. vzdělávací oblast: vzdělávací obor:

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

VY_32_INOVACE_06_III./19._HVĚZDY

VY_32_INOVACE_06_III./19._HVĚZDY VY_32_INOVACE_06_III./19._HVĚZDY Hvězdy Vývoj hvězd Konec hvězd- 1. možnost Konec hvězd- 2. možnost Konec hvězd- 3. možnost Supernova závěr Hvězdy Vznik hvězd Vše začalo už strašně dávno, kdy byl vesmír

Více

Výukový materiál zpracovaný v rámci projektu

Výukový materiál zpracovaný v rámci projektu Výukový materiál zpracovaný v rámci projektu Pořadové číslo projektu: cz.1.07/1.4.00/21.1936 č. šablony: III/2 č.sady: 6 Ověřeno ve výuce: 13.1.2012 Třída: 3 Datum:28.12. 2011 1 Sluneční soustava Vzdělávací

Více