MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
|
|
- Bohuslav Kraus
- před 8 lety
- Počet zobrazení:
Transkript
1 MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
2 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých částic - pohled zevnitř 3 základní postuláty kinetické teorie látek: 1. každá látka se skládá z atomů, molekul a iontů (nevyplňují zcela prostor) 2. částice se stále neuspořádaně pohybují (tepelný pohyb) 3. částice na sebe navzájem působí současně přitažlivými i odpudivými silami
3 VZÁJEMNÉ PŮSOBENÍ ČÁSTIC síly interakce mezi částicemi závisí na jejich vzájemné vzdálenosti, při malých vzdálenostech převažují odpudivé síly r 0 vurčité vzdálenosti je výslednice odpudivé a přitažlivé síly rovna nule, potenciální energie sil vzájemného působení molekul je minimální kulová plocha opsaná kolem středu molekuly zahrnující všechny molekuly, na které ještě daná částice působí: sféra molekulového působení (řádově m)
4 II. TERMODYNAMIKA -zákonitosti energetických přeměn při fyzikálních dějích, zejména přeměny tepelné energie na jiné formy energie - pohled zvenčí Termodynamická soustava (TDS): Souhrn těles (látek), které zaujímají určitou část prostoru a která jsou od ostatních těles (tzv. okolí) oddělena stěnami, ať skutečnými nebo myšlenými Izolovaná TDS: Soustava nevyměňující si s okolím žádnou energii ani práci. V izolované soustavě mohou probíhat procesy jen mezi tělesy, které tuto soustavu tvoří. Uzavřená TDS: Soustava nevyměňující si s okolím částice. Stav soustavy je určen, mají-li veličiny popisující vlastnosti soustavy (stavové veličiny) určité známé hodnoty, tj. je-li znám tlak, objem, teplota, případně koncentrace roztoku, hmotnost (látkové množství) kapaliny a její páry apod.
5 STAV TERMODYNAMICKÉ SOUSTAVY Stavové veličiny popisují stav soustavy v daném okamžiku. Interakcí (vzájemným působením) soustavy s okolím dochází ke změně stavu soustavy a tím i ke změně stavových veličin. Rovnovážný stav TDS: stav, do kterého soustava v neměnných vnějších podmínkách přejde po určité době samovolně a setrvá v něm, dokud tyto podmínky zůstanou zachovány. V rovnovážném stavu zůstávají stavové veličiny konstantní. Na soustavě nelze pozorovat žádné makroskopické změny.
6 a) kinetická energie molekul: - translační pohyb molekuly: VNITŘNÍ ENERGIE SOUSTAVY ( E E ) K + P 1 mv 2 2 všech molekul - rotační pohyb kolem osy jdoucí hmotným středem molekuly: 1 Jω vibrační energie složitějších molekul (kmitání kolem rovnovážných poloh) b) potenciální energie molekul: - je dána vzájemným silovým působením molekul - do vnitřní energie se nezapočítávají potenciální energie, které mají částice soustavy vzhledem k vnějším silovým polím. např. potenciální energie tíhová částic plynu uzavřeného v nádobě. Vnitřní energie soustavy je jednoznačně určena okamžitým stavem soustavy (nezávisí na způsobu, jakým se soustava do tohoto stavu dostala). Vnitřní energie je stavová veličina!
7 TEPLO A PRÁCE Změna vnitřní energie soustavy: konáním práce tepelnou výměnou mezi TDS a okolím KONÁNÍ PRÁCE: práce se koná při vzájemném pohybu soustavy a okolí (např. stlačování plynu) TEPELNÁ VÝMĚNA: děj, při kterém neuspořádaně se pohybující částice jednoho tělesa (teplejšího) narážejí na rozhraní dvou těles na částice druhého tělesa (studenějšího) a předávají jim část své energie. TEPLO: - forma energie související s neuspořádaným pohybem molekul (transportní veličina) - energie, kterou si dvě tělesa předají při tepelné výměně Práce ani teplo nejsou stavové veličiny!
8 TEPLOTA je těsně spojena s neuspořádaným tepelným pohybem částic fyzikální veličina charakterizující stav tepelné rovnováhy soustavy Termodynamické soustavy ve vzájemném kontaktu probíhá tepelná výměna 1. soustavy se nacházejí v rovnovážných stavech takových, že mezi nimi nedochází k tepelné výměně. Tyto soustavy mají stejnou teplotu. 2. soustavy se nacházejí v rovnovážných stavech, kdy mezi nimi probíhá tepelná výměna, soustavy mají různou teplotu. Soustava, u níž došlo během tepelné výměny ke snížení vnitřní energie, měla vyšší teplotu a soustava, u níž došlo během tepelné výměny ke zvýšení vnitřní energie, měla nižší teplotu. Po skončení tepelné výměny přejdou soustavy do nových do rovnovážných stavů. K tepelné výměně už dále nedochází, soustavy mají stejnou teplotu. Teplota je stavová veličina!
9 TEPELNÁ ROVNOVÁHA
10 DEFINICE TEPLOTY: Soustavy v rovnovážných stavech, které po uvedení do vzájemného kontaktu tyto rovnovážné stavy nezmění, mají stejnou teplotu. kměření teploty: - srovnávací těleso tzv. teploměr - teplotní stupnici - jednotku teploty 1. Termodynamická teplotní stupnice: teplota vyjádřena v této stupnici je termodynamická teplota - jednotka: K kelvin - základní teplota : teplota trojného bodu vody: dohodou bylo stanoveno 273,16 K 1 K je 273,16-tou částí termodynamické teploty trojného bodu vody T ( absolutní )
11 Buňka pro trojný bod vody: rovnovážný stav LED VODA VODNÍ PÁRA 2. Celsiova teplotní stupnice: teplota vyjádřena v této stupnici je Celsiova teplota - jednotka C stupeň Celsia základní teploty: t = 0,0099 C p = 0,00061 MPa 0 C rovnovážný stavu ledu a vody (za normálního tlaku) 100 C rovnovážný stavu vody a její nasycené páry (za normálního tlaku) - mezi těmito teplotami je stupnice rozdělena na 100 stejných dílků, jeden dílek odpovídá jednomu Celsiovu stupni (1 C) t
12 CELSIOVA STUPNICE TERMODYNAMICKÁ STUPNICE
13 srovnání stupnice KELVINOVY, CELSIOVY A FAHRENHEITOVY shoda stupnice Celsiovy a Fahrenheitovy: -40 C = -40 F
14 MĚŘENÍ TEPLOTY a) dilatační teploměry (změny délky a objemu těles s teplotou) kapalinové (rtuť, etylalkohol,...) kovové (tyčové, bimetalové) b) tlakové teploměry (tlakové změny látky v prostoru o stálém objemu) plynové párové kapalinové c) odporové (změna elektrického odporu kovů nebo polovodičů) odpor kovů s rostoucí teplotou roste, odpor polovodičů klesá d) termočlánky (měření termoelektrického napětí, které vzniká při rozdílu teplot dvou spojů jednoho kovu s jiným kovem) e) radiační teploměry (pyrometry) (měření teploty založené na zákonech tepelného záření těles)
15 bimetalový teploměr plynový teploměr části kapalinového teploměru
16 TEPLOTNÍ ROZTAŽNOST LÁTEK teplotní roztažnost se projevuje u všech tří skupenství látky I) PEVNÉ LÁTKY v krystalické pevné látce částice zaujímá určitou rovnovážnou polohu, kolem které kmitá parametry tepelného pohybu závisí na teplotě zvýšení teploty tělesa: zvětšuje se energie kmitavého pohybu roste amplituda kmitání částic rostou vzájemné vzdálenosti mezi částicemi
17 A) DÉLKOVÁ ROZTAŽNOST PEVNÝCH LÁTEK -přírůstek délky dl = αldt při zahřátí o dt - součinitel teplotní délkové roztažnosti α = 1 dl l dt - jednotka: K -1 - je funkcí druhu látky, uspořádání částic a teploty izotropní látky při malých teplotních rozdílech: lze považovat součinitel α délkový rozměr se mění lineárně za konstantní l [ + ( T )] = l 1 α T
18 Železniční koleje v Ausbury Park, New Jersey
19 B) OBJEMOVÁ ROZTAŽNOST PEVNÝCH LÁTEK pro homogenní a izotropní tělesa je roztažnost ve všech směrech stejná PŘÍKLAD: kvádr (původní rozměry a 0,b 0,c 0 ): a t ( + α T ), b = b ( 1+ α T ), c = c ( 1+ T ) = a α konečný objem kvádru V t 0 1 t 0 t 0 pro malé teplotní intervaly ( 1+ α T ) = V ( 1+ 3α T + α T + T ) = abc = a b c α t t t lze zanedbat V t ( 1+ 3 T ) = V α 0 zjednodušeně: V t ( 1+ T ) = V β 0, kde β = 3α
20 příklady teplotních součinitelů délkové roztažnosti pro vybrané látky Látka α (10-6 K -1 ) c p (J kg -1 K -1 ) Látka α (10-6 K -1 ) c p (J kg -1 K -1 ) hliník 23,8 896 stříbro 19,7 235 jod titan kobalt uhlík diamant 460 křemík 7,6 703 grafit 7,9 837 mangan wolfram 4,3 134 měď 16,8 383 zinek 26,3 385 molybden zlato 14,3 129 nikl 12,8 448 železo olovo 31,3 129 led ( H 2 O) (pod 0 ºC) platina 9,0 133 naftalen α teplotní součinitel délkové roztažnosti mezi 0 ºC a 100 ºC c p měrná tepelná kapacita při stálém tlaku při 20 ºC
21 II. OBJEMOVÁ ROZTAŽNOST KAPALIN -u většiny kapalin objem s rostoucí teplotou roste malé teplotní rozdíly: V t ( 1+ T ) = V β 0 součinitel teplotní objemové roztažnosti kapalin jednotka: K -1 větší teplotní rozdíly: V t 2 ( + β T + ) = V β T... objem je kvadratickou funkcí teploty Př. rtuť v teplotním intervalu 0 C až 100 C: β 1, K -1 1 β K -1 2
22 ANOMÁLIE VODY - objemová roztažnost vody Při zvyšování teploty od 0 C do 3,99 C se objem vody zmenšuje a její hustota se zvyšuje. Hustota vody je největší při teplotě 3,99 C. Při zvyšování teploty nad 3,99 C dochází ke zvětšování objemu vody (tj. snižování hustoty vody). Poznámka: Při ochlazování vody k bodu mrazu bude klesat ke dnu nejdříve voda o teplotě 3,99 C (protože má vyšší hustotu), čímž bude vytlačovat k hladině chladnější vodu. Chladnější voda na hladině proto zamrzne dříve a vytvořípříkrov, pod nímž se může udržet život i v zimě.
23 III. OBJEMOVÁ ROZTAŽNOST PLYNŮ malé teplotní rozdíly a konstantní tlak: V t ( 1 + T ) = V γ, kde 0 1 γ = 273,15 K -1 ZÁVISLOST HUSTOTY PEVNÝCH LÁTEK A KAPALIN NA TEPLOTĚ: při změně teploty se mění objem látky, nikoli však hmotnost pro homogenní tělesa m m ρ =, ρ = 0 t V V 0 t předpokládejme lineární objemovou roztažnost ρ = t V 0 m = ρ ( 1+ β T ) 1+ β T 0 pro β T pp 1 hustota látky klesá s rostoucí teplotou ( ) ρt = ρ 0 1 β T
24 TEPLO uvedeme-li do styku dvě tělesa o různých teplotách (které spolu chemicky nereagují a jsou tepelně izolována od okolí) po určité době se teploty těles vyrovnají nastane tepelná rovnováha je-li soustava tepelně izolovaná a nekoná-li práci: celková vnitřní energie zůstává konstantní kalorimetr s příslušenstvím
25 TEPELNÁ KAPACITA MĚRNÉ A MOLÁRNÍ TEPLO dodáme-li tělesu teplo dq zvýší se jeho teplota o dt d Q = KdT součinitel K je tepelná kapacita tělesa závisí na druhu a množství látky závisí na teplotě a tlaku jednotka: J.K -1 Tepelná kapacita tělesa: K = cm měrná tepelná kapacita tělesa d Q = mc dt c = 1 m dq dt - jednotka měrné tepelné kapacity: J.kg -1.K -1
26 celkové teplo, které látka o hmotnosti m přijme (za předpokladu c = konst.) ohřeje-li se z teploty T2 t na 1 t2 Q = m cdt = mc( T2 T1 ) = mc( t2 t1) T1 měrná tepelná kapacita závisí na vnějších podmínkách: a) měrná tepelná kapacita při stálém tlaku c p c p f c v b) měrná tepelná kapacita při stálém objemu část tepla se spotřebuje na změnu objemu c v molární tepelná kapacita: jednotka: J.mol -1.K -1 c m = M m c d Q = ncmdt
27 KALORIMETRICKÁ ROVNICE rovnice charakterizující tepelnou výměnu mezi tělesy izolovanými od okolí zákon zachování tepla Příklad: Mějme dvě tělesa, která jsou izolována od okolí a chemicky na sebe nepůsobí ( nedochází ke změně skupenství): 1. těleso: m, t 2. těleso:, c, t c, m t2 p t1 teplo vydané teplejším tělesem je rovno teplu přijatému tělesem chladnějším teplota obou těles se vyrovnát m c 1 1 ( t t ) = m c ( t t) Zobecnění pro větší počet těles: m c ( t t) + m c ( t t) + m c ( t t) =
28 PŘENOS TEPLA vedením (kondukcí) = přenos tepla z míst s vyšší teplotou do míst s nižší teplotou vzájemnými srážkami neuspořádaně se pohybujících částic látky = teplo se takto šíří v látkách všech skupenství prouděním (konvekcí) = přenos tepla usměrněným pohybem částic = lze pouze u tekutin (proudění tekutin) = kapaliny a plyny jsou špatnými vodiči tepla = šíření tepla prouděním je mnohem účinnější zářením (radiací) = přenos tepla elektromagnetickým vlněním = elektromagnetické vlnění vysílá každé těleso, jehož teplota je různá od 0 K = tepelné záření je elektromagnetické vlnění v rozmezí vlnových délek od 10 µm do 340 µm = zákony záření odvozeny podle kvantové teorie elektromagnetického záření = k šíření tepla není zapotřebí látkové prostředí (i ve vakuu)
29 FÁZOVÉ PŘECHODY 1. DRUHU SKUPENSKÉ PŘEMĚNY Fázový přechod 1. druhu: skoková změna fáze makroskopických vlastností termodynamického systému (změna hustoty, tepelné vodivosti, tepelné kapacity...) Fázové rozhraní: koexistence dvou resp. tří fází současně za stálých podmínek (např. tání ledu na povrchu, trojný bod...) PŘECHODY: pevná látka kapalina: tání tuhnutí (krystalizace) kapalina plyn: vypařování kondenzace (kapalnění), spec. případ: var pevná látka - plyn: sublimace desublimace Fázové přechody 2. druhu: - vznik supravodivosti, změna magnetických vlastností...
30
31 FÁZOVÝ DIAGRAM kapalina plyn vypařování Při přechodu mezi jednotlivými skupenstvími těleso přijímá nebo uvolňuje příslušné skupenské teplo L [J] pevná látka tání Skupenské teplo potřebné pro určitou změnu skupenství 1kg dané látky vyjadřuje měrné skupenské teplo l [J.kg -1 ] Q Pro těleso o hmotnosti m L = ml
32 MĚRNÉ SKUPENSKÉ TEPLO 1. měrné skupenské teplo TÁNÍ (resp. TUHNUTÍ): Teplo vztažené k 1 kg látky, které potřebuje přijmout pevné těleso z dané látky již zahřáté na teplotu tání, aby se změnilo v kapalinu téže teploty. 2. měrné skupenské teplo VYPAŘOVÁNÍ (resp. KONDENZAČNÍ): Teplo vztažené k 1 kg látky, spotřebované při jejím přechodu z kapalného skupenství na plynné při zachování teploty. 3. měrné skupenské teplo VARU: Teplo vztažené k 1 kg látky, které potřebuje přijmout kapalné těleso z dané látky již zahřáté na teplotu varu, aby se změnilo na plyn téže teploty téže teploty. 4. měrné skupenské teplo SUBLIMACE (resp. DESUBLIMACE): Teplo vztažené k 1 kg látky, spotřebované při jejím přechodu z pevného skupenství na plynné při zachování teploty.
33 PŘÍKLAD FÁZOVÉHO DIAGRAMU kapalina kritický bod K přechlazení kapaliny (d) pevná látka přehřátí pevné látky (e) trojný bod T sytá pára
34 FÁZOVÝ DIAGRAM VODY
35 PŘÍKLAD 1 V tepelně izolované nádobě uvedeme do bezprostředního kontaktu vodní páru o hmotnosti m 1 o teplotě 100 C, vodu o hmotnosti m 0 a teplotě t 0 a led o hmotnosti m 2 o teplotě 0 C. Po určitém čase se v nádobě vytvoří jediná kapalná fáze. Jaká bude její teplota? Předpokládejme, že tepelnou kapacitu nádoby lze zanedbat. PŘÍKLAD 2 Do vody o teplotě 10 C a hmotnosti 2kg vhodíme kostku ledu o stejné hmotnosti a teplotě -10 C. Jaká bude výsledná teplota systému? Měrná tepelná kapacita ledu je 2140 J.kg -1.K -1, vody 4200 J.kg -1.K -1, měrné skupenské teplo tání ledu je 334 kj/kg.
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Molekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie
TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
LOGO. Molekulová fyzika
Molekulová fyzika Molekulová fyzika Molekulová fyzika vysvětluje fyzikální jevy na základě znalosti jejich částicové struktury. Jejím základem je kinetická teorie látek (KTL). KTL obsahuje tři tvrzení:
Základní poznatky. Teplota Vnitřní energie soustavy Teplo
Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou
POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5
TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
Molekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy
měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů
Okruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
F8 - Změny skupenství Číslo variace: 1
F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku
SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování
Základy molekulové fyziky a termodynamiky
Základy molekulové fyziky a termodynamiky Molekulová fyzika je částí fyziky, která zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného silového působení částic, z nichž jsou
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
Látkové množství n poznámky 6.A GVN
Látkové množství n poznámky 6.A GVN 10. září 2007 charakterizuje látky z hlediska počtu částic (molekul, atomů, iontů), které tato látka obsahuje je-li v tělese z homogenní látky N částic, pak látkové
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
Vnitřní energie. Teplo. Tepelná výměna.
Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie
Vnitřní energie, teplo a práce
Přednáška 3 Vnitřní energie, teplo a práce 3.1 Vnitřní energie Pro popis stavu termodynamických soustav je výhodné zavést stavovou funkci, tzv. vnitřní energii soustavy U, která vyjadřuje charakter pohybu
Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný
Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.
ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika
Molekulová fyzika a termika
Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
Vnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.
Digitální učební materiál
Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:
Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)
Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny
Termodynamika 1. UJOP Hostivař 2014
Termodynamika 1 UJOP Hostivař 2014 Termodynamika Zabývá se tepelnými ději obecně. Existují 3 termodynamické zákony: 1. Celkové množství energie (všech druhů) izolované soustavy zůstává zachováno. 2. Teplo
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Termomechanika cvičení
KATEDRA ENERGETICKÝCH STROJŮ A ZAŘÍZENÍ Termomechanika cvičení 1. cvičení Ing. Michal Volf / 18.02.2019 Informace o cvičení Ing. Michal Volf Email: volfm@kke.zcu.cz Konzultace: po vzájemné dohodě prezentace
Název DUM: Změny skupenství v příkladech
Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
2.1 Empirická teplota
Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická
Profilová část maturitní zkoušky 2017/2018
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: FYZIKA
Přehled otázek z fyziky pro 2.ročník
Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
10. Energie a její transformace
10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na
Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů
Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
Vlastnosti kapalin. Povrchová vrstva kapaliny
Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří
LOGO. Změny skupenství
Změny skupenství Látka existuje ve třech skupenstvích Pevném Kapalném Plynném Látka může přecházet z jednoho skupenství do druhého. Existují tedy tyto změny skupenství: Změny skupenství plyn sublimace
23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_
Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...
Měření měrného skupenského tepla tání ledu
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
1. Látkové soustavy, složení soustav
, složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových
Kalorimetrická rovnice, skupenské přeměny
Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.
1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení
Maturitní témata profilová část
SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně
4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul
Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.
CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,
3.2 Látka a její skupenství
3.2 Látka a její skupenství Skupenství látky a jejich změny sublimace PEVNÁ LÁTKA tání desublimace tuhnutí PLYN vy pa řo vá ní KAPALINA zka pal ňo vá ní Látka a změna vnitřní energie Změna vnitřní energie
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo
Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo teplo, teplota, práce, tepelná vodivost Teplo část vnitřní energie tělesa = součet kinetické
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012
Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,
II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO
II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií
Řešení: Fázový diagram vody
Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014
3 pokusy z termiky Vojtěch Jelen Fyzikální seminář LS 2014 Obsah 1. Pokus online 2. Měření teploty cihly 3. Vypařování střely 1. Kalorimetrie Zabývá se měřením tepla a studuje vlastnosti látek a jejich
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program
Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva
A. MOLEKULOVÁ FYZIKA A TERMIKA
Rozdělení učiva A. MOLEKULOVÁ FYZIKA A TERMIKA I. Základní poznatky molekulové fyziky a termodynamiky II. Vnitřní energie, práce a teplo III. Struktura a vlastnosti plynů IV. Kruhový děj s ideálním plynem
Maturitní otázky z předmětu FYZIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákony Klasifikace pohybů z hlediska trajektorie a závislosti rychlosti
F - Změny skupenství látek
F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.
Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou
TERMIKA. (Petr Jizba) Doporučená literatura:
Doporučená literatura: TERMIKA (Petr Jizba) http://www.fjfi.cvut.cz/files/k402/pers_hpgs/jizba/ Z. Maršák, Termodynamika a statistická fyzika (ČVUT 2000) J. Kvasnica, Termodynamika, (SNTL 1965) K. Huang,
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:
1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,
KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
SKUPENSTVÍ LÁTEK Prima - Fyzika
SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství
Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
TESTY Závěrečný test 2. ročník Skupina A
1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem
Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
MATURITNÍ TÉMATA Z FYZIKY
MATURITNÍ TÉMATA Z FYZIKY Školní rok 2016 / 2017 Struktura zkoušky: příprava ke zkoušce trvá 15 minut; ústní zkouška trvá 15 minut - její součástí je i řešení fyzikálních úloh Pomůcky: Matematické, fyzikální
Přijímací zkoušky FYZIKA
Přijímací zkoušky 2014 2015 FYZIKA 1. Soustava SI je: a) mezinárodní soustava fyzikálních jednotek a veličin b) skupina prvků s podobnými vlastnostmi jako křemík c) přehled fyzikálních vzorců 2. 500 cm
ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ 9. ROČNÍK. Změny skupenství. Filip Skalský, David Řehůřek
ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, 569 92 BYSTRÉ 9. ROČNÍK Změny skupenství Filip Skalský, David Řehůřek ŠKOLNÍ ROK 2011/2012 Prohlašujeme, že jsme absolventskou práci vypracovali samostatně
<<< záložka Fyzika
5.6.1 5.6.1 Fyzika FYZIKA 6. ročník 5.6.1/01 LÁTKY A TĚLESA použije správné označení důležitých fyzikálních veličin a jejich základních a odvozených jednotek změří vhodně zvolenými měřidly některé důležité
5. 9. FYZIKA Charakteristika předmětu
5. 9. FYZIKA 5. 9. 1. Charakteristika předmětu Předmět Fyzika vede žáky ke zkoumání přírody a jejích zákonitostí. Učí je pozorovat, experimentovat a měřit, zkoumat příčiny přírodních procesů, souvislosti
IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze
IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava
Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika