Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti"

Transkript

1 Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování se smršťují. Snad nejvýznamnější výjimkou z tohoto pravidla je vod Když vodu ochlazujeme z bodu varu 100 C na zhruba 4 C, tak se smršťuje. Od teploty 4 C do bodu tuhnutí 0 C se naopak roztahuje. Díky tomuto neobvyklému jevu má led menší hustotu než vod Různé materiály se při stejné změně teploty roztahují nebo smršťují různě. Obecně platí, že při stejné změně teploty se plyny rozpínají více než kapaliny. Kapaliny se zase rozpínají více než pevné látky. Při zahřívání nebo ochlazování se zvětšují nebo zmenšují všechny rozměry těles Z praktických důvodů zavádíme dva typy teplotní roztažnosti: délkovou roztažnost (zajímá nás změna jednoho rozměru tělesa) a objemovou roztažnost (zajímá nás změna všech tří rozměrů tělesa). Mírou změny rozměru je součinitel teplotní délkové nebo objemové roztažnosti. Často nás zajímá, jek se změní rozměr potrubí, kolejnic, elektrického vedení nebo jiných dlouhých objektů. Například o kolik bude delší elektrické vedení v horkém letním dnu za teploty 30 C ve srovnání s chladným zimním dnem s teplotou -20 C? Ve skutečnosti se vedení rozpíná ve všech třech rozměrech, ale v praxi nás zajímá pouze změna jeho délky.

2 Obrázek 1: kolejnice deformované vlivem teplotní roztažnosti Pro pevné látky zavádíme koeficient teplotní roztažnosti l. Velikost tohoto koeficientu se pro jednotlivé materiály poměrně značně liší. Například koeficient teplotní roztažnosti pro hliník je asi padesátkrát větší než pro křemenné sklo. Koeficient teplotní roztažnosti vlastně udává konstantu úměrnosti mezi změnou délky materiálu a změnou teploty, která tuto změnu vyvolá. Je definován jako l = 1 dl l dt, (1) kde dl je malá změna délky l, dt je malá změna teploty. Pokud již známe koeficient teplotní roztažnosti, můžeme z (1) odhadnout změnu délky jako: l=l 0 l T (2) Tato rovnice platí, pokud se koeficient teplotní roztažnosti příliš nemění se změnou teploty T. To není obecně splněno, ale pro malé změny teploty platí (2) poměrně přesně. Pokud se koeficient teplotní roztažnosti s teplotou výrazně mění, je nutné vyjádřit změnu délky pomocí integrálu z (1) T 2 l=l 0 L T dt (3) T 1 Koeficient objemové roztažnosti zavádíme obecně jako V = 1 V dv dt p, (4)

3 kde dv je malá změna objemu V, dt je malá změna teploty. Index p znamená, že tlak je konstantní v průběhu rozpínání. Toto je důležité v případě plynů, protože tlak plynu závisí silně na teplotě plynu. Pokud známe součinitel teplotní roztažnosti, můžeme vyjádřit změnu objemu jako V =V V T (5) Velké množství technických zařízení a systémů je založeno na teplotní roztažnosti materiálů. Příkladem je bimetalický pásek. Tento pásek se skládá ze dvou kovových proužků s různou teplotní roztažností. Tyto proužky jsou svařené dohromady. Když začneme pásek zahřívat, jeden z kovů se rozpíná rychleji než druhý. Pásek se vychýlí ve směru kovu s menší teplotní roztažností. Tento bimetalický pásek nejčastěji požíváme v termostatech. Když se v místnosti začne ochlazovat, oba kovy v pásce se začnou smršťovat, jeden více než druhý. Při určité teplotě se páska ohne tak, že se dostane do kontaktu s kovovým kontaktem a spojí tak elektrický obvod, který uvede do chodu topení. Jakmile teplota v místnosti vzroste, bimetalická páska se začne ohýbat v opačném směru. Nakonec se vzdálí od kovového kontaktu, přeruší tak elektrický obvod a tím topení zase vypne. Teplotní roztažnost objektů v reálném světě je často v pozornosti vědců a inženýrů. Například kovové spoje použité na mostech musí být zkonstruovány tak, aby zajistily dostatečný prostor pro teplotní roztažnost jednotlivých dílů mostu.

4 Obrázek 2: kovové spoje částí mostu Železniční koleje jsou v některých úsecích (dlouhé mosty) budovány tak, že mezi jednotlivými kolejnicemi zůstává dilatační mezer Kolejnice tak mohou při změnách délky v horkých a studených dnech klouzat směrem jedna k druhé, aby bylo zajištěno, že nedojde k jejich deformaci vlivem přehřátí. Objemová roztažnost má také mnoho praktických aplikací. Například bychom chtěli vědět, jak se změní objem balónu s rostoucí teplotou. Odpověď na tuto otázku závisí na koeficientu objemové roztažnosti použitého plynu. Objemová roztažnosti plynů se mění od poměrně malé pro vzduch do poměrně velké pro oxid uhličitý a oxid siřičitý.

5 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 1 of 4 Test znalostí k úloze: Teplotní roztažnost Jaroslav Jíra Vyhodnotit test 1. Délka platinové tyče s rostoucí teplotou roste klesá nemění se 2. Objem jednoho kilogramu vody v intervalu 20 o C - 70 o C s rostoucí teplotou roste klesá nemění se 3. Objem jednoho kilogramu vody v intervalu 0 o C - 4 o C s rostoucí teplotou roste klesá nemění se 4. Součinitel objemové teplotní roztažnosti je definován jako

6 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 2 of 4 5. Teplota se zvýší o. Délka tyče se zvětší o 6. Teplota se zvýší o. Objem benzínu v nádrži se zvětší o 7. Ocelová tyčka má délku přesně 20 m při 20 o C. Součinitel teplotní délkové roztažnosti oceli je = K -1. O kolik se tyč prodlouží při 100 o C? o 0,38 mm o 8,22 mm o 17,6 mm o 55,1 mm 8. Závislost délky kovové tyče na teplotě je v grafu

7 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 3 of 4

8 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 4 of 4 Vyhodnotit test

9 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 1 of 3 Test znalostí k úloze: Teplotní roztažnost Jaroslav Jíra Vyhodnotit test 1. Délka ocelové tyče s rostoucí teplotou roste klesá nemění se 2. Délka platinové tyče s rostoucí teplotou roste klesá nemění se 3. Objem jednoho kilogramu vody v intervalu 20 o C - 70 o C s rostoucí teplotou roste klesá nemění se 4. Jednotka součinitele teplotní délkové roztažnosti je K.m K.m -1 K -1.m K Součinitel objemové teplotní roztažnosti je definován jako

10 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 2 of 3 6. Teplota se zvýší o. Délka tyče se zvětší o 7. Teplota se zvýší o. Objem benzínu v nádrži se zvětší o

11 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 3 of 3 8. Ocelová tyčka má délku přesně 3 m při 30 o C. Součinitel teplotní délkové roztažnosti oceli je = K -1. O kolik se tyč prodlouží při 50 o C? o 0,025 mm o 0,12 mm o 0,66 mm o 1,15 mm Vyhodnotit test

12 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 1 of 3 Test znalostí k úloze: Teplotní roztažnost Jaroslav Jíra Vyhodnotit test 1. Délka hliníkové tyče s rostoucí teplotou roste klesá nemění se 2. Objem jednoho kilogramu vody v intervalu 20 o C - 70 o C s rostoucí teplotou roste klesá nemění se 3. Objem jednoho kilogramu vody v intervalu 0 o C - 4 o C s rostoucí teplotou roste klesá nemění se 4. Součinitel teplotní délkové roztažnosti je definován jako

13 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 2 of 3 5. Součinitel objemové teplotní roztažnosti je definován jako 6. Teplota se zvýší o. Délka tyče se zvětší o 7. Teplota se zvýší o. Objem benzínu v nádrži se zvětší o

14 https://fyzikfelcvut.cz/auth/labtest/otazky_test.php?uloha=3 Page 3 of 3 8. Ocelová tyčka má délku přesně 3 m při 30 o C. Součinitel teplotní délkové roztažnosti oceli je = K -1. O kolik se tyč prodlouží při 200 o C? o 0,035 mm o 0,72 mm o 1,66 mm o 5,61 mm Vyhodnotit test

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:

Více

Závislost odporu kovového vodiče na teplotě

Závislost odporu kovového vodiče na teplotě 4.2.1 Závislost odporu kovového vodiče na teplotě Předpoklady: 428, délková a objemová roztažnost napětí [V] 1,72 3,43 5,18 6,86 8,57 1,28 proud [A],,47,69,86,11,115,127,14,12,1 Proud [A],8,6,4,2 2 4 6

Více

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Změna objemu těles při zahřívání teplotní roztažnost

Změna objemu těles při zahřívání teplotní roztažnost Změna objemu těles při zahřívání teplotní roztažnost 6. třída - Teplota Změna objemu pevných těles při zahřívání Vezmeme plastové pravítko, prkénko a dva hřebíky. Hřebíky zatlučeme do prkénka tak, aby

Více

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

FYZIKA 6. ročník 2. část

FYZIKA 6. ročník 2. část FYZIKA 6. ročník 2. část 23_Hmotnost tělesa... 2 24_Rovnoramenné váhy.... 3 25_Hustota... 4 26_Výpočet hustoty látky... 4 27_Výpočet hustoty látky příklady... 6 28_Výpočet hmotnosti tělesa příklady...

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie) Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007

Tepelná technika. Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelná technika Teorie tepelného zpracování Doc. Ing. Karel Daďourek, CSc Technická univerzita v Liberci 2007 Tepelné konstanty technických látek Základní vztahy Pro proces sdílení tepla platí základní

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Míček upustíme z výšky na podlahu o Míček padá zvětšuje se, zmenšuje se. Celková mechanická energie se - o Míček se od země odrazí a stoupá vzhůru zvětšuje se, zmenšuje se.

Více

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2. TEPLO TA1 419.0008 TEPLO 1 SEZNAM POKUSŮ MĚŘENÍ TEPLOT Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.) KALORIMETRIE Teplotní rovnováha. (2.1.) Studium kalorimetru. (2.2.) Křivka

Více

Přijímací zkoušky FYZIKA

Přijímací zkoušky FYZIKA Přijímací zkoušky 2014 2015 FYZIKA 1. Soustava SI je: a) mezinárodní soustava fyzikálních jednotek a veličin b) skupina prvků s podobnými vlastnostmi jako křemík c) přehled fyzikálních vzorců 2. 500 cm

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Technologické procesy (Tváření)

Technologické procesy (Tváření) Otázky a odpovědi Technologické procesy (Tváření) 1) Co je to plasticita kovů Schopnost zůstat neporušený po deformaci 2) Jak vzniká plastická deformace Nad mezi kluzu 3) Co jsou to dislokace Porucha krystalové

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

BEZSTYKOVÁ KOLEJ NA MOSTECH

BEZSTYKOVÁ KOLEJ NA MOSTECH Ústav železničních konstrukcí a staveb 1 BEZSTYKOVÁ KOLEJ NA MOSTECH Otto Plášek Bezstyková kolej na mostech 2 Obsah Vysvětlení rozdílů mezi předpisem SŽDC S3 a ČSN EN 1991-2 Teoretický základ interakce

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

SKUPENSTVÍ LÁTEK Prima - Fyzika

SKUPENSTVÍ LÁTEK Prima - Fyzika SKUPENSTVÍ LÁTEK Prima - Fyzika Skupenství látek Pevné skupenství Skupenství látek Skupenství látek Pevné skupenství Kapalné skupenství Skupenství látek Pevné skupenství Kapalné skupenství Plynné skupenství

Více

Řešení: Fázový diagram vody

Řešení: Fázový diagram vody Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA CELÁ ČÍSLA 1 Teploměr na obrázku ukazuje teplotu 15 C Říkáme: je mínus 15 stupňů Celsia je 15 stupňů pod nulou je 15 stupňů mrazu Ukaž na teploměru: 10 C, 8 C, +3 C, 6 C, 25 C, +36 C 2 Teploměr Teploměr

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST

PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

R9.1 Molární hmotnost a molární objem

R9.1 Molární hmotnost a molární objem Fyzika pro střední školy I 73 R9 M O L E K U L O V Á F Y Z I K A A T E R M I K A R9.1 Molární hmotnost a molární objem V čl. 9.5 jsme zavedli látkové množství jako fyzikální veličinu, která charakterizuje

Více

MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011

MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011 Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 MĚŘENÍ S TERMISTORY Václav Piskač, Brno 2011 NTC termistor je polovodičová součástka,

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VIII Název: Kalibrace odporového teploměru a termočlánku fázové přechody Pracoval: Pavel Ševeček stud. skup.:

Více

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty Snímače teploty Měření teploty patří k jednomu z nejdůležitějších oborů měření, protože je základem řízení řady technologických procesů. Pro měření teploty jsou stanoveny dvě stupnice: a) Termodynamická

Více

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA

MOLEKULOVÁ FYZIKA A TERMODYNAMIKA MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých

Více

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Elektrický proud Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Vodivé kapaliny : Usměrněný pohyb iontů Ionizované plyny: Usměrněný pohyb iontů

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

TVÁŘENÍ ZA STUDENA STŘÍHÁNÍ. Mezi tváření za studena patří:

TVÁŘENÍ ZA STUDENA STŘÍHÁNÍ. Mezi tváření za studena patří: TVÁŘENÍ ZA STUDENA Polotovary vyráběné tvářením (lisováním) za studena 1.Tváření plošné, při kterém se dosáhne žádaného tvaru součásti bez podstatné změny průřezu nebo tloušťky výchozího materiálu. Mechanické

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

CHEMIE. Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin. Mgr.

CHEMIE. Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin. Mgr. www.projektsako.cz CHEMIE Pracovní list č. 5 - žákovská verze Téma: Vliv teploty na rychlost chemické reakce, teplota tání karboxylových kyselin Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost

Více

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové

Svarové spoje. Svařování tavné tlakové. Tlakové svařování. elektrickým obloukem plamenem termitem slévárenské plazmové Svarové spoje Svařování tavné tlakové Tavné svařování elektrickým obloukem plamenem termitem slévárenské plazmové Tlakové svařování elektrické odporové bodové a švové třením s indukčním ohřevem Kontrola

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska.

V izolované soustavě nedochází k výměně tepla s okolím. Dokonalá izolovaná soustava neexistuje, nejvíce se jí blíží kalorimetr nebo termoska. Teplo a vnitřní energie pracovní list Vnitřní energie Všechny tělesa se skládají z částic, které vykonávají neustálý a neuspořádaný pohyb a které na sebe navzájem silově působí. Částice uvnitř všech těles

Více

Základy vakuové techniky

Základy vakuové techniky Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

Z PRÁŠ. lení. s použit. itím m tlaku bez použit. ití tlaku. ení tvaru výrobku. pevnosti

Z PRÁŠ. lení. s použit. itím m tlaku bez použit. ití tlaku. ení tvaru výrobku. pevnosti ZHUTŇOV OVÁNÍ VÝROBKŮ Z PRÁŠ ÁŠKŮ (formování) Účel vytvářen ení tvaru výrobku zajištění manipulační pevnosti Základní rozdělen lení s použit itím m tlaku bez použit ití tlaku Chování částic práš ášků Volně

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti

Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti Téma sady: Výroba, rozvod a spotřeba topných plynů. Název prezentace: nebezpečné vlastnosti Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1243_nebezpečné_vlastnosti_pwp Název školy: Číslo a název

Více

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování

Více

Těleso. Těleso je osoba, rostlina, zvíře nebo věc, které můžeme přisoudit tvar, rozměry, polohu.

Těleso. Těleso je osoba, rostlina, zvíře nebo věc, které můžeme přisoudit tvar, rozměry, polohu. Těleso a látka Těleso Těleso je osoba, rostlina, zvíře nebo věc, které můžeme přisoudit tvar, rozměry, polohu. Z více těles, z více látek.. domácí úkol - 2 experimenty difuze v chladné vodě krystalizace

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby.

Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. Měřit a uvádět spotřebu paliva je možno několika způsoby. S Spotřeba paliva Spotřeba paliva a její měření je jedna z nejdůležitějších užitných vlastností vozidla. ěřit a uvádět spotřebu paliva je možno několika způsoby. S.1 Spotřeba a měrná spotřeba Spotřeba

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

F - Změny skupenství látek

F - Změny skupenství látek F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 11.10.2012

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 11.10.2012 Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_16 Název materiálu: Fyzikální vlastnosti materiálů Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace uvádí fyzikální vlastnosti

Více

ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ 9. ROČNÍK. Změny skupenství. Filip Skalský, David Řehůřek

ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, BYSTRÉ 9. ROČNÍK. Změny skupenství. Filip Skalský, David Řehůřek ABSOLVENTSKÁ PRÁCE ZÁKLADNÍ ŠKOLA, ŠKOLNÍ 24, 569 92 BYSTRÉ 9. ROČNÍK Změny skupenství Filip Skalský, David Řehůřek ŠKOLNÍ ROK 2011/2012 Prohlašujeme, že jsme absolventskou práci vypracovali samostatně

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou.

1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. 1 ZÁKLADNÍ VLASTNOSTI TECHNICKÝCH MATERIÁLŮ Vlastnosti kovů a jejich slitin jsou dány především jejich chemickým složením a strukturou. Z hlediska použitelnosti kovů v technické praxi je obvyklé dělení

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN STRUKTURA A VLASTNOSTI KAPALIN Struktura kapalin je něco mezi plynem a pevnou látkou Částice kmitají ale mohou se také přemísťovat Zvýšením teploty se a tím se zvýší tekutost kapaliny Malé vzdálenosti

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_466A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes

Více

PRACOVNÍ LIST: OPAKOVÁNÍ UČIVA 6. ROČNÍKU

PRACOVNÍ LIST: OPAKOVÁNÍ UČIVA 6. ROČNÍKU PRACOVNÍ LIST: OPAKOVÁNÍ UČIVA 6. ROČNÍKU STAVBA LÁTEK, ROZDĚLENÍ, VLASTNOSTI. NEUSPOŘÁDANÝ POHYB ČÁSTIC. ČÁSTIC. SLOŽENÍ LÁTEK. VZÁJEMNÉ PŮSOBENÍ TĚLES. SÍLA, GRAV. SÍLA A GRAV. POLE. Základní pojmy:

Více

KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ

KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ KOMPENZACE DÉLKOVÝCH ZMĚN POTRUBÍ Rozdíl teplot při montáži a provozu potrubí způsobuje změnu jeho délky. Potrubí dilatuje, prodlužuje se nebo smršťuje. Provozní teplota potrubí soustav vytápění je vždy

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření MĚŘENÍ RELATIVNÍ VLHKOSTI - pro měření relativní vlhkosti se používají metody měření obsahu vlhkosti vplynech Psychrometrické metody Měření rosného bodu Sorpční metody Rovnovážné elektrolytické metody

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor MŽP K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Voda 1. Najdi na internetu pojem acidifikace vody a vysvětli. Je to jev pozitivní nebo negativní? 2. Splaškové odpadní vody obvykle reagují a. Kysele b. Zásaditě c. Neutrálně 3.

Více

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22 Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole...

FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole... FYZIKA 6. ročník 1_Látka a těleso... 2 2_Vlastnosti látek... 3 3_Vzájemné působení těles... 4 4_Gravitační síla... 4 Gravitační pole... 5 5_Měření síly... 5 6_Látky jsou složeny z částic... 6 7_Uspořádání

Více