2.1 Empirická teplota

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "2.1 Empirická teplota"

Transkript

1 Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická teplota Hlavním pojmem termiky je teplota a správné pochopení jejího významu jako fyzikální veličiny je klíčové pro celé další studium nejen této disciplíny, ale také termodynamiky, statistické fyziky, atd. V běžném životě se pojem teplota často zaměňuje za vyjadřování fyziologických pocitů chladu, tepla, horka, apod. Jakkoliv jsou tyto pocity intenzivní vypovídají jen velmi málo o skutečné teplotě tělesa, či prostředí jak s ní pracuje fyzika. Představme si například chladný dům s koupelnou s podlahou z dlaždic na níž u vany leží malý koberec. Postavíme li se neobutí na dlaždice, budeme mít nepochybně větší pocit chladu než na koberci. Přesto by byl fyzikálně naprostí omyl tvrdit, že koberec má vyššíteplotu než dlaždicová podlaha, jejich teplota je stejná. Bolestivější omyl by vznikl kdybychom srovnali teplotu v sauně vyhřáté na 105 C s teplotou vroucí vody 100 C. Kde je tedy problém? V rychlosti s jakou dlaždice, koberec, sauna či voda odebírají teplo z těla. Protože dlaždice mají vyšší tepelnou vodivost odbírají teplo z nohou podstatně rychleji než koberec a my potom máme pocit že jsou chladnější. Stejným způsobem lze vysvětlit i paradox sauny a vroucí vody. Vidíme tedy, že buňky zprostředkující člověku informaci o vnějších teplotní pohodě nejsou citlivé na teplotu, ale spíše na 2 1

2 Michal Varady Přednáška 2: Teplota a její měření rychlost s jakou probíhá tepelná výměna. Ve fyzice je tedy potřeba zavést teplotu objektivně, bez toho že bychom spoléhali na fyziologické pocity. Jak tedy objektivně rozhodnout, že dvě tělesa A a B mají stejnou teplotu? Uvedeme li tato dvě tělesa do vzájemného kontaktu, potom z hlediska tepelné výměny mezi nimi mohou nastat dvě možnosti: 1. Mezi tělesy probíhá tepelná výměna, pak říkáme, že tělesa mají různou teplotu, tedy T A T B. 2. Mezi tělesy neprobíhá tepelná výměna pak říkáme, že tělesa mají stejnou teplotu, tedy T A = T B V případě, že mezi tělesy dochází k tepelné výměně, po určité době se ustaví stav tepelné rovnováhy. V tepelné rovnováze můžeme oběma tělesům přiřadit jedinou, výslednou teplotu. Vlastnosti stavu tepelné rovnováhy jsou náplní nultého termodynamického zákona Zákon 1 (Nultý zákon termodynamiky) Je li každé z těles A i B v tepelné rovnováze se třetím tělesem C, budou v tepelné rovnováze také tělesa A a B navzájem, tedy stav tepelné rovnováhy je tranzitivní. Stavy tepelné rovnováhy lze charakterizovat jediným spojitě proměnným parametrem teplotou. Teplota je stavová veličina, která charakterizuje stav termodynamické rovnováhy soustavy. Její znalost umožňuje říci, zda mezi tělesy nastane tepelná výměna a jaký bude její směr Měření teploty teploměry Vlastnosti tepelné rovnováhy shrnuté v nultém termodynamickém zákonu umožňují vybrat například těleso C ke zkoumání, zda tělesa A a B jsou v tepelné rovnováze, aniž bychom tato tělesa museli uvést do vzájemného styku. Těleso C tedy můžeme vybrat za teploměr 1. Principy teploměrů jsou založeny na skutečnosti, že fyzikální vlastnosti předmětů se s teplotou mění. S rostoucí teplotou se například zvětšuje 1 Zařízení pro měření teploty by se mělo spíše nazývat teplotoměr, aby nedocházelo k omylu, že teploměr měří teplo. 2 2

3 Empirická teplota Michal Varady objem kapalin, v uzavřených nádobách vzrůstá tlak plynu, zvyšuje se elektrický odpor drátu a zároveň se drát prodlužuje, mění se magnetické vlastnosti látek, atd. Jakákoli z těchto veličin může být použita jako základ ke konstrukci teploměru. Měření teploty se tedy převádí na měření například objemu kapaliny, tlaku plynu, elektrického odporu a podobně. Jaké jsou požadované vlastnosti teploměrů: 1. Veličina na jejímž principu teploměr funguje (dále teplotoměrná 2 veličina) se musí při tepelné výměně výrazně a monotónně měnit. 2. Tepelná výměna mezi teploměrem a měřeným tělesem nesmí výrazně ovlivnit teplotu měřeného tělesa. Dalším krokem při konstrukci teploměru je sestavení teplotní stupnice. K tomu je třeba vybrat dvě různé, snadno reprodukovatelné teploty, které budou v dané teplotní stupnici základní a počet teplotních dílků mezi nimi. Celsiova stupnice Tato stupnice, v Evropě v běžné praxi nejužívanější, je založena na stupnici zkonstruované švédským astronomem A. Celsiem v roce Základní body Celsiovy stupnice jsou: 1. Rovnovážný stav ledu a chemicky čisté vody za normálního tlaku (101,325 kpa), kterému je přiřazena teplota 0 C. 2. Rovnovážný stav chemicky čisté vody a syté páry za normálního tlaku (teplota varu vody za normálního tlaku), kterému je přiřazena teplota 100 C. Mezi těmito teplotami je stupnice rozdělena na 100 dílků, přičemž jeden dílek odpovídá teplotnímu rozdílu 1 C. 2 Zvláštně znějící slovo teplotoměrná jsme použili proto, abychom zdůraznili, že se používá pro měření teploty. Kdybychom použili česky lépe znějící slovo teploměrná mohlo by dojít k omylu, že měří teplo. 2 3

4 Michal Varady Přednáška 2: Teplota a její měření Fahrenheitova stupnice Tato stupnice je každodenní praxi nejpoužívanější v USA. Byla zkonstruována německým vědcem G. D. Fahrenheitem v roce 1712, který základní body své stupnice realizoval takto: 1. Směsi kuchyňské soli a ledu přiřadil 0 F (byla to nejnižší teplota, kterou dokázal ve své laboratoři připravit). 2. Teplotě svého těla přiřadil teplotu 96 F. Nověji se základní body této stupnice vybírají stejné jako u Celsiovy stupnice, stím, že 0 C odpovídá 32 F a 100 C odpovídá 212 F, tedy Fahrenheitova stupnice je dělená jemněji než Celsiova. Lze snadno odvodit, že pro převod teplot z Fahrenheitovy do Celsiovy stupnice platí vztah C = 5 9 (F 32) [ C] (2.1) kde C je teplota ve stupních Celsia a F je teplota ve stupních Fahrenheita Kapalinové teploměry Funkce kapalinových teploměrů je založena na objemové roztažnosti kapalin. Jako teplotoměrná látka se často používá rtut, která je výhodná z hlediska své velké tepelné vodivosti. Označíme li objem rtuti v teploměru při 0 C V 0 a při 100 C V 100, potom jednomu stupni Celsia odpovídá změna objemu rtuti (V 100 V 0 )/100, a tedy teplota odpovídající objemu rtuti V t bude dána vztahem t = V t V 0 V 100 V [ C 1 ]. (2.2) Vyjádříme li z tohoto vztahu V t dostaneme vztah pro teplotní objemovou roztažnost rtuti V t = V 0 (1 + βt) [m 3 ], kde β = V 100 V 0 100V 0 [ C 1 ] (2.3) je koeficient teplotní objemové roztažnosti. Důsledkem takto zkonstruovaného teploměru je lineární teplotní objemová roztažnost rtuti. Kdybychom kapalinový teploměr zkonstruovali stejným způsobem s jinou kapalinou například lihem, závislost 2 4

5 Empirická teplota Michal Varady objemu lihu na teplotě by byla opět lineární, ale teplotní objemová roztažnost rtuti a jiných kapalin by v této lihové stupnici byla obecně nelineární, protože koeficienty teplotní objemové roztažnosti kapalin β jsou slabě závislé na teplotě. Teplotní stupnice kapalinových teploměrů jsou tedy závislé na teplotoměrné kapalině, což je jejich velkou nevýhodou Plynový teploměr absolutní teplotní stupnice Zmíněný nedostatek kapalinových teploměrů částečně řeší použití teploměru v němž teplotoměrnou látkou je zředěný plyn. Při konstrukci plynové teplotní stupnice měříme závislost tlaku plynu na teplotě při konstantním objemu plynu. Kostantní objem plynu v plynovém teploměru dosáhneme změnou výšky baňky se rtutí B, tak aby hladina rtuti na straně teplotoměrné nádobky na plyn byla u rysky Z (viz obrázek 2.2). Označíme li p 0 a p 100 tlak plynu při teplotách 0 C a 100 C, teplota při tlaku plynu p t bude dána podobným vztahem jaký platí pro kapalinové teploměry t = p t p 0 p 100 p [ C]. (2.4) Odtud dostaneme p t = p 0 (1 + γt) [Pa], kde γ = p 100 p 0 100p 0 [ C], (2.5) je součinitel teplotní rozpínavosti plynu. Měřením lze zjistit, že γ =3, C 1, t 0 = 1 γ =273, 15 C. Tento koeficient je pro všechny plyny přibližně stejný. Rovnici (2.5) můžeme přepsat s použitím t 0 jako p t = p 0 (1 + t t 0 )= p 0 t 0 (t + t 0 ) [Pa], zčehož vyplývá, že pro teploty t< 273, 15 C by byl tlak plynu záporný. Vzhledem k tomu že ten musí být vždy kladný, znamená to, že plyn nemůže existovat při teplotě menší než 273, 15 C. Proto zavádíme absolutní teplotní stupnici (někdy se také označuje jako Kelvinova teplotní stupnice), ve které počítáme teplotu od takto dané nulové teploty, takzvané absolutní nuly. Jakákoli teplota vyjádřená v absolutní teplotní stupnici, tedy absolutní teplota T je vždy nezáporná a měří se v Kelvinech (K). 2 5

6 Michal Varady Přednáška 2: Teplota a její měření Druhým základním bodem absolutní teplotní stupnice je teplota trojného bodu vody, která byla definitoricky stanovena T 3 = K. Při teplotě trojného bodu nastává rovnovážný stav ledu vody a syté páry. Protože tento stav nastává pouze při jednom, určitém tlaku a lze jej snadno realizovat pomocí jednoduchého zařízení znázorněného na obrázku 2.1. Podle mezinárodní dohody je jeden Kelvin definován takto: Definice 7 (Kelvin) Jednotka kelvin (K) je definována jako 273,16 tá část teploty trojného bodu vody. Kelvin je základní jednotkou SI. Absolutní stupnice je zkonstruována tak, že její jeden teplotní dílek má stejnou velikost jako u Celsiovy stupnice, a tedy teplotní rozdíly v Celsiově a absolutní stupnici jsou stejné t ( C)= T (K) a přepočet Celsiovy teploty na absolutní lze realizovat snadným vztahem kde t je číselná hodnota Celsiovy teploty. T =(t +273, 15) [K], (2.6) 2.2 Teplotní roztažnost Délková teplotní roztažnost Ze zkušenosti je známo, že při změně teploty těles se mění jejich rozměry a je tedy nutné s tímto jevem počítat v technické praxi, například při stavbě mostů, kolejí, motorů, vedení vysokého napětí a podobně. U těles takových tvarů, kde převládá jeden rozměr (dráty, koleje, dlouhé mosty, apod.) nás často zajímá tzv. délková teplotní roztažnost. Má li těleso tvaru tyče délku l 0 při teplotě t 0, potom jeho délka l t při teplotě t bude dána vztahem l t = l 0 (1 + α t) [m], kde t = t t 0 [ C] (2.7) a α je teplotní koeficient délkové roztažnosti s jednotkou K 1. Přesná měření ukazují, že α se slabě mění s teplotou. Pro malé teplotní rozdíly je však možné považovat koeficient teplotní roztažnosti za konstantu. 2 6

7 Teplotní roztažnost Michal Varady Objemová teplotní roztažnost Při zahřátí tělesa se však nezmění jenom jeden jeho rozměr, ale ve stejném poměru jeho všechny rozměry. Změní se tedy také objem celého tělesa. Je li V 0 objem tělesa při teplotě t 0 potom jeho objem V t při teplotě t bude dán vztahem V t = V 0 (1 + β t), kde t = t t 0 (2.8) a β je teplotní koeficient objemové roztažnosti, který stejně jako teplotní koeficient délkové roztažnosti měříme v K 1. Lze snadno ukázat, že mezi teplotním koeficientem délkové a objemové roztažnosti existuje jednoduchý vztah β =3α [K 1 ]. (2.9) 2 7

8 Michal Varady Přednáška 2: Teplota a její měření Obrázek 2.1: Zařízení pro realizaci trojného bodu vody. Obrázek 2.2: Plynový teploměr s konstantním objemem. 2 8

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA

17. Celá čísla.notebook. December 11, 2015 CELÁ ČÍSLA CELÁ ČÍSLA 1 Teploměr na obrázku ukazuje teplotu 15 C Říkáme: je mínus 15 stupňů Celsia je 15 stupňů pod nulou je 15 stupňů mrazu Ukaž na teploměru: 10 C, 8 C, +3 C, 6 C, 25 C, +36 C 2 Teploměr Teploměr

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny

Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny Číslo projektu: CZ.1.07/1.4.00/21.3811 Název DUM: Teplota Číslo DUM: III/2/FY/2/1/13 Vzdělávací předmět: Fyzika Tematická oblast: Fyzikální veličiny a jejich měření Autor: Mgr. Petra Kejkrtová Anotace:

Více

TEPLOTA (termodynamické a statistické pojetí)

TEPLOTA (termodynamické a statistické pojetí) TEPLOTA (termodynamické a statistické pojetí) TEPELNÁ ROVNOVÁHA TEPLOTA, TEPLOTNÍ STUPNICE Teplota jako statistická veličina Prof. RNDr. Emanuel Svoboda, CSc. Původ slova Podnět a příčina určitého druhu

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA1_11 Název materiálu: Teplo a teplota. Tematická oblast: Fyzika 1.ročník Anotace: Prezentace slouží k vysvětlení základních fyzikálních veličin tepla a teploty.

Více

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Číslo projektu Číslo materiálu Název školy CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_15_OC_1.01 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Tématický celek Ing. Zdenka

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_466A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Termika VY_32_INOVACE_0301_0212 Teplotní roztažnost látek. Fyzika 2. ročník, učební obory Bez příloh VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol:

Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol: Název: Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol: 1. Zopakujte si, co víte o teplotě a jejím měření. 2. Zopakujte si, co víte o atmosférickém tlaku. 3. Navrhněte robota, který bude po

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2. TEPLO TA1 419.0008 TEPLO 1 SEZNAM POKUSŮ MĚŘENÍ TEPLOT Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.) KALORIMETRIE Teplotní rovnováha. (2.1.) Studium kalorimetru. (2.2.) Křivka

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 1 Autor prezentace: Ing. Eva Václavíková VY_32_INOVACE_1201_základní_pojmy_1_pwp Název školy: Číslo a název projektu: Číslo a název šablony

Více

Závislost odporu termistoru na teplotě

Závislost odporu termistoru na teplotě Fyzikální praktikum pro JCH, Bc Jméno a příjmení: Zuzana Dočekalová Datum: 21.4.2010 Spolupracovník: Aneta Sajdová Obor: Jaderně chemické inženýrství Číslo studenta: 5 (středa 9:30) Ročník: II. Číslo úlohy:

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika

ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY. Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika ZÁKLADNÍ POZNATKY MOLEKULOVÉ FYZIKY A TERMIKY Mgr. Jan Ptáčník - GJVJ - 2. ročník - Molekulová fyzika a termika Částicová struktura látek Látky jakéhokoli skupenství se skládají z částic Částicemi jsou

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost

Fyzika. Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti. Mgr. Libor Lepík. Student a konkurenceschopnost www.projektsako.cz Fyzika Pracovní list č. 5 Téma: Měření teploty, relativní vlhkosti, rosného bodu, absolutní vlhkosti Lektor: Projekt: Reg. číslo: Mgr. Libor Lepík Student a konkurenceschopnost CZ.1.07/1.1.07/03.0075

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

3.2 Látka a její skupenství

3.2 Látka a její skupenství 3.2 Látka a její skupenství Skupenství látky a jejich změny sublimace PEVNÁ LÁTKA tání desublimace tuhnutí PLYN vy pa řo vá ní KAPALINA zka pal ňo vá ní Látka a změna vnitřní energie Změna vnitřní energie

Více

Měření teploty dotykové teplotoměry

Měření teploty dotykové teplotoměry Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Anotace: Inovace a zkvalitnění výuky prostřednictvím ICT Měření fyzikálních a technických veličin

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Zápočet: -Docházka na cvičení (max. 2 absence) -Vyřešit 3 samostatné úkoly Meteorologická

Více

Termodynamika - určení měrné tepelné kapacity pevné látky

Termodynamika - určení měrné tepelné kapacity pevné látky I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 3 Termodynamika - určení měrné

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA

MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 3.. 04 Název zpracovaného celku: MOLEKULOVÁ FYZIKA A TERMKA MOLEKULOVÁ FYZIKA A TERMIKA Studuje tělesa na základě jejich částicové struktury.

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol:

Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol: Název: Měření teploty a tlaku. Tematický celek: Termodynamika. Úkol: 1. Zopakujte si, co víte o teplotě a jejím měření. 2. Zopakujte si, co víte o atmosférickém tlaku. 3. Navrhněte robota, který bude po

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty:

Základní pojmy. T = ϑ + 273,15 [K], [ C] Definice teploty: Definice teploty: Základní pojmy Fyzikální veličina vyjadřující míru tepelného stavu tělesa Teplotní stupnice Termodynamická (Kelvinova) stupnice je určena dvěma pevnými body: absolutní nula (ustává termický

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkol 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: (a) platinovýodporovýteploměr(určetekonstanty R 0, A, B). (b) termočlánek měď-konstantan(určete konstanty a, b,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Projekt: Registrační číslo projektu: Každý máme

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha Názvosloví páry Pro správné pochopení funkce parních systémů musíme znát základní pojmy spojené s párou. Entalpie Celková energie, příslušná danému

Více

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů

Kapitoly z fyzikální chemie KFC/KFCH. I. Základní pojmy FCH a kinetická teorie plynů Kapitoly z fyzikální chemie KFC/KFCH I. Základní pojmy FCH a kinetická teorie plynů RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Zkouška a doporučená literatura Ústní kolokvium Doporučená literatura

Více

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí.

PRINCIP MĚŘENÍ TEPLOTY spočívá v porovnání teploty daného tělesa s definovanou stupnicí. 1 SENZORY TEPLOTY TEPLOTA je jednou z nejdůležitějších veličin ovlivňujících téměř všechny stavy a procesy v přírodě Ke stanovení teploty se využívá závislosti určitých fyzikálních veličin na teplotě (A

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

Měření měrné tepelné kapacity látek kalorimetrem

Měření měrné tepelné kapacity látek kalorimetrem Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací

Více

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření

MĚŘENÍ RELATIVNÍ VLHKOSTI. - pro měření relativní vlhkosti se používají metody měření MĚŘENÍ RELATIVNÍ VLHKOSTI - pro měření relativní vlhkosti se používají metody měření obsahu vlhkosti vplynech Psychrometrické metody Měření rosného bodu Sorpční metody Rovnovážné elektrolytické metody

Více

POŽÁRNÍ TAKTIKA. Proces hoření

POŽÁRNÍ TAKTIKA. Proces hoření MV- Ř EDITELSTVÍ H ASIČ SKÉHO ZÁCHRANNÉHO SBORU ČR O DBORNÁ PŘ ÍPRAVA JEDNOTEK POŽÁRNÍ OCHRANY KONSPEKT POŽÁRNÍ TAKTIKA 1-1-01 Základy požární taktiky Proces hoření Zpracoval : Oldřich VOLF HZS okresu

Více

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY

CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY CHEMICKÁ ROVNOVÁHA PRINCIP MOBILNÍ (DYNAMICKÉ) ROVNOVÁHY V reakční kinetice jsme si ukázali, že zvratné reakce jsou charakterizovány tím, že probíhají současně oběma směry, tj. od výchozích látek k produktům

Více

Snímače teploty a tepelného množství

Snímače teploty a tepelného množství Snímače teploty a tepelného množství Základní pojmy Teplota je fyzikální veličina vyjadřující míru tepelného stavu tělesa. Teplo je forma energie, která má svůj původ v neuspořádaném pohybu elementárních

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013

Fyzikální chemie. ochrana životního prostředí analytická chemie chemická technologie denní. Platnost: od 1. 9. 2009 do 31. 8. 2013 Učební osnova předmětu Fyzikální chemie Studijní obor: Aplikovaná chemie Zaměření: Forma vzdělávání: Celkový počet vyučovacích hodin za studium: Analytická chemie Chemická technologie Ochrana životního

Více

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z MECHANIKY A TERMIKY Ústav fyziky a biofyziky Školitelka: Studentka: Ing. Helena Poláková, PhD. Bc. Lenka Kadlecová AKTUÁLNOST ZPRACOVÁNÍ TÉMATU Původně

Více

Řešení: Fázový diagram vody

Řešení: Fázový diagram vody Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo

Více

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY

JEVY NA ROZHRANÍ PEVNÉHO TĚLESA A KAPALINY Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Dagmar Horká MGV_F_SS_1S3_D17_Z_MOLFYZ_Jevy_na_rozhrani_pevneho_tel esa_a_kapaliny_pl Člověk a příroda Fyzika

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Změna objemu těles při zahřívání teplotní roztažnost

Změna objemu těles při zahřívání teplotní roztažnost Změna objemu těles při zahřívání teplotní roztažnost 6. třída - Teplota Změna objemu pevných těles při zahřívání Vezmeme plastové pravítko, prkénko a dva hřebíky. Hřebíky zatlučeme do prkénka tak, aby

Více

Demonstrujeme teplotní vodivost

Demonstrujeme teplotní vodivost Demonstrujeme teplotní vodivost JIŘÍ ERHART PETR DESENSKÝ Fakulta přírodovědně-humanitní a pedagogická TU, Liberec Úvod Mezi dvěma místy s rozdílnou teplotou dochází k předávání tepla. Omezíme-li se pouze

Více

FYZIKÁLNÍ CHEMIE I: 2. ČÁST

FYZIKÁLNÍ CHEMIE I: 2. ČÁST Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie

Více

Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo

Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo Termika termika - teplota, teplo a práce termodynamické zákony tepelná vodivost - tepelná kapacita skupenské teplo teplo, teplota, práce, tepelná vodivost Teplo část vnitřní energie tělesa = součet kinetické

Více

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Název a adresa školy: Střední škola průmyslová a uměleká Opava příspěvková organizae Praskova 399/8 Opava 7460 Název operačního programu: OP Vzdělávání pro konkureneshopnost oblast podpory.5 Registrační

Více

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů

Elektrický proud. Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Elektrický proud Elektrický proud : Usměrněný pohyb částic s elektrickým nábojem. Kovy: Usměrněný pohyb volných elektronů Vodivé kapaliny : Usměrněný pohyb iontů Ionizované plyny: Usměrněný pohyb iontů

Více

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty

Integrovaná střední škola, Kumburská 846, Nová Paka Automatizace Snímače teploty. Snímače teploty Snímače teploty Měření teploty patří k jednomu z nejdůležitějších oborů měření, protože je základem řízení řady technologických procesů. Pro měření teploty jsou stanoveny dvě stupnice: a) Termodynamická

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Soustava SI FYZIKÁLNÍ VELIČINY A JEDNOTKY

Soustava SI FYZIKÁLNÍ VELIČINY A JEDNOTKY Soustava SI FYZIKÁLNÍ VELIČINY A JEDNOTKY Mezinárodní soustava jednotek SI Systéme Internationald Unités (Mezinárodní soustava jednotek) zavedena dohodou v roce 1960 Rozdělení Základní jednotky Odvozené

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu

5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství

Více

Osnova pro předmět Fyzikální chemie II magisterský kurz

Osnova pro předmět Fyzikální chemie II magisterský kurz Osnova pro předmět Fyzikální chemie II magisterský kurz Časový a obsahový program přednášek Týden Obsahová náplň přednášky Pozn. Stavové chování tekutin 1,2a 1, 2a Molekulární přístup kinetická teorie

Více

Sada pro pokusy Vítr a počasí. Kat. číslo 100.1350

Sada pro pokusy Vítr a počasí. Kat. číslo 100.1350 Návod k použití Sada pro pokusy Vítr a počasí Kat. číslo 100.1350 Starana 1 z 49 Návod k použití Sada počasí Strana 2 ze 49 2 Obsah Seznam materiálů... 4 Plán uspořádání... 5 1. K organizaci médií... 6

Více

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken

VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75

Více

Senzorika a senzorické soustavy

Senzorika a senzorické soustavy Senzorika a senzorické soustavy Snímače teploty Tato publikace vznikla jako součást projektu CZ.04.1.03/3.2.15.2/0285 Inovace VŠ oborů strojního zaměření, který je spolufinancován evropským sociálním fondem

Více

Laboratorní úloha Diluční měření průtoku

Laboratorní úloha Diluční měření průtoku Laboratorní úloha Diluční měření průtoku pro předmět lékařské přístroje a zařízení 1. Teorie Diluční měření průtoku patří k velmi používaným nepřímým metodám v biomedicíně. Využívá se zejména tehdy, kdy

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Vakuová fyzika 1 1 / 40

Vakuová fyzika 1 1 / 40 Měření tlaku Měření celkových tlaků Měření parciálních tlaků Rozdělení měřících metod Vakuová fyzika 1 1 / 40 Absolutní metody - hodnota tlaku je určena přímo z údaje měřícího přístroje, nebo výpočtem

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

M e P S. Vyzařující plocha S je konstantní stejně jako σ a pokud těleso odvádí energii jen zářením

M e P S. Vyzařující plocha S je konstantní stejně jako σ a pokud těleso odvádí energii jen zářením Co vše umí žárovka!(?) Co je žárovka Žárovka je vlákno v baňce ve které je plyn nebo vakuum. Plynem jsou plněné větší žárovky a menší jsou většino u vakuové. Vláknem prochází proud a vlákno se tím zahřívá

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více