Fáze a fázové přechody
|
|
- Rostislav Kříž
- před 6 lety
- Počet zobrazení:
Transkript
1 Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v daném tělese se mohou lišit chemickým složením, skupenstvím, krystalickou strukturou, hustotou, magnetickými vlastnostmi atd. Podmínka rovnováhy pro dvě fáze: teplotní a mechanická rovnováha: a zachování počtu částic Systém s konstantním objemem v termodynamické rovnováze: T 1 T 2 T, (1) p 1 p 2 p (2) N 1 + N 2 N. (3) df (T, V, N k ) 0, (4) přičemž takže při konstantní teplotě ( ) F N k V,T µ k, (5) df µ 1 dn 1 + µ 2 dn 2 (µ 1 µ 2 )dn, (6) čili chemické potenciály pro částice obou fází musí být stejné. Pokud vyjádříme chemické potenciály jako funkce teploty a tlaku, dostaneme což představuje implicitní závislost mezi tlakem a teplotou, neboli µ 1 (p, T ) µ 2 (p, T ), (7) p p(t ), (8) viz obr. 1a. Parametry p, T vyhovující této rovnici leží na křivce, jejíž body oovídají možné koexis- p C (a) p C (b) A B (max) V 1 V 2 (max) D T V Obrázek 1: Křivka fázové rovnováhy pro tlak a teplotu a pro tlak a objem. tenci dvou fází. Body mimo tuto čáru oovídají situaci, kdy látka v tělese je tvořena jedinou fází. 1
2 Pokud přecházíme z jednoho stavu (A) do druhého (B) po trajektorii oovídající čárkované čáře na obr. 1, ve stavu oovídajícím průsečíku této čáry s křivkou p(t ) se těleso rozdělí na dvě homogenní části. (V této situaci dvojice parametrů p, T neurčuje jednoznačně stav systému - je třeba doplnit např. informaci o poměrném zastoupení obou fází.) Na druhé straně křivky p(t ) pokračuje systém jako homogenní těleso ve druhé fázi. V některých případech křivka fázové rovnováhy končí - jako v bodě (C), v tzv. kritickém bodě. Pokud měníme stav systému podél tečkované trajektorie, mění se fáze postupně, aniž by se těleso rozdělilo na dvě oddělené části. Fáze s kritickým bodem se tak liší pouze kvantitativně a přiřazení daného homogenního stavu jedné či druhé fázi může být konvenční záležitostí. To se týká např. přechodu mezi kapalnou a plynnou fází. Naproti tomu přechody mezi kapalnou a krystalickou fází, nebo mezi dvěma krystalickými fázemi s různou symetrií představují kvalitativní skok a křivka fázové rovnováhy nemůže mít kritický bod. Rovnováhu fází můžeme zobrazit i pro jiné dvojice termodynamických proměnných, např. p a V jako na obr. 1b. Rovnováze dvou fází tu neoovídá pouze křivka, ale určitá plošná oblast. Pro zachování termodynamické rovnováhy totiž není nutná rovnost objemů (na rozdíl od rovnosti tlaků, rce (2)), ale objemy V 1,2 dvou fází mohou nabývat hodnot 0 V 1 V (max) 1 a 0 V 2 V (max) 2 tak, že V V 1 + V 2 xv (max) 1 + (1 x)v (max) 2, 0 x 1, (9) což znamená, že podmínka rovnováhy fází je splněna pro jakýkoliv bod v čárkované oblasti na obr. 1b. Dané hodnotě p a T oovídá jedna vodorovná úsečka spojující body V (max) 1 a V (max) 2 na křivce; množství látky v jednotlivých fázích jsou úměrné délkám úseček mezi daným bodem (např. D na obr. 1b) a body V (max) 1 a V (max) 2. Tři fáze: analogicky jako pro rovnováhu dvou fází musí platit T 1 T 2 T 3 T, (10) p 1 p 2 p 3 p, (11) µ 1 (p, T ) µ 2 (p, T ) µ 3 (p, T ). (12) Vztah (12) představuje dvě rovnice mezi proměnnými p a T. Řešení těchto rovnic oovídá jediný bod o souřadnicích (p 0, T 0 ), tzv. trojný bod. Protože obecně nelze zajistit, aby dvě proměnné vyhovovaly třem a více nezávislým rovnicím, rovnováhy více než tří fází téže látky se nedá dosáhnout. Latentní teplo fázového přechodu, Clausiova - Clapeyronova rovnice. Připomeňme vztahy pro termodynamické potenciály soustav s proměnným počtem částic (ve statistické fyzice je popisuje velký kanonický ansámbl): de T ds pdv + µ 1 dn 1 + µ 2 dn (13) df SdT pdv + µ 1 dn 1 + µ 2 dn (14) dh T ds + V + µ 1 dn 1 + µ 2 dn (15) dg SdT + V + µ 1 dn 1 + µ 2 dn (16) Z rovnice (16) plyne Maxwellova relace ( ) ( ) µk S, (17) ( ) ( ) µk V. (18) p T,N j Výraz ( ) S s k (19) 2
3 představuje entropii, kterou získá soustava, pokud do ní (za podmínky konstantního tlaku a teploty) přejde jedna částice k-tého druhu. Vynásobením tohoto vztahu teplotou získáme q k T s k, což představuje teplo, které je nutno soustavě dodat, aby při získání jedné částice k-tého druhu zůstaly teplota a tlak nezměněné. Pokud soustava přechází z jedné fáze do druhé, pak při přechodu jedné částice z fáze 1 do fáze 2 je nutno dodat soustavě teplo [ ( µ2 ) ( ) ] µ1 q T (s 2 s 1 ) T. (20) Tato veličina se nazývá latentní teplo (na jednu částici) pro přechod z fáze 1 do fáze 2. Výraz ( ) V v k (21) má význam objemu, připadajícího na jednu částici k-tého druhu (o tuto hodnotu vzroste objem systému, pokud do něj za konstantního tlaku a teploty jednu takovou částici přidáme). Vztah mezi změnou tlaku s teplotou v rovnováze dvou fází, rozdílem specifických objemů těchto fází a latentním teplem získáme derivací rovnice (7) podle teploty: Úpravou získáme µ 1 T + µ 1 p dt µ 2 T + µ 2 p dt, (22) s 1 + v 1 dt s 2 + v 2 dt. (23) dt s 2 s 1 v 2 v 1 q T (v 2 v 1 ). (24) Toto je Clausiova - Clapeyronova rovnice. Vyplývá z ní např. vztah mezi tlakem a teplotou tání ledu: je-li fáze 1 pevná a 2 kapalná, je q kladné a pro vodu platí v 1 > v 2. Pak musí být dt < 0, tedy s rostoucím tlakem teplota tání klesá. Pro látky, jejichž specifický objem v kapalné fázi je větší než v pevné fázi, v 1 < v 2, teplota tání s rostoucím tlakem roste. Clausiova - Clapeyronova rovnice se dá použít i pro odhad závislosti tlaku sytých par na teplotě. Využijeme dvou zjednodušení: specifický objem molekuly páry je mnohem větší než specifický objem molekuly v kapalině, v 2 v 1 a tedy v 2 v 1 v 2. Za druhé - páru budeme aproximovat ideálním plynem, tedy takže Clausiova - Clapeyronova rovnice má tvar Pokud je q nezávislé na teplotě, dostáváme v 2 kt p, (25) dt qp kt 2. (26) p p 0 e q kt, (27) kde p 0 je integrační konstanta. Tlak syté páry tedy závisí přibližně exponenciálně na 1/T. Př.: Tlak syté vodní páry při 373 K je 10 5 Pa, latentní teplo vypařování je 40,7 kj/mol. Odhadněte tlak syté vodní páry při 383 K a při 363 K. [1, Pa, 0, Pa] Př.: Tlak syté vodní páry nad ledem při 268 K je 2, Pa a při 273 K je to 4, Pa. Odhadněte 3
4 latentní teplo sublimace ledu. [52, 37kJ/mol] Př.: Odhadněte teplotu varu vody při tlaku Pa. [407K] Gibbsovo fázové pravidlo: U systému skládajícího se z daného počtu molekul n různých chemických látek v r různých fázích může v termodynamické rovnováze f termodynamických veličin nabývat nezávislých hodnot, kde f n + 2 r. (28) Veličina f je počet stupňů volnosti. Např. v jednosložkovém systému (n 1) s jednou fází (r 1) je počet stupňů volnosti f 2, můžeme tedy např. zadat teplotu a tlak systému a ostatní termodynamické veličiny (např. objem, vnitřní energie, entropie) jsou již určeny. Pokud však v tomto systému koexistují dvě fáze (r 2), je f 1 a všechny termodynamické veličiny jsou určeny např. zadáním teploty. Při koexistenci tří fází je f 0 a všechny termodynamické veličiny jsou již určeny: jsou to souřadnice trojného bodu. Dvousložkový systém (n 2) se třemi fázemi (r 3) je např. soustava led, krystalická sůl a voda s rozpuštěnou solí. Má jeden stupeň volnosti: při daném tlaku existuje jediná teplota, kdy jsou všechny tři složky přítomny. Odvození fázového pravidla: uvažujme systém s n složkami v r fázích. Každé fázi m oovídá teplota T, tlak p a n chemických potenciálů µ m,j, kde j 1, 2,.... Počet částic j-té složky ve fázi m je N m,j. Gibbsův potenciál fáze m je n G m (p, T, N m,1, N m,2,..., N m,n ) µ m,j N m,j. (29) j1 Protože Gibbsův potenciál musí být homogenní funkcí prvního řádu proměnných N m,j, musí být chemické potenciály µ m,j funkcemi teploty T, tlaku p a koncentrací definovaných např. c m,j N m,j /N m,n a chemické potenciály jsou tedy funkcemi n + 1 proměnných µ m,j µ m,j (T, p, c m,1, c m,2,..., c m,n 1 ), m 1, 2,... r. (30) Dohromady je tedy soustava popsána 2 + r(n 1) proměnnými. Protože v termodynamické rovnováze jsou chemické potenciály každé složky stejné v každé fázi, platí µ 1,1 µ 2,1... µ r,1, µ 1,2 µ 2,2... µ r,2, µ 1,n µ 2,n... µ r,n,. (31) což představuje n(r 1) nezávislých rovnic. Z celkového počtu proměnných tedy zbývá 2 + r(n 1) n(r 1) 2 + n r nezávislých proměnných, což je Gibbsovo fázové pravidlo. Dva limericky o Gibbsově pravidle od studentů z MIT: What can I say about Gibb s Phase Rule? It can be a useful Thermo tool. For, if you use it right, Even when high as a kite, Your Professor will still think you re cool. Learning Gibbs Rules can be slow Students find it a great woe But some struggle through Memorize that D+fc+2 And say Look at all the things I know 4
5 Povrchové napětí a Laplaceův tlak. Zatím jsme zanedbávali vliv povrchu oddělujícího dvě fáze. Při malých rozměrech jednotlivých těles však povrchové efekty hrají velkou roli. Práce na zvětšení povrchu σ rozhraní: da αdσ, (32) kde α je povrchové napětí (α > 0, jinak by rozhraní nebylo stabilní). Diferenciál vnitřní energie je de T 1 ds 1 p 1 + µ 1 dn 1 + T 2 ds 2 p 2 dv 2 + µ 2 dn 2 + αdσ. (33) Přeokládáme-li konstantní objem V V 1 + V 2, počet částic N N 1 + N 2 a entropii S S 1 + S 2, musí být energie soustavy minimální, tedy ( (T 1 T 2 )ds 1 p 1 p 2 α dσ ) + (µ 1 µ 2 )dn 1 0. (34) Pro rovnováhu tedy musí platit vztahy T 1 T 2 T, (35) µ 1 µ 2, (36) p 1 p 2 α dσ. (37) První dva vztahy jsou stejné jako v případě bez povrchových efektů, novým jevem je nerovnost tlaků ve fázích oddělených rozhraním. Pokud fáze 1 tvoří kouli, je a tedy Rozdíl tlaků uvnitř a vně koule je pak V πr3, (38) dσ σ 4πr 2, (39) dσ dr dr 2 r. (40) Tento tlakový rozdíl se nazývá Laplaceův tlak. p 1 p 2 2α r. (41) 5
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
Rovnováha Tepelná - T všude stejná
Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -
5.7 Vlhkost vzduchu 5.7.5 Absolutní vlhkost 5.7.6 Poměrná vlhkost 5.7.7 Rosný bod 5.7.8 Složení vzduchu 5.7.9 Měření vlhkosti vzduchu
Fázové přechody 5.6.5 Fáze Fázové rozhraní 5.6.6 Gibbsovo pravidlo fází 5.6.7 Fázový přechod Fázový přechod prvního druhu Fázový přechod druhého druhu 5.6.7.1 Clausiova-Clapeyronova rovnice 5.6.8 Skupenství
Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny
Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná
IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze
IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013
Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje
Krystalizace, transformace, kongruence, frustrace a jak se to všechno spolu rýmuje Pavel Svoboda, Silvie Mašková Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, Katedra fyziky kondenzovaných
Termodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
Mol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
Kinetická teorie ideálního plynu
Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na
Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny
Nauka o materiálu Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny Difuze v tuhých látkách Difuzí nazýváme přesun atomů nebo iontů na vzdálenost větší než je meziatomová vzdálenost. Hnací
Fluktuace termodynamických veličin
Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ
Řešené úlohy ze statistické fyziky a termodynamiky
Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Krása fázových diagramů jak je sestrojit a číst Silvie Mašková
Krása fázových diagramů jak je sestrojit a číst Silvie Mašková Katedra fyziky kondenzovaných látek Matematicko-fyzikální fakulta Univerzita Karlova Praha Pár základích pojmů na začátek Co jsou fázové diagramy?
Termodynamika. Děj, který není kvazistatický, se nazývá nestatický.
Termodynamika Zabývá se ději, při nichž se mění tepelná energie v jiné druhy energie (zejména mechanické). Studuje vlastnosti látek bez přihlédnutí k jejich mikrostruktuře. Je vystavěna na axiomech (0.,
Nultá věta termodynamická
TERMODYNAMIKA Nultá věta termodynamická 2 Práce 3 Práce - příklady 4 1. věta termodynamická 5 Entalpie 6 Tepelné kapacity 7 Vnitřní energie a entalpie ideálního plynu 8 Výpočet tepla a práce 9 Adiabatický
12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ
56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem
ZMĚNY SKUPENSTVÍ LÁTEK
ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů
Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Skalární a vektorový popis silového pole
Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
1 Statistická fyzika Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Cíl statistické fyziky: vysvětlit makroskopické vlastnosti látky na základě mikroskopických vlastností jejích elementů,
PROCESY V TECHNICE BUDOV 8
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
metoda je základem fenomenologické vědy termodynamiky, statistická metoda je základem kinetické teorie plynů, na níž si princip této metody ukážeme.
Přednáška 1 Úvod Při studiu tepelných vlastností látek a jevů probíhajících při tepelné výměně budeme používat dvě různé metody zkoumání: termodynamickou a statistickou. Termodynamická metoda je základem
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno JAMES WATT 19.1.1736-19.8.1819 Termodynamika principy, které vládnou přírodě Obsah přednášky Vysvětlení základních
7. Fázové přeměny Separace
7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Jednosložkové soustavy
Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých
ÚVOD DO TERMODYNAMIKY
ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních
Stanovení křivky rozpustnosti fenol-voda. 3. laboratorní cvičení
Stanovení křivky rozpustnosti fenol-voda 3. laboratorní cvičení Mgr. Sylvie Pavloková Letní semestr 2016/2017 Cíl pochopení základních principů fázové rovnováhy heterogenních soustav základní principy
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Termodynamika a živé systémy. Helena Uhrová
Termodynamika a živé systémy Helena Uhrová Základní pojmy termodynamiky soustava izolovaná otevřená okolí vlastnosti soustavy znaky popisující soustavu stav rovnováhy tok m či E =0 funkce stavu - soubor
FYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials
Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free
Magnetokalorický jev MCE
Magnetokalorický jev a jeho aplikační potenciál P. Svoboda Katedra fyziky kondenzovaných látek Magnetokalorický jev MCE MCE: znám déle než 120 let renesance zájmu během posledních 35 let PROČ? Připomínka
Fyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Projekty - Vybrané kapitoly z matematické fyziky
Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................
Molekulová fyzika a termodynamika
Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a
DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia
projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály
4 Term ika. D ůsledky zavedení tep lo ty a tep la Stavová r o v n i c e Stavová rovnice termická a kalorická
Obsah Předm luva И 1 Výchozí představy term odynam iky 13 1.1 Předmět zkoumání termodynamiky... 13 1.1.1 Celkový r á m e c... 13 1.1.2 Teplo, teplota, e n tr o p ie... 14 1.1.3 Vymezení term o d y n am
2.1 Empirická teplota
Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
1. Fázové rozhraní 1-1
1. Fázové rozhraní 1.1 Charakteristika fázového rozhraní Velmi často se setkáváme s řadou fyzikálních či chemických procesů, které probíhají na rozhraní mezi sousedícími objemovými fázemi (fáze - určitá
3.2 Látka a její skupenství
3.2 Látka a její skupenství Skupenství látky a jejich změny sublimace PEVNÁ LÁTKA tání desublimace tuhnutí PLYN vy pa řo vá ní KAPALINA zka pal ňo vá ní Látka a změna vnitřní energie Změna vnitřní energie
ROVNOVÁŽNÉ STAVY rovnovážném stavu.
ROVNOVÁŽNÉ STAVY Neprobíhá-li v soustavě za daných vnějších podmínek žádný samovolný děj spojený s výměnou látek nebo energie, je soustava v rovnovážném stavu. CHEMICKÝ POTENCIÁL GIBBSŮV ZÁKON FÁZÍ Máme-li
3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky
3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -
7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro
7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,
Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc
Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů Doc. Ing. Jiří Vondrák, DrSc 1. Obecný úvod Tato stať se zabývá stavem látek, a to ve skupenství kapalném či tuhém, a přechody mezi
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.3 k prezentaci Křivky chladnutí a ohřevu kovů
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_06 Autor
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování
eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.
TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný
Řešení: Fázový diagram vody
Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
Statistická termodynamika
Statistická termodynamika Jan Řezáč UOCHB AV ČR 24. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Statistická termodynamika 24. listopadu 2016 1 / 38 Úvod Umíme popsat jednotlivé molekuly (případně jejich interakce)
Kapaliny Molekulové vdw síly, vodíkové můstky
Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová
Potenciální proudění
Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace
F8 - Změny skupenství Číslo variace: 1
F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku
BIOMECHANIKA KINEMATIKA
BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti
TERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
Fázové rovnováhy dvousložkové soustavy kapalina-kapalina
Fázové rovnováhy dvousložkové soustavy kapalina-kapalina A) Neomezeně mísitelné kapaliny Za situace, kdy se v dvousložkové soustavě vyskytuje jediná kapalná fáze (neomezená mísitelnost obou kapalin), pak
Maturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
T0 Teplo a jeho měření
Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná
Vnitřní energie, práce a teplo
Přednáška 3 Vnitřní energie, práce a teplo Thermodynamics is a funny subject. The first time you go through it, you don t understand it at all. The second time you go through it, you think you understand
Přijímací zkouška na navazující magisterské studium 2014
Přijímací zkouška na navazující magisterské studium 24 Příklad (25 bodů) Spočtěte Studijní program: Studijní obor: Matematika Finanční a pojistná matematika Varianta A M x 2 dxdy, kde M = {(x, y) R 2 ;
bak-06=1/1 http://www.vscht.cz/fch/cz/pomucky/kolafa/n403011p.html
bak-06=1/1 pst=101325 = 1.013e+05 Pa R=8.314 = 8.314JK 1 mol 1 Gibbsovo fázové pravidlo v = k f + 2 C počet stupnů volnosti počet složek počet fází počet vazných podmínek 1. Gibbsovo fázové pravidlo Určete
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
1. Látkové soustavy, složení soustav
, složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství. Teplotní vlastnosti
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství Teplotní vlastnosti Student: Ondřej Rozinek květen 2009 1 Teplotní vlastnosti Vlastnosti materiálu závisí na skupenství. Skupenství
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
Termodynamika v biochemii
Termodynamika v biochemii Studium energetických změn Klasická x statistická Rovnovážná x nerovnovážná lineárn rní a nelineárn rní Základní pojmy Makroskopický systém, okolí systému Termodynamický systém
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
Chemická kinetika. Reakce 1. řádu rychlost přímo úměrná koncentraci složky
Chemická kinetika Chemická kinetika Reakce 0. řádu reakční rychlost nezávisí na čase a probíhá konstantní rychlostí v = k (rychlost se rovná rychlostní konstantě) velmi pomalé reakce (prakticky se nemění
VLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
Měření teplotní roztažnosti
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se
VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA
HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad
(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,
1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo