16 - Pozorovatel a výstupní ZV

Rozměr: px
Začít zobrazení ze stránky:

Download "16 - Pozorovatel a výstupní ZV"

Transkript

1 16 - Pozorovatel a výstupní ZV Automatické řízení

2 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje veškerou informaci o minulosti soustavy. Stavová zpětná vazba se snadno užívá tam, kde všechny stavové veličiny můžeme snadno měřit, např. pro letecké a kosmické dopravní prostředky, kde jsou typickými veličinami poloha, rychlost, zrychlení. Dokonce už tam často jsou senzory měřící tyto veličiny pro jiné účely o když ale některé stavy měřit nechceme (cena a spolehlivost senzorů), nebo ani nemůžeme (jaderný reaktor, sklářská pec)? Často měříme jen některé stavové veličiny a těm pak říkáme měřený výstup Je potom užití stavové ZV nemožné? Ne tak docela! Když některé stavy nemůžeme měřit, zkusíme je rekonstruovat 2

3 Estimátor stavu neboli Pozorovatel Pozorovatel, estimátor stavu, někdy také rekonstruktor (anglicky observer, state estimator, reconstructor) Je to systém, který má stejný vstup jako soustava, často do něj vedeme i výstup má stejný řád jako soustava jeho stavy můžeme všechny měřit a jeho stav ˆx je odhadem stavu soustavy x r u kdyby bylo xˆ(0) = x(0), + y + tak i budoucí xˆ( t) = x(), t t > 0 obecně jen xˆ( t) x(), t t > 0 pozorovatel x ˆ = fuy (, ) Úkol pozorovatele vytváří odhad stavu soustavy, který pak použijeme pro ZV místo skutečného stavu soustavy jež bohužel neznáme regulátor u soustava x = Ax + Bu = x + Du K y ˆx y ARI

4 Nestačil by model soustavy? Automatické řízení - Kybernetika a robotika Zkusme přímovazební (open-loop) strukturu s modelem soustavy = Ax + Bu soustava = ˆ u x Ax + Bu = Ax + Bu vypočteme odchylku odhadu e= x xˆ, e(0) = x(0) xˆ(0) e = Ae model = Aˆx+ Bu ˆx y ŷ Dynamika odchylky je tedy dána dynamikou soustavy pokud vyhovuje (stabilita, rychlost konvergence), tak to stačí, ale pak vůbec nemusíme řídit pokud nevyhovuje, nemůžeme to napravit ato struktura není dobrá Jak ji můžeme vylepšit? Zpětnou vazbou! Využijme rozdíl mezi měřeným a odhadovaným výstupem y yˆ 4

5 Pozorovatel plného řádu Automatické řízení - Kybernetika a robotika odhaduje všechny stavy soustavy skládá se z modelu soustavy ˆ = Axˆ + Bu+ L( y yˆ) yˆ = xˆ a injekce z výstupu odečtením rovnic = Ax + Bu = Axˆ + Bu + L( x xˆ) Dostaneme pro odchylku odhadování e= x xˆ e = ( A L) e e= A e poz = Ax + Buy, = x = Ax + Bu to už je lepší: volbou vektoru L můžeme měnit matici A, a tak nastavit dynamiku odhadování (konvergenci a její rychlost) u soustava model = Axˆ + Bu + L( y yˆ ) pozorovatel x ˆx L ŷ y + 5

6 Vlastnosti pozorovatele plného řádu Protože je ˆ = Axˆ + Bu+ Ly Lxˆ = ( A L) xˆ + Bu+ Ly má pozorovatel rovnice kde je matice ˆ = A xˆ + Bu+ Ly A = pozorovatele je yˆ = x poz poz A L ˆ a a a l n 1 Její vlastní čísla (tzv. póly pozorovatele) a21 a22 a 2n l 2 Apoz = c1 c2 c se dají vhodnou volbou L nastavit libovolně an1 an2 ann ln když je systém pozorovatelný Ne náhodou to připomíná vztahy pro matici stavové ZV Póly pozorovatele obvykle je volíme 2 až 6 rychlejší než póly regulátoru aby póly regulátoru byly dominantní a pozorovatel nezpomaloval dyn. Jen když je šum senzoru tak silný, že je hlavním problémem volíme póly pozorovatele 2 pomalejší než póly regulátoru tím zmenšíme šířku pásma a vyhladíme šum v ZV systému [ ] n ARI

7 Dualita Při návrhu pozorovatele pro dané A, hledáme L tak, aby matice A = A L poz měla požadovaná vlastní čísla Při návrhu stavové ZV jsme podobně pro dané A, B hledali K tak, aby A = A BK reg měla požadovaná vlastní čísla Má to nějakou souvislost? Ano! Protože transpozice matice nemění vlastní čísla, transponujme problém na ( ) poz = = A A L A L Zřejmě jsou oba problémy duální Proto můžeme navrhnout pozorovatele (matici výstupní injekce) tak, že Budeme navrhovat matici stavové ZV pro duální (tedy transponovaný ) systém řízení stavová ZV A B K odhad stavu výst. injekce A B L ARI

8 Dualita pozorovatelnosti a řiditelnosti Dualita je ještě hlubší: i pojmy řiditelnost a pozorovatelnost jsou duální Systém je (úplně) pozorovatelný, právě když lze k němu navrhnout pozorovatele s libovolnými vlastními čísly (póly pozorovatele) Matice pozorovatelnosti je duální k matici řiditelnosti O A A n 1 = = n 1 A ( A) kanonický tvar pozorovatelnosti je duální ke kanonickému tvaru řiditelnosti řízení stavová ZV A B K odhad stavu výst. injekce A B L an an A = a a = [ ] 8

9 Návrh pozorovatele - 3 metody Využít přímo dualitu: převést úlohu na návrh stavové ZV pro duální systém, vyřešit ho a výsledné K převést na L podle L = K Převodem na normální tvar pozorovatelnosti: 1 k čemuž použijeme transformační matici = OnewO old snadno an 1 l1 vyřešit ( an 1+ l1) a n 2 l v tomto 2 ( an 2 + l2) F tvaru [ ] a1 ln 1 ( a1 ln 1) výsledek + a0 l n ( a0 + ln) převést zpět do n n 1 původních souřadnic det ( I ( A L) ) ( ) ( ) Pomocí modifikovaného Ackermannova vzorce pro pozorovatele = = s = s + a 1+ l1 s + + a1+ l 1 s+ a0 + l n n 1 det ( si A) = s + a s + + as+ a n n n n p ( ) L= poz A O 1 [ ] 9

10 Kombinace: ZV a pozorovatel Stavovými metodami navržená ZV z výstupu: navrhneme zvlášť stavovou ZV a zvlášť pozorovatele ale pak ZV vedeme od stavů pozorovatele u = Kxˆ + r = Ax + Buy, = x soustava r u = Axˆ + Bu+ L( y xˆ) = Ax + Bu + + u = Kxˆ + r = ( A L) xˆ + Bu+ Ly = ( A L BK) xˆ + Ly+ Br rovnice regulátoru tedy jsou = A L BK xˆ + Ly+ Br ( ) u = Kxˆ + r a jeho přenos je regulátor K ˆx x ˆ = Axˆ + B + L( y xˆ u ) ( ) ( ) ( ) 1 1 us () = K si A + L + BK Lys () + 1 K si A + L + BK B rs () y 10

11 Separace Automatické řízení - Kybernetika a robotika Výsledný systém (soustava + pozorovatel + ZV) má rovnice = Ax BKxˆ + Br u = Kxˆ + r ˆ = Lx + ( A L BK) xˆ + Br Abychom lépe určili jeho póly, r u vyjádříme ho se stavy xe, = x xˆ + = ( ) x + BKe + Br + A BK e = ( A L) e neboli blokově = + A BK BK x B K = + r e 0 A L e 0 regulátor soustava x Ax Bu póly výsledného systému jsou zřejmě póly ZV bez pozorovatele + póly pozorovatele bez ZV teprve z toho plyne, že smíme obě části navrhovat zvlášť: tzv. princip separace ˆx x ˆ = Axˆ + B + L( y xˆ u ) y 11

12 Další použití pozorovatele Pozorovatel se používá i k řešení jiných úloh: Jako náhrada měření veličiny, které není možné či snadné V případě chyb, selhání, poruch (fault, fauilure) k jejich detekci = že došlo k selhání (fault detection) izolaci = kde přesně došlo k selhání (fault isolation) V případě selhání senzoru a/nebo aktuátoru k rekonfiguraci např. se při selhání senzoru použije pro řízení místo skutečně naměřených hodnot výstupu použijí hodnoty odhadnuté pozorovatelem v případě selhání aktuátoru se použije tzv. virtuální aktuátor, což je modifikace pozorovatele (Podobně) v případě změny vlastností senzoru/aktuátoru 12

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Lineární funkce IV

Lineární funkce IV .. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít

Více

21 Diskrétní modely spojitých systémů

21 Diskrétní modely spojitých systémů 21 Dikrétní modely pojitýc ytémů Micael Šebek Automatické řízení 2015 29-4-15 Metoda emulace Automatické řízení - Kybernetika a robotika pojitý regulátor nazývá e také aproximace, dikrétní ekvivalent,

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Odhad stavu matematického modelu křižovatek

Odhad stavu matematického modelu křižovatek Odhad stavu matematického modelu křižovatek Miroslav Šimandl, Miroslav Flídr a Jindřich Duník Katedra kybernetiky & Výzkumné centrum Data-Algoritmy-Rozhodování Fakulta aplikovaných věd Západočeská univerzita

Více

26 Nelineární systémy a řízení

26 Nelineární systémy a řízení 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Zadání Máme data hdp.wf1, která najdete zde: Bodová předpověď: Intervalová předpověď:

Zadání Máme data hdp.wf1, která najdete zde:  Bodová předpověď: Intervalová předpověď: Predikce Text o predikci pro upřesnění pro ty, které zajímá, kde se v EViews všechna ta čísla berou. Ruční výpočty u průběžného testu nebudou potřeba. Co bude v závěrečném testu, to nevím. Ale přečíst

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Soustavy lineárních a kvadratických rovnic o dvou neznámých

Soustavy lineárních a kvadratických rovnic o dvou neznámých Soustavy lineárních a kvadratických rovnic o dvou neznámých obsah 1.a) x + y = 5 x 2 + y 2 = 13 3 b) x - y = 7 x 2 + y 2 = 65 5 c) x - y = 3 x 2 + y 2 = 5 6 3. a) x + 2y = 9 x. y = 10 12 b) x - 3y = 1

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic

2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic .3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =

Více

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008

Aritmetické vektory. Martina Šimůnková. Katedra aplikované matematiky. 16. března 2008 Aritmetické vektory Martina Šimůnková Katedra aplikované matematiky 16. března 2008 Martina Šimůnková (KAP) Aritmetické vektory 16. března 2008 1/ 34 Úvod 1Úvod Definice aritmetických vektorů a operací

Více

Soustavy se spínanými kapacitory - SC. 1. Základní princip:

Soustavy se spínanými kapacitory - SC. 1. Základní princip: Obvody S - popis 1 Soustavy se spínanými kapacitory - S 1. Základní princip: Simulace rezistoru přepínaným kapacitorem viz známý obrázek! (a rovnice) Modifikace základního spínaného obvodu: Obr. 2.1: Zapojení

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky

řešeny numericky 6 Obyčejné diferenciální rovnice řešeny numericky řešeny numericky řešeny numericky Břetislav Fajmon, UMAT FEKT, VUT Brno Na minulé přednášce jsme viděli některé klasické metody a přístupy pro řešení diferenciálních rovnic: stručně řečeno, rovnice obsahující

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3)

KALIBRACE. Definice kalibrace: mezinárodní metrologický slovník (VIM 3) KALIBRACE Chemometrie I, David MILDE Definice kalibrace: mezinárodní metrologický slovník (VIM 3) Činnost, která za specifikovaných podmínek v prvním kroku stanoví vztah mezi hodnotami veličiny s nejistotami

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621

= cos sin = sin + cos = 1, = 6 = 9. 6 sin 9. = 1 cos 9. = 1 sin 9. + 6 cos 9 = 1 0,939692621 6 ( 0,342020143) = 1 ( 0,342020143) + 6 0,939692621 ŘEŠENÉ PŘÍKLADY Z MA+ULA ČÁST Příklad Bod má vůči souřadné soustavě souřadnice uvedené níže. Vypočtěte jeho souřadnice vzhledem k soustavě, která je vůči otočená dle zadání uvedeného níže. Výsledky zaokrouhlete

Více

Cvičení z Numerických metod I - 12.týden

Cvičení z Numerických metod I - 12.týden Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich

y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Řádková norma (po řádcích sečteme absolutní hodnoty prvků matice a z nich Normy matic Příklad 1 Je dána matice A a vektor y: A = 2 0 3 4 3 2 y = Spočtěte všechny jejich normy (vektor je také matice, typu n 1). Ověřte, že platí Ay A y (1) Ay = (4, 14, 2) T 2 2 Frobeniova norma

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování

Měření neelektrických veličin. Fakulta strojního inženýrství VUT v Brně Ústav konstruování Měření neelektrických veličin Fakulta strojního inženýrství VUT v Brně Ústav konstruování Obsah Struktura měřicího řetězce Senzory Technické parametry senzorů Obrazová příloha Měření neelektrických veličin

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0.

VKM/IM /2015. Zintegrujte. f (x, y) dx dy = f (x, y) = (y x) 2, Ω : x 2 + y 2 4, x 0. VKM/IM - 4/5 Zintegrujte f, y) d dy pro f, y) y ), : + y 4,. Řešení: S využitím postupů a výsledků použitých při řešení příkladů z předchozí části věnované dvojnému integrálu, se můžeme bez obav pustit

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Úvod do Kalmanova filtru

Úvod do Kalmanova filtru Kalmanův filtr = odhadovač stavu systému Úvod do Kalmanova filtru KF dává dohromady model systému a měření. Model systému použije tomu, aby odhadl, ja bude stav vypadat a poté stav porovná se sutečným

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,

Řešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +, Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

Identifikace systémů

Identifikace systémů Identifikace systémů Přednáška 2 Osvald Modrlák, Lukáš Hubka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Predikce roční spotřeby zemního plynu po ceníkových pásmech

Predikce roční spotřeby zemního plynu po ceníkových pásmech Predikce roční spotřeby zemního plynu po ceníkových pásmech Ondřej Konár, Marek Brabec, Ivan Kasanický, Marek Malý, Emil Pelikán Ústav informatiky AV ČR, v.v.i. ROBUST 2014 Jetřichovice 20. ledna 2014

Více

6. Lineární nezávislost a báze p. 1/18

6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost

Více

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

ROVNICE, NEROVNICE A JEJICH SOUSTAVY Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5

Příklad 1. Řešení 1a. Řešení 1b ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 5 Příklad 1 Najděte totální diferenciál d (h) pro h=(h,h ) v příslušných bodech pro následující funkce: a) (,)= cos, =1; b) (,)=ln( + ), =2; 0 c) (,)=arctg(), =1; 0 1 d) (,)= +, =1; 1 Řešení 1a Máme nalézt

Více

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.

Matice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami. Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice

Více

19 - Polynomiální metody

19 - Polynomiální metody 19 - Polynomiální metody Automatické řízení 215 19-4-15 Opakování - Vlastnosti polynomů Polynomy tvoří okruh, ne těleso. Obecně nelze polynomy dělit. Proto existují: dělitel, násobek, společný dělitel,

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce

Více

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra:

β 180 α úhel ve stupních β úhel v radiánech β = GONIOMETRIE = = 7π 6 5π 6 3 3π 2 π 11π 6 Velikost úhlu v obloukové a stupňové míře: Stupňová míra: GONIOMETRIE Veliost úhlu v oblouové a stupňové míře: Stupňová míra: Jednota (stupeň) 60 600 jeden stupeň 60 minut 600 vteřin Př. 5,4 5 4 0,4 0,4 60 4 Oblouová míra: Jednota radián radián je veliost taového

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Funkce Petra Směšná žák chápe funkci jako vyjádření závislosti veličin, umí vyjádřit funkční vztah tabulkou, rovnicí i grafem, dovede vyjádřit reálné situace

Více

Přímá regulace momentu

Přímá regulace momentu Přímá regulace momentu Metoda přímé regulace momentu podle Depenbrocka - poprvé publikována M. Depenbrockem z TU Bochum v roce 1985 - v aplikacích využívá firma ABB (lokomotivy, pohony všeobecného užití)

Více

Úvod do mobilní robotiky NAIL028

Úvod do mobilní robotiky NAIL028 md at robotika.cz http://robotika.cz/guide/umor08/cs 11. listopadu 2008 1 2 PID Sledování cesty Modely kolových vozidel (1/5) Diferenční řízení tank b Encoder Motor Centerpoint Motor Encoder Modely kolových

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

16. Goniometrické rovnice

16. Goniometrické rovnice @198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ NVEZTA V LBEC Fakulta mechatroniky, informatiky a mezioborových studií Základy spojitého řízení Analýza elektrického obvodu čební text Josef J a n e č e k Liberec 010 Materiál vznikl v rámci projektu

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více