Západočeská univerzita. Lineární systémy 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Západočeská univerzita. Lineární systémy 2"

Transkript

1 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina

2 1) a) Jelikož byly měřící přípravky nefunkční, tak jsme si libovolně zvolili přenos systému druhého řádu, tak aby byl systém kmitavý. Náš přenos tedy je: z F( z) z z F( p) p p + 4 b) Abychom alespoň trochu navodili reálné podmínky identifikace systému, zapojili jsme k systému v Simulinku generátor šumu s normálním rozdělením pravděpodobnosti frekvenci 0.01 Hz a amplitudě 0.01, a provedli identifikaci. Přenos tohoto systému po zanedbání nuly je: 3 F( p) p p Zanedbáním nuly jsme se nedopustili téměř žádné chyby, jelikož rozdíl v přechodových charakteristikách systémů je nepostřehnutelný. Pro jednoduchost zadávání budeme dále uvažovat, že systém je ve tvaru jako v bodě 1a) c) Diskretizujeme systém pomocí: z F( p) 1) s použitím tvarovače nultého řádu: F( z) 1 Z L 1 z p pomocí funkce cd() při T 0,s získáme přenos: z F( z) z z ) pomocí obdélníkové aproximace při T 0,s : z 1 z našem případě nelze použít dopřednou aproximaci p jelikož bychom T z 1 dostali nestabilní systém. Použijeme tedy aproximaci zpětnou p Tz po dosazení vypadá diskretizovaný přenos: F ( z ) s z z z z ( z 1) 3) pomocí lichoběžníkové aproximace: p, T 0,s T ( z + 1) diskretizovaný přenos: 3z + 6z + 3 F( z) 11z -19 z + 96

3 Přechodové charakteristiky se až na obdélníkovou aproximaci moc neliší a poměrně věrně popisují spojitý systém. U impulsových charakteristik je už situace horší, a diskrétní aproximace popisují spojitý systém s větší chybou. Důvodem je rychlost odezvy a volba velké periody vzorkování.

4 umístění pólů diskretizovaných systému a systému získaného transformací z pt e : pt Umístění pólů systému získaného transformací z e (světle modrá kružnice) je shodné s umístěním systému s tvarovačem nultého řádu. Od pólů ostatních systémů není příliš vzdálený. Všechny póly se nachází uvnitř jednostopé kružnice (modrá kružnice) a stabilita systému tedy zůstane zachována. ) uvažujme polohový servosystém podle následujícího schématu v simulinku: a) Určení zesílení K_krit Kritické zesílení určíme z bosého charakteristiky otevřené smyčky systému. Vyšlo nám K_krit Pro další práci budeme pracovat se zesílením K 80. Přenos poruchy na výstup je: 0.01 F s( p) p 0.03 Fy, v( p) K F ( p) p + 0.8p + 4 p +.4 s p Procento přenesené poruchy: 0.03 lim Yy, v ( t) lim p Yy, v ( p) % p p 0.4

5 b) Stabilita systému Bodeho charakteristika otevřeného regulačního obvodu s K80: Bezpečnost v zesílení G m.5 [db] Bezpečnost ve fázi Pm 81,5 [ o ] Přechodová charakteristika uzavřeného obvodu F u (p):

6 c) Korekční článek Experimentálně jsme zavedli do systému korekční článek s přenosem 1 Fč( p) 1.5 p 1 Přechodová charakteristika uz. reg. obvodu s korekčním článkem: Bodeho charakteristika otevřeného systému s korekčním článkem: Bezpečnost v zesílení G m 9,79 [db] Bezpečnost ve fázi Pm 46.5 [ o ] - lepších výsledků se nám nepovedlo docílit

7 d) Průběh citlivostní funkce S( jω ) před a po korekci modrá čára před korekcí, zelená s korekcí. Je vidět, že korekce výrazně potlačuje harmonické poruchy okolo 1.95 rad/sec, ale lehce je zvýrazňuje od této frekvence směrem dolů. 3) PID regulátor: Požadované hodnoty: G 10% a doba regulace T REG 5 sec lnσ max ξ B0.6 * ln σ p1, j1.4 max 1 * z1, 1 j ωn B B1.53 ξ. T Fs ( p) p Ideální PID: reg n n p n K I p d p d p p PID ( ) D D D F p K K p K K p p p Přenos otevřené smyčky systému: 3p 6 p 7.36 o s ( ) reg ( ) D 3 F F p F p K p 0.8 p 4 p

8 GMK otevřené smyčky: Z GMK jsme zvolili konstantu K D 4 a dopočítali zbylé parametry PID regulátoru: K K 8 4 KI.44 KI d 0.05 Výsledné přechodové charakteristiky:

9 4) Systém s regulátorem DoF: Schéma uzavřeného regulačního obvodu s regulátorem DOF Gw αt(p) C(p) B(p) A(p) D(p) Přenos uzavřeného regulačního obvodu s regulátorem DOF má obecně tvar: Y ( p) T ( p) B( p) Fy, w( p) W ( p) A( p) C( p) B( p) D( p) Jelikož náš systém je druhého řádu, stačí pro libovolnou umístítelnost pólů regulátor prvního stupně. Naším úkolem je tedy nastavit parametry polynomů C( p) p c 0 a D( p) d p d. 44 B M ( p) a parametr tak, aby přenos uzavřeného obvodu byl Fy, w ( p). p. 4 p. 44 A ( p) M 1 0 Porovnáním čitatelů dostáváme vztahb( p) BM ( p). Parametr je nezávislý na kompenzačním polynomu T( p) a je tedy ve všech třech případech stejný α Parametry určíme porovnáním polynomů A( p) C( p) + B( p) D( p) A ( p) T( p). a) kompenzační polynom T( p) p + 0. c(p) p+1.8 d(p) -0.84p-.373 b) kompenzační polynom T( p) p + c(p) p+3.6 d(p) 0.1p Přechodová charakteristika uzavřeného obvodu je všech případech stejná, tj. odpovídá. 44 přechodové charakteristice systému s přenosem F( p), tj. přenos p +. 4 p uzavřeného systému je stále stejný. M

10 Volba polynomu T( p) se projeví ve vnitřních vlastnostech systému. Tou je například 1 citlivostní funkce. Citlivostní funkce je definovaná S( jω). 1 + Fo ( jω) K jejímu určení musíme znát přenos otevřené smyčky systém s regulátorem DOF F ( D j B j jω ) ( ω ) ( ω ) o C( jω) A( jω). Volba polynomu T( p), který není přímo v přenosu otevřené smyčky vidět, je zahrnuta v tvaru polynomů D( p) a C( p), které jsou právě na polynomu T( p) závislé. 5) Stavový regulátor ve smyslu ITAE: 3 Stavový popis systému F( p) p + 0.8p + 4 A A , 0 B Systém se stavovým regulátorem: A 4 K1 0.8 K, 0 B 3 Charakteristický polynom pro kritérium ITAE se musí rovnat: p + (0.8 + K) p K1 p p Podle výše uvedeného kritéria ITAE nám vyšel tento stavový regulátor: 1.1 K α T T 1 C pi A + BK B ( )

11 Přechodová charakteristika: 6) Sledování signálu přenos systému s tvarovačem 0.-řádu: z F( z) z z z sin( ωt ) z Z-obraz referenčního signálu w(t) : W ( z) z z cos( ωt) + 1 z z + 1 přenos regulátoru bude: d z + d z + d z + d FR ( z) ( z z 1)( z c ) parametry regulátoru získáme srovnáním parametrů a tedy řešením rovnice: ( z )( d3z + dz + d1z + d0) + ( z 1.706z )( z z + 1)( z + c0 ) z výsledné parametry: d ; d ; d 55.4; d ; c přenos regulátoru: z z z FR ( z) 3 z 1.079z 0.739z Výsledek ověříme simulací. Na následujícím obrázku je zakreslen referenční signál a výstup systému.

12 Na následujícím obrázku je regulační odchylka. K nulové odchylce dojde po čase t 1s což je pět kroků regulace. 7) Regulátor s minimálním počtem kroků přenos diskrétního systému s polohovým servomechanismem pro t 0.1: 4.89e-006 z e-005 z + 4.7e-006 FD ( z ) 3 z z z Jelikož máme systém třetího řádu, regulátor bude řádu druhého.vyřešíme diofantickou 3 rovnici: ( z 1) ( z + c1z + c0) + KS KRb( z) z c( z) c 0.898; c ; K R

13 přenos regulátoru: ( ) z z R z z F z Odezva systému na jednotkový skok (červená diskrétní systém, modrá spojitý systém): Řízení systému: Jak je vidět řízení probíhá ve třech krocích.

14 8) Rekonstruktor Vlastní čísla matice dynamiky rekonstruktoru musí ležet v pravé polorovině. Využijeme vztahu pro umístitelnost pólů a položíme p * 1, 5, protože chceme, aby rekonstruktor byl rychlejší než náš systém. k Parametry matice K, která má obecně tvar K 1 k, určíme řešením diofantické rovnice det( pi A + KC) ( p + 5) Po dosazení a výpočtu dostáváme K Schéma zapojení v Simulinku:

15 porovnání skutečných a rekonstruovaných stavů x 1 a x při počátečních podmínkách 0.5 rekonstruktoru xˆ(0) 1 a systému 0.5 x(0) 1 : Průběh přechodových charakteristik odpovídá skutečnému a rekonstruovanému stavu x 1. Jak je vidět že rekonstruované hodnoty stavů rychle konvergují ke skutečným, zhruba po 1 sekundě. 9) Porovnání stavového regulátoru s rekonstruktorem se stavovým regulátorem Pokud má rekonstruktor nulové počáteční podmínky, tak se charakteristiky překrývají:

16 0.5 Při nenulových počátečních podmínkách rekonstruktoru xˆ(0) 1 : Stavový regulátor s rekonstruktorem stavu má přechodovou charakteristiku téměř shodnou a stavový regulátor dožene za 5 sekund.

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

Model helikoptéry H1

Model helikoptéry H1 Model helikoptéry H Jan Nedvěd nedvej@fel.cvut.cz Hodnoty a rovnice, které jsou zde uvedeny, byly naměřeny a odvozeny pro model vrtulníku H umístěného v laboratoři č. 26 v budově Elektrotechnické fakulty

Více

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc.

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. Řízení a regulace I Základy regulace lineárních systémů - spojité a diskrétní Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních

Více

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Řízení a regulace I. Základy regulace lineárních systémů- spojité a diskrétní. Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc.

Řízení a regulace I. Základy regulace lineárních systémů- spojité a diskrétní. Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. Řízení a regulace I Základy regulace lineárních systémů- spojité a diskrétní Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních

Více

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ Anotace: Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a

Více

Jaroslav Hlava. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Jaroslav Hlava. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Jaroslav Hlava THIKÁ UIVZIT V LII Fakulta mechatroniky, informatiky a meioborových stuií Tento materiál vnikl v rámci rojektu F Z..7/../7.47 eflexe ožaavků růmyslu na výuku v oblasti automatického říení

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita

Více

Pro model vodárny č. 2.; navrhněte a odzkoušejte vhodné typy regulátorů (P, PI, I, PD a PID), za předpokladu, že je:

Pro model vodárny č. 2.; navrhněte a odzkoušejte vhodné typy regulátorů (P, PI, I, PD a PID), za předpokladu, že je: Ivan Douša Vodárna2. Pro model vodárny č. 2.; navrhněte a odzkoušejte vhodné typy regulátorů (P, PI, I, PD a PID), za předpokladu, že je: 1. povolena odchylka do 5% v ustáleném stavu na skok řídicí veličiny

Více

Řízení a regulace II. Analýza a řízení nelineárních systémů Verze 1.34 8. listopadu 2004

Řízení a regulace II. Analýza a řízení nelineárních systémů Verze 1.34 8. listopadu 2004 Řízení a regulace II Analýza a řízení nelineárních systémů Verze 1.34 8. listopadu 2004 Prof. Ing. František Šolc, CSc. Ing. Pavel Václavek, Ph.D. Prof. Ing. Petr Vavřín, DrSc. ÚSTAV AUTOMATIZACE A MĚŘICÍ

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

1 Lineární stochastický systém a jeho vlastnosti. 2 Kovarianční funkce, výkonová spektrální hustota, spektrální faktorizace,

1 Lineární stochastický systém a jeho vlastnosti. 2 Kovarianční funkce, výkonová spektrální hustota, spektrální faktorizace, Lineární stochastický systém a jeho vlastnosti. Kovarianční funkce, výkonová spektrální hustota, spektrální faktorizace, tvarovací filtr šumu, bělicí filtr. Kalmanův filtr, formulace problemu, vlastnosti.

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Filmová odparka laboratorní úlohy

Filmová odparka laboratorní úlohy VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Filmová odparka laboratorní úlohy Část 1 ÚLOHY PRO VÝUKU PŘEDMĚTU MĚŘICÍ A ŘÍDICÍ TECHNIKA Verze: 1.0 Prosinec 2004 ÚLOHA 1 Regulace tlaku v brýdovém prostoru

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Ele 1 elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu Předmět: Ročník: Vytvořil: Datum: ELEKTROTECHNIKA PRVNÍ ZDENĚK KOVAL Název zpracovaného celku: 30. 9. 203 Ele elektromagnetická indukce, střídavý proud, základní veličiny, RLC v obvodu střídavého proudu

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Ostrovní provoz BlackOut

Ostrovní provoz BlackOut Ostrovní provoz BlackOut Ivan Petružela 2006 LS X15PES - 13. Ostrovní provoz 1 Osnova Frekvenční plán Ostrovní provoz Frekvenční kolaps v rovině (f,p) Obnovení frekvence pomocí frekvenčního odlehčování

Více

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení 6AA Automatizace Studijní opory k předmětu Ing. Petr Pokorný 1/40 6AA Obsah: Logické řízení - Boolova algebra... 4 1. Základní logické funkce:... 4 2. Vyjádření Booleových funkcí... 4 3. Zákony a pravidla

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #9 Základní experimenty akustiky Jméno: Ondřej Finke Datum měření: 3.11.014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě spočítejte,

Více

BASPELIN CPL. Popis obsluhy regulátoru CPL CER01

BASPELIN CPL. Popis obsluhy regulátoru CPL CER01 BASPELIN CPL Popis obsluhy regulátoru CPL CER01 prosinec 2007 CER01 CPL Důležité upozornění Obsluhovat zařízení smí jen kvalifikovaná a řádně zaškolená obsluha. Nekvalifikované svévolné zásahy zejména

Více

Rezonanční elektromotor

Rezonanční elektromotor - 1 - Rezonanční elektromotor Ing. Ladislav Kopecký, 2002 Použití elektromechanického oscilátoru pro převod energie cívky v rezonanci na mechanickou práci má dvě velké nevýhody: 1) Kmitavý pohyb má menší

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Číslicový otáčkoměr TD 5.1 AS

Číslicový otáčkoměr TD 5.1 AS Číslicový otáčkoměr TD 5.1 AS Zjednodušená verze otáčkoměru řady TD 5.1 bez seriové komunikace, která obsahuje hlídání protáčení a s možností nastavení 4 mezí pro sepnutí relé. Určení - číslicový otáčkoměr

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua

Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice

Více

13. Budící systémy alternátorů

13. Budící systémy alternátorů 13. Budící systémy alternátorů Budící systémy alternátorů zahrnují tyto komponenty: Systém zdrojů budícího proudu (budič) Systém regulace budícího proudu (regulátor) Systém odbuzování (odbuzovač) Na budící

Více

TO - VŠB FE Datum měření E L E K T R C K É S T R O J E Měření transformátoru naprázdno a nakrátko áhradní schéma Příjmení Jméno Skupina (hodnocení). Zadání úlohy :. Proveďte měření naprázdno třífázového

Více

Regulace frekvence a napětí

Regulace frekvence a napětí Regulace frekvence a napětí Ivan Petružela 2006 LS X15PES - 5. Regulace frekvence a napětí 1 Osnova Opakování Blokové schéma otáčkové regulace turbíny Statická charakteristika (otáčky, výkon) turbíny Zajištění

Více

3. D/A a A/D převodníky

3. D/A a A/D převodníky 3. D/A a A/D převodníky 3.1 D/A převodníky Digitálně/analogové (D/A) převodníky slouží k převodu číslicově vyjádřené hodnoty (např. v úrovních TTL) ve dvojkové soustavě na hodnotu nějaké analogové veličiny.

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS EEKTŘINA A MAGNETIZMUS XII Střídavé obvody Obsah STŘÍDAÉ OBODY ZDOJE STŘÍDAÉHO NAPĚTÍ JEDNODUHÉ STŘÍDAÉ OBODY EZISTO JAKO ZÁTĚŽ 3 ÍKA JAKO ZÁTĚŽ 5 3 KONDENZÁTO JAKO ZÁTĚŽ 6 3 SÉIOÝ OBOD 7 3 IMPEDANE 3

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita omáše Bati ve Zlíně LABORAORNÍ CVIČENÍ ELEKROECHNIKY A PRŮMYSLOVÉ ELEKRONIKY Název úlohy: Měření frekvence a fázového posuvu proměnných signálů Zpracovali: Petr Luzar, Josef Moravčík Skupina:

Více

Strojírenské výpočty. Technická zpráva č. 2

Strojírenské výpočty. Technická zpráva č. 2 Strojírenské výpočty Technická zpráva č. 2 Václav Valíček, 2A/5 9.12.2015 Obsah 1 Sinusové pravítko... 2 1.1 Teorie... 2 1.2 Výpočtové vzorce + zadání... 2 1.3 Výpočet... 3 1.4 Sestavení výšky... 3 1.5

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

Světlo v multimódových optických vláknech

Světlo v multimódových optických vláknech Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý

Více

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí

Laboratorní úloha KLS 1 Vliv souhlasného rušení na výsledek měření stejnosměrného napětí Laboratorní úloha KLS Vliv souhlasného rušení na výsledek měření stejnosměrného napětí (Multisim) (úloha pro seznámení s prostředím MULTISIM.0) Popis úlohy: Cílem úlohy je potvrdit často opomíjený, byť

Více

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického

Více

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ

Laboratorní úloha č. 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ Laboratorní úloha č 4 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH VLASTNOSTÍ PNEUMATICKÝCH A ODPOROVÝCH TEPLOMĚRŮ 1 Teoretický úvod Pro laboratorní a průmyslové měření teploty kapalných a plynných medií v rozsahu

Více

4. Zpracování signálu ze snímačů

4. Zpracování signálu ze snímačů 4. Zpracování signálu ze snímačů Snímače technologických veličin, pasivní i aktivní, zpravidla potřebují převodník, který transformuje jejich výstupní signál na vhodnější formu pro další zpracování. Tak

Více

VŘS PŘISTÁVÁNÍ RAKETY V GRAVITAČNÍM POLI ZEMĚ

VŘS PŘISTÁVÁNÍ RAKETY V GRAVITAČNÍM POLI ZEMĚ VŘS PŘISTÁVÁNÍ RAKETY V GRAVITAČNÍM POLI ZEMĚ Tomáš Dvořák A05051 tdvorak@students.zcu.cz 23.8.2009 Zadání Přistávání rakety v gravitačním poli země Gravitační síla působící na těleso o hmotnosti m ve

Více

Nespojité (dvou- a třípolohové ) regulátory

Nespojité (dvou- a třípolohové ) regulátory Nespojité (dvou- a třípolohové ) regulátory Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

[ db ; - ] Obrázek č. 1: FPCH obecného zesilovače

[ db ; - ] Obrázek č. 1: FPCH obecného zesilovače Teoretický úvod Audio technika obecně je obor, zabývající se zpracováním zvuku a je poměrně silně spjat s elektroakustikou. Elektroakustika do sebe zahrnuje především elektrotechnická zařízení od akusticko-elektrických

Více

KS 90 Kompaktní průmyslový regulátor

KS 90 Kompaktní průmyslový regulátor Process and Machinery Automation KS 90 Kompaktní průmyslový regulátor Jednoduché ovládání, výrazný LED displej Dokonalý regulační algoritmus se samooptimalizací Zásuvný modul se snadnou montáží Spínací

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI Úvod: Klasický síťový transformátor transformátor s jádrem skládaným z plechů je stále běžně používanou součástí

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Měření logaritmického dekrementu kmitů v U-trubici

Měření logaritmického dekrementu kmitů v U-trubici Měření logaritmického dekrementu kmitů v U-trubici Online: http://www.sclpx.eu/lab2r.php?exp=17 Tento experiment, autorem publikovaný v [31] a [32], je z pohledu středoškolského učiva opět nadstavbový

Více

Euklidovský prostor Stručnější verze

Euklidovský prostor Stručnější verze [1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)

Více

Experimentální analýza hluku

Experimentální analýza hluku Experimentální analýza hluku Mezi nejčastěji měřené akustické veličiny patří akustický tlak, akustický výkon a intenzita zvuku (resp. jejich hladiny). Vedle členění dle měřené veličiny lze měření v akustice

Více

Digitální telefonní signály

Digitální telefonní signály EVROPSKÝ SOCIÁLNÍ FOND Digitální telefonní signály PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Digitální telefonní

Více

ZADÁNÍ: ÚVOD: Měření proveďte na osciloskopu Goldstar OS-9020P.

ZADÁNÍ: ÚVOD: Měření proveďte na osciloskopu Goldstar OS-9020P. ZADÁNÍ: Měření proveďte na osciloskopu Goldstar OS-900P. 1) Pomocí vestavěného kalibrátoru zkontrolujte nastavení zesílení vertikálního zesilovače, eventuálně nastavte prvkem "Kalibrace citlivosti". Změřte

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu

Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu Opravné prostředky na výstupu měniče kmitočtu (LU) - Vyšetřování vlivu filtru na výstupu z měniče kmitočtu 1. Rozbor možných opravných prostředků na výstupu z napěťového střídače vč. příkladů zapojení

Více

Nové metody stereofonního kódování pro FM pomocí digitální technologie. Pavel Straňák, Phobos Engineering s.r.o.

Nové metody stereofonního kódování pro FM pomocí digitální technologie. Pavel Straňák, Phobos Engineering s.r.o. Nové metody stereofonního kódování pro FM pomocí digitální technologie Pavel Straňák, Phobos Engineering s.r.o. Úvod Cílem této stati je popis modelu číslicového stereofonního kodéru s možností kompozitního

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas! MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

PSK1-10. Komunikace pomocí optických vláken I. Úvodem... SiO 2. Název školy:

PSK1-10. Komunikace pomocí optických vláken I. Úvodem... SiO 2. Název školy: Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: PSK1-10 Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Ukázka fyzikálních principů, na kterých

Více

Netlumené kmitání tělesa zavěšeného na pružině

Netlumené kmitání tělesa zavěšeného na pružině Netlumené kmitání tělesa zavěšeného na pružině Kmitavý pohyb patří k relativně jednoduchým pohybům, které lze analyzovat s použitím jednoduchých fyzikálních zákonů a matematických vztahů. Zároveň je tento

Více

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace

Obrázek č. 7.0 a/ regulační smyčka s regulátorem, ovladačem, regulovaným systémem a měřicím členem b/ zjednodušené schéma regulace Automatizace 4 Ing. Jiří Vlček Soubory At1 až At4 budou od příštího vydání (podzim 2008) součástí publikace Moderní elektronika. Slouží pro výuku předmětu automatizace na SPŠE. 7. Regulace Úkolem regulace

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity

+ ω y = 0 pohybová rovnice tlumených kmitů. r dr dt. B m. k m. Tlumené kmity Tlumené kmit V praxi téměř vžd brání pohbu nějaká brzdicí síla, jejíž původ je v třecích silách mezi reálnými těles. Matematický popis těchto sil bývá dosti komplikovaný. Velmi často se vsktuje tzv. viskózní

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Nízkofrekvenční zesilovač s OZ je poměrně jednoduchý elektronický obvod, který je tvořen několika základními prvky. Základní komponentou zesilovače je operační zesilovač v neinvertujícím

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 20. 3. 2014

Více

Semestrální práce z předmětu Teorie systémů

Semestrální práce z předmětu Teorie systémů Semestrální práce z předmětu Teorie systémů Autor: Tomáš Škařupa Skupina :3I3X Vedoucí hodiny: Ing. Libor Pekař Datum 3.. Obsah Analýza a syntéza jednorozměrného spojitého lineárního systému... 3. Přenosovou

Více

8. Posloupnosti, vektory a matice

8. Posloupnosti, vektory a matice . jsou užitečné matematické nástroje. V Mathcadu je často používáme například k rychlému zápisu velkého počtu vztahů s proměnnými parametry, ke zpracování naměřených hodnot, k výpočtům lineárních soustav

Více

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ

NÍZKOFREKVENČNÍ ZESILOVAČ S OZ NÍZKOFREKVENČNÍ ZESILOVAČ S OZ 204-4R. Navrhněte a sestavte neinvertující nf zesilovač s OZ : 74 CN, pro napěťový přenos a u 20 db (0 x zesílení) při napájecím napětí cc ± 5 V a zatěžovacím odporu R L

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Obsah. 4.1 Astabilní klopný obvod(555)... 7 4.2 Astabilní klopný obvod(diskrétní)... 7

Obsah. 4.1 Astabilní klopný obvod(555)... 7 4.2 Astabilní klopný obvod(diskrétní)... 7 Obsah 1 Zadání 1 2 Teoretický úvod 1 2.0.1 doba náběhu impulsu....................... 2 2.0.2 překmit čela............................ 2 2.0.3 šířka impulsu........................... 2 2.0.4 pokles vrcholu

Více

Konfigurace řídicího systému technikou Hardware In The Loop

Konfigurace řídicího systému technikou Hardware In The Loop 1 Portál pre odborné publikovanie ISSN 1338-0087 Konfigurace řídicího systému technikou Hardware In The Loop Szymeczek Michal Elektrotechnika, Študentské práce 20.10.2010 Bakalářská práce se zabývá konfigurací

Více

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól . ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož

Více

Studentův průvodce po automatickém řízení

Studentův průvodce po automatickém řízení Studentův průvodce po automatickém řízení Michael Šebek volně podle Denise Bernsteina 1, inspirován také Douglasem Adamsem 2 K čemu je automatické řízení Automatické řízení je zázračná technologie: Pomocí

Více

BASPELIN MRP. Popis obsluhy indikační a řídicí jednotky MRP P1

BASPELIN MRP. Popis obsluhy indikační a řídicí jednotky MRP P1 BASPELIN MRP Popis obsluhy indikační a řídicí jednotky MRP P1 červenec 2000 Baspelin MRP P1 Všeobecný popis Regulátor baspelin MRP je elektronické zařízení určené pro měření a indikaci analogových veličin

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY

ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav počítačové a řídicí techniky Ústav fyziky a měřicí techniky LABORATOŘ OBORU IIŘP ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY Zpracoval: Miloš Kmínek

Více

Vývojové práce v elektrických pohonech

Vývojové práce v elektrických pohonech Vývojové práce v elektrických pohonech Pavel Komárek ČVUT Praha, Fakulta elektrotechnická, K 31 Katedra elektrických pohonů a trakce Technická, 166 7 Praha 6-Dejvice Konference MATLAB 001 Abstrakt Při

Více

ŠROUBOVÉ SPOJE VÝKLAD

ŠROUBOVÉ SPOJE VÝKLAD ŠROUBOVÉ SPOJE VÝKLAD Šroubové spoje patří mezi rozebíratelné spoje s tvarovým stykem (lícovaný šroub), popřípadě silovým stykem (šroub prochází součástí volně, je zatížený pouze silou působící kolmo k

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

ABSTRAKT: ABSTRACT: KLÍČOVÁ SLOVA: KLÍČOVÁ SLOVA ANGLICKY:

ABSTRAKT: ABSTRACT: KLÍČOVÁ SLOVA: KLÍČOVÁ SLOVA ANGLICKY: 1 ABSTRAKT: Práce se zabývá možnostmi realizace proudových zrcadel s větším zesílením. Po uvedení do problematiky proudových zrcadel s proudovým přenosem jedna, se budou řešit možnosti dosáhnutí většího

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Nastavení konstant regulátoru PID

Nastavení konstant regulátoru PID Nastavení konstant regulátoru PID ZÁKLADNÍ POSTUP NASTAVENÍ REGULÁTORU PID Příručka uživatele a programátora SofCon spol. s r.o. Střešovická 49 162 00 Praha 6 tel/fax: +420 220 180 454 E-mail: sofcon@sofcon.cz

Více

7 th International Scientific Technical Conference PROCESS CONTROL 2006 June 13 16, 2006, Kouty nad Desnou, Czech Republic REGULÁTORU JOSEF BÖHM

7 th International Scientific Technical Conference PROCESS CONTROL 2006 June 13 16, 2006, Kouty nad Desnou, Czech Republic REGULÁTORU JOSEF BÖHM ZAJIŠTĚNÍ SPOLEHLIVÉ ČINNOSTI ADAPTIVNÍHO LQ REGULÁTORU JOSEF BÖHM Ústav teorie informace a automatizace Akademie věd České republiky Pod vodárenskou věží 4, 82 8 Praha 8 fax : +42-2-665268 and e-mail

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

Seismografy a Seismické pozorovací sítě mají pro seismo

Seismografy a Seismické pozorovací sítě mají pro seismo Seismografy a Seismické pozorovací sítě mají pro seismologii tak zásadní důležitost jakou mají teleskopy pro astronomii či urychlovače pro fyziku. Bez nich bychom věděli jen pramálo o tom, jak vypadá nitro

Více

SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL

SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL SIGNÁLNÍ GENERÁTORY DDS2, DDS7 A DDS20 - PROVOZNÍ MANUÁL Signální generátory DDS slouží k vytváření napěťových signálů s definovaným průběhem (harmonický, trojúhelníkový a obdélníkový), s nastavitelnou

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

Část 3. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA HYDROSTATIKA základní zákon hdrostatik Část 3 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič, MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA Hdrostatika - obsah Základn

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více