Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Stabilita regulačního obvodu"

Transkript

1 Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) 8) Kvalita regulačního pochodu 9) Robotika

2 Osnova přednášky Kritéria stability Nyquistovo kritérium Hurwitzovo kritérium Routh Schurovo kritérium Metody ke zvýšení stability systému

3 Kritéria stability Na systém působí: Požadavky operátora Poruchové vlivy Rychlost změn Požadujeme: Stabilitu systému

4 Kritéria stability G(S) regulovaný (řízený systém) R(S) regulátor (řídící systém) w žádaná (řídící) veličina e regulační odchylka u akční veličina v porucha akční veličiny ε porucha regulované veličiny y regulovaná(řízená) veličina

5 Kritéria stability Obecný přenos systému: m G p = bm p bm 1 p m 1 b1 p b an p n a n 1 pn 1 a1 p a

6 Kritéria stability Obecný přenos systému: m G p = bm p bm 1 p m 1 b1 p b an p n a n 1 pn 1 a1 p a Výstupní veličina: Y p =G p W p

7 Kritéria stability Obecný přenos systému: m G p = bm p bm 1 p m 1 b1 p b an p n a n 1 pn 1 a1 p a Výstupní veličina: Y p =G p W p Vstupní veličina = Dirackův impulz: W p =1

8 Kritéria stability Obecný přenos systému: m G p = bm p bm 1 p m 1 b1 p b an p n a n 1 pn 1 a1 p a Výstupní veličina: Y p =G p W p Vstupní veličina = Dirackův impulz: W p =1 Výstupní veličina: Y p =G p

9 Kritéria stability Výstupní veličina systému: m Y p =G p = bm p bm 1 p m 1 b1 p b an pn a n 1 pn 1 a 1 p a

10 Kritéria stability Výstupní veličina systému: m Y p =G p = bm p bm 1 p m 1 b1 p b an pn a n 1 pn 1 a 1 p a Úprava lomené funkce: K1 K2 Kn Y p = p p1 p p2 p pn p1; p2; p3;pn kořeny jmenovatele přenosu póly přenosu; reálné i komplexní

11 Kritéria stability Úprava lomené funkce: K1 K2 Kn Y p = p p1 p p2 p pn Zpětná Laplaceova transormace: p1 t p2 t pnt y t =K 1 e K 2 e K n e Jestliže y(t=) =, pak pro stabilní systém y(t ) = p ; p ; p ;p musí ležet v záporné polorovině komplexní roviny n Jsou li póly přenosu reálné musí být záporné Jsou -li póly přenosu komplexní, reálné části musí být záporné

12 Změření frekvenční charakteristiky v komplexní rovině Rozpojení zpětné vazby

13 Změření frekvenční charakteristiky v komplexní rovině U2 G j = U1 U1= U 1 sin t 1 U 2= U 2 sin t 2 = 1 2

14 Osnova přednášky Kritéria stability Nyquistovo kritérium Hurwitzovo kritérium Routh Schurovo kritérium Metody ke zvýšení stability systému

15 Nyquistovo kritérium Zjištění průběhu frekvenční charakteristiky otevřené smyčky Poloha charakteristiky ku kritickému bodu [-1;] Uzavřený regulační obvod je stabilní, probíhá-li frekvenční charakteristika jeho otevřené smyčky vpravo od bodu [-1;] v komplexní rovině

16 Nyquistovo kritérium Uzavřený regulační obvod je stabilní, leží-li v komplexní rovině bod [-1;] vlevo od frekvenční charakteristiky otevřené smyčky, postupujeme-li od nízkých frekvencí směrem k vysokým

17 Nyquistovo kritérium G db=2 log G j G db =2 log 1=dB Kritický bod [-1;j] Amplituda = 1 Fáze = 18 Uzavřený regulační obvod je stabilní, jestliže absolutní hodnota fáze φ přenosu otevřené smyčky je při úhlové frekvenci, kdy amplitudová charakteristika otevřené smyčky protíná úroveň db, menší než 18

18 Osnova přednášky Kritéria stability Nyquistovo kritérium Hurwitzovo kritérium Routh Schurovo kritérium Metody ke zvýšení stability systému

19 Hurwitzovo kritérium stability Algebraické kritérium diferenciální rovnice n tého řádu: n an d x2 dt n a n 1 d n 1 x2 d t n 1 d x2 a1 a =x1 dt

20 Hurwitzovo kritérium stability Algebraické kritérium diferenciální rovnice n tého řádu: n an d x2 dt n a n 1 d n 1 x2 d t n 1 d x2 a1 a =x1 dt Charakteristický polynom: n A p =an p a n 1 p n 1 a1 p a Hurwitzův determinant D matice n x n

21 Hurwitzovo kritérium stability Hurwitzův determinant D matice n x n a n 1 a n 3 a n a n 2 a n 1 D= a n a n 5 a n 4 a n 3 a n 2 a n 1 a n 7 a n 6 a n 5 a n 4 a n 3 a 2 a

22 Hurwitzovo kritérium stability Systém je stabilní jsou-li koeficienty charakteristické rovnice ai > pokud je n 2 2 a 2 p a 1 p a = a 2 a1 a

23 Hurwitzovo kritérium stability Systém je stabilní jsou-li koeficienty charakteristické rovnice ai > pokud je n 2 Systém je stabilní jsou-li subdeterminanty příslušející prvkům hlavní diagonály vždy kladné

24 Hurwitzovo kritérium stability Hurwitzův determinant D matice n x n D1 D2 D3 D4 a n 1 a n 3 a n a n 2 a n 1 D= a n a n 5 a n 4 a n 3 a n 2 a n 1 a n 7 a n 6 a n 5 a n 4 a n 3 a 2 a

25 Hurwitzovo kritérium stability Systém je stabilní jsou-li koeficienty charakteristické rovnice ai > pokud je n 2 Systém je stabilní jsou-li subdeterminanty příslušející prvkům hlavní diagonály vždy kladné Systém je nestabilní chybí-li některý koeficient charakteristické rovnice ai nebo jestliže se střídají znaménka koeficientů

26 Hurwitzovo kritérium stability Systém je stabilní jsou-li koeficienty charakteristické rovnice ai > pokud je n 2 Systém je stabilní jsou-li subdeterminanty příslušející prvkům hlavní diagonály vždy kladné Systém je nestabilní chybí-li některý koeficient charakteristické rovnice ai nebo jestliže se střídají znaménka koeficientů Jinak podle univerzální věty: Systém je stabilní, jsou-li všechny vyznačené subdeterminanty až do řádu n-1 nenulové a jejich hodnoty mají stejná znaménka

27 Hurwitzovo kritérium stability Hurwitzův determinant D matice n x n D1 D2 D3 D4 a n 1 a n 3 a n a n 2 a n 1 D= a n a n 5 a n 4 a n 3 a n 2 a n 1 a n 7 a n 6 a n 5 a n 4 a n 3 a 2 a

28 Osnova přednášky Kritéria stability Nyquistovo kritérium Hurwitzovo kritérium Routh Schurovo kritérium Metody ke zvýšení stability systému

29 Routh - Schurovo kritérium stability Algebraické kritérium test aperiodicity Postupné snižování řádu charakteristické rovnice až na 2 stupeň to znamená 3 koeficienty Jsou-li všechny koeficienty kladné systém je stabilní Jsou-li koeficienety kladné nebo nulové systém je na mezi stability Jsou-li koeficienty opačných znamének - systém je nestabilní Jsou-li všchny koeficienty záporné systém je stabilní (vynásobíme -1 a jsou kladné)

30 Routh - Schurovo kritérium stability Příklad: A p =a6 p a5 p a 4 p a 3 p a 2 p a1 p a an = an 1 p6 8 p5 5 p 4 24 p 3 6,5 p2 12p

31 Routh - Schurovo kritérium stability Příklad: A p =a6 p a5 p a 4 p a 3 p a 2 p a1 p a an = an 1 p6 8 p5 5 p 4 24 p 3 6,5 p2 12p 1 a6 1 1= = a a 6 a a4 5 a a 2 a1 6,5 12 a 1 1cdot a 5 1 1cdot a 3 1cdot a 1 3 1,

32 Routh - Schurovo kritérium stability Příklad: A p =a6 p a5 p a 4 p a 3 p a 2 p a1 p a an = an 1 p6 8 p5 5 p 4 24 p 3 6,5 p2 12p 1 a6 1 1= = a5 8 a5 8 2= = a a 6 a a4 5 a a 2 a1 6,5 12 a 1 1cdot a 5 1cdot a 3 1cdot a , a4 2 a2 2 a

33 Routh - Schurovo kritérium stability p 8 p 5 p 24 p 6,5 p 12p 1 a 6 a5 a4 a3 a2 a1 a a = = = 3 a3 3 a1 a Příklad:

34 Routh - Schurovo kritérium stability p 8 p 5 p 24 p 6,5 p 12p 1 a 6 a5 a4 a3 a2 a1 a a = = = 3 a3 3 a1 a a3 4 4 a 2 4 a 4= = =4 a Příklad: Systém je stabilní

35 Osnova přednášky Kritéria stability Nyquistovo kritérium Hurwitzovo kritérium Routh Schurovo kritérium Metody ke zvýšení stability systému

36 Metody dosažení stability První metoda Zmenšit zesílení regulátoru Zmenšení přesnosti regulace

37 Metody dosažení stability Druhá metoda Potlačení vyšších frekvencí pomocí korekčního členu (o2 db/dek) Zúžení přenášeného pásma Zhoršení dynamických vlastností regulátoru; snižuje se rychlost regulace

38 Metody dosažení stability Třetí metoda Úprava fáze pomocí korekčního členu tak, že amplitudová charakteristika otevřené smyčky protíná úroveň db s nejmenším sklonem Nejnáročnější metoda Regulátor nejlepší kvality

39 Metody dosažení stability Kombinovaná metoda Zapojení jednotlivých členů (např PID) Pásmo I - zmenšení zesílení regulátoru Pásmo II - potlačení zisku na vyšších frekvencích Pásmo III - vyrovnává se fáze přenosu otevřené smyčky reg Obvodu Čerchovaně amplitudová char korekčnního členu

40 Amplitudová a fázová bezpečnost Fázová bezpečnost γ (3 až 4 ) Amplitudová bezpečnost převrácená hodnota amplitudy (18 )

41 Opakovací otázky 1 Popište chování stabilního a nestabilního systému 2 Které členy regulačního obvodu ovlivňují stabilitu 3 Popište vyšetřování a měření regulačního obvodu 4 Jaká znáte kritéria stability 5 Vysvětlete Nyquistovo kritérium v komplexní rovině 6 Vysvětlete Nyquistovo kritérium v logaritmických souřadnicích 7 Popište Hurwitzovo kritérium stability 8 Popište Rout - Schurovo kritérium stability 9 Popište amplitudovou a fázovou bezpečnost 1 Jaké znáte metody ke zvýšení stability systému

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Vlastnosti regulátorů Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) 7) Stabilita regulačního obvodu

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~"f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I

Ivan Švarc. Radomil Matoušek. Miloš Šeda. Miluše Vítečková. c..~f~ AKADEMICKÉ NAKlADATEL.STVf. Brno 20 I I Ivan Švarc. Radomil Matoušek Miloš Šeda. Miluše Vítečková AUTMATICKÉ RíZENí c..~"f~ AKADEMICKÉ NAKlADATEL.STVf Brno 0 I I n ~~ IU a ~ o ~e ~í ru ly ry I i ~h ~" BSAH. ÚVD. LGICKÉ RÍZENÍ. ""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''oooo

Více

Praha technic/(4 -+ (/T'ERATU"'P. ))I~~

Praha technic/(4 -+ (/T'ERATU'P. ))I~~ Jaroslav Baláte Praha 2003 -technic/(4 -+ (/T'ERATU"'P ))I~~ @ ZÁKLADNí OZNAČENí A SYMBOLY 13 O KNIZE 24 1 SYSTÉMOVÝ ÚVOD PRO TEORII AUTOMATICKÉHO iízení 26 11 VYMEZENí POJMU - SYSTÉM 26 12 DEFINICE SYSTÉMU

Více

Základní pojmy; algoritmizace úlohy Osnova kurzu

Základní pojmy; algoritmizace úlohy Osnova kurzu Osnova kurzu 1) 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita regulačního obvodu 8) Kvalita regulačního

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMATIZACE A INFORMATIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 16 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA 2. ČÁST

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 16 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA 2. ČÁST STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO, KOUNICOVA 6 PRO 3. ROČNÍK OBORU SLABOPROUDÁ ELEKTROTECHNIKA. ČÁST ZPRACOVALA ING. MIROSLAVA ODSTRČILÍKOVÁ BRNO 3 OBSAH.ÚVOD...5..Charakteristika jednotlivých

Více

Klasické pokročilé techniky automatického řízení

Klasické pokročilé techniky automatického řízení Klasické pokročilé techniky automatického řízení Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory

Spojité regulátory Zhotoveno ve školním roce: 2011/2012. Spojité regulátory. Jednoduché regulátory Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Obr. 1 Činnost omezovače amplitudy

Obr. 1 Činnost omezovače amplitudy . Omezovače Čas ke studiu: 5 minut Cíl Po prostudování tohoto odstavce budete umět definovat pojmy: jednostranný, oboustranný, symetrický, nesymetrický omezovač popsat činnost omezovače amplitudy a strmosti

Více

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení

Studijní opory k předmětu 6AA. 6AA Automatizace. Studijní opory k předmětu. Ing. Petr Pokorný 1/40 6AA AUTOMATIZACE 6AA - cvičení 6AA Automatizace Studijní opory k předmětu Ing. Petr Pokorný 1/40 6AA Obsah: Logické řízení - Boolova algebra... 4 1. Základní logické funkce:... 4 2. Vyjádření Booleových funkcí... 4 3. Zákony a pravidla

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Semestrální práce z předmětu Teorie systémů

Semestrální práce z předmětu Teorie systémů Semestrální práce z předmětu Teorie systémů Autor: Tomáš Škařupa Skupina :3I3X Vedoucí hodiny: Ing. Libor Pekař Datum 3.. Obsah Analýza a syntéza jednorozměrného spojitého lineárního systému... 3. Přenosovou

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

Vyšetření stability mnohorozměrových diskrétních systémů v souvislosti s GPC prediktivním řízením

Vyšetření stability mnohorozměrových diskrétních systémů v souvislosti s GPC prediktivním řízením 1 Portál pre odborné publikovanie ISSN 1338-0087 Vyšetření stability mnohorozměrových diskrétních systémů v souvislosti s GPC prediktivním řízením Barot Tomáš Elektrotechnika 08.08.2012 Většina odborné

Více

ISŠ Nová Paka, Kumburská 846, Nová Paka Automatizace Dynamické vlastnosti členů frekvenční charakteristiky

ISŠ Nová Paka, Kumburská 846, Nová Paka Automatizace Dynamické vlastnosti členů frekvenční charakteristiky 1. Přenos členu ISŠ Nová Paka, Kumburská 846, 50931 Nová Paka V praxi potřebujeme znát časový průběh výstupního signálu, vyvolaný vstupním signálem známého průběhu. Proto zavádíme tzv. přenos, charakterizující

Více

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava

KYBERNETIKA. Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava KYBERNETIKA Prof. Ing. Vilém Srovnal, CSc. Vysoká škola báňská Technická univerzita Ostrava 28 . ÚVOD DO TECHNICKÉ KYBERNETIKY... 5 Co je to kybernetika... 5 Řídicí systémy... 6 Základní pojmy z teorie

Více

Zpětná vazba, změna vlastností systému. Petr Hušek

Zpětná vazba, změna vlastností systému. Petr Hušek Zpětná vazba, změna vlastností systému etr Hušek Zpětná vazba, změna vlastností systému etr Hušek husek@fel.cvut.cz katedra řídicí techniky Fakulta elektrotechnická ČVUT v raze MAS 2012/13 ČVUT v raze

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

Nejjednodušší, tzv. bang-bang regulace

Nejjednodušší, tzv. bang-bang regulace Regulace a ovládání Regulace soustavy S se od ovládání liší přítomností zpětné vazby, která dává informaci o stavu soustavy regulátoru R, který podle toho upravuje akční zásah do soustavy, aby bylo dosaženo

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

15 - Stavové metody. Michael Šebek Automatické řízení

15 - Stavové metody. Michael Šebek Automatické řízení 15 - Stavové metody Michael Šebek Automatické řízení 2016 10-4-16 Stavová zpětná vazba Když můžeme měřit celý stav (všechny složky stavového vektoru) soustavy, pak je můžeme využít k řízení u = K + r [

Více

Práce s PID regulátorem regulace výšky hladiny v nádrži

Práce s PID regulátorem regulace výšky hladiny v nádrži Práce s PID regulátorem regulace výšky hladiny v nádrži Cíl úlohy Zopakování základní teorie regulačního obvodu a PID regulátoru Ukázka praktické aplikace regulačního obvodu na regulaci výšky hladiny v

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ

OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ Anotace: Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a

Více

Ṡystémy a řízení. Helikoptéra Petr Česák

Ṡystémy a řízení. Helikoptéra Petr Česák Ṡystémy a řízení Helikoptéra 2.......... Petr Česák Letní semestr 2001/2002 . Helikoptéra 2 Identifikace a řízení modelu ZADÁNÍ Identifikujte laboratorní model vodárny č. 2.; navrhněte a odzkoušejte vhodné

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Pozorovatel, Stavová zpětná vazba

Pozorovatel, Stavová zpětná vazba Pozorovatel, Stavová zpětná vazba Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 6 Reference 8 Úvod Pozorovatel stavu slouží k pozorování (odhadování) zejména neměřitelných stavů systému.

Více

Identifikace systémů

Identifikace systémů Identifikace systémů Přednáška 2 Osvald Modrlák, Lukáš Hubka TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Diplomová práce. Použití frekvenčních charakteristik při analýze a syntéze regulačních obvodů. Inženýrská informatika a automatizace

Diplomová práce. Použití frekvenčních charakteristik při analýze a syntéze regulačních obvodů. Inženýrská informatika a automatizace Diplomová práce Použití frekvenčních charakteristik při analýze a syntéze regulačních obvodů Vypracoval: Vedoucí práce: Obor: Specializace: 6 Miroslav Kij Ing. Olga Davidová, Ph. D Inženýrská informatika

Více

Fakulta elektrotechnická

Fakulta elektrotechnická České vysoké učení technické v Praze Fakulta elektrotechnická DIPLOMOVÁ PRÁCE Řízení vícerozměrných systémů pomocí PID regulátorů Autor: Bc. Radek Losos Praha, 211 Vedoucí práce: Ing. Petr Hušek, Ph.D.

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Komplexní

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky. NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky NASTAVENÍ PARAMETRŮ PID REGULÁTORU JAKO OPTIMALIZAČNÍ ÚLOHA Ondřej Zouhar Bakalářská práce 2015 1 2 3 Prohlášení Prohlašuji: Tuto práci jsem vypracoval

Více

Učební osnova vyučovacího předmětu Automatizační technika. 3. ročník (zaměření elektroenergetika) Pojetí vyučovacího předmětu

Učební osnova vyučovacího předmětu Automatizační technika. 3. ročník (zaměření elektroenergetika) Pojetí vyučovacího předmětu Učební osnova vyučovacího předmětu Automatizační technika 3. ročník (zaměření elektroenergetika) Obor vzdělání: 26-41-M/01 ELEKTROTECHNIKA Délka a forma studia: 4 roky, denní studium Celkový počet týdenních

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

YU = I kde I = 0 (6.1)

YU = I kde I = 0 (6.1) Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

Základy fuzzy řízení a regulace

Základy fuzzy řízení a regulace Ing. Ondřej Andrš Obsah Úvod do problematiky měkkého programování Základy fuzzy množin a lingvistické proměnné Fuzzyfikace Základní operace s fuzzy množinami Vyhodnocování rozhodovacích pravidel inferenční

Více

Opakování z předmětu TES

Opakování z předmětu TES Opakování z předmětu TES A3B35ARI 6..6 Vážení studenti, v následujících měsících budete každý týden z předmětu Automatické řízení dostávat domácí úkol z látky probrané v daném týdnu na přednáškách. Jsme

Více

Grafické zobrazení frekvenčních závislostí

Grafické zobrazení frekvenčních závislostí Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost

Více

Ing. Petr Vlček. Řízení a regulace. SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Elektrotechnika - Mechatronika. Monitorovací indikátor 06.43.

Ing. Petr Vlček. Řízení a regulace. SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Elektrotechnika - Mechatronika. Monitorovací indikátor 06.43. STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Ing. Petr Vlček Řízení a regulace SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Elektrotechnika - Mechatronika

Více

Mechatronické systémy struktury s asynchronními motory

Mechatronické systémy struktury s asynchronními motory 1. Regulace otáček asynchronního motoru skalární řízení Skalární řízení postačuje pro dynamicky nenáročné pohony, které často pracují v ustáleném stavu. Je založeno na dvou předpokladech: a) motor je popsán

Více

doc. Ing. Petr Blaha, PhD.

doc. Ing. Petr Blaha, PhD. ÚAM T Rozvětvené regulační obvody doc. Ing. Petr Blaha, PhD. Komplexní inovace studijních programů a zvyšování kvality výuky na FEKT VUT v Brně OP VK CZ.1.07/2.2.00/28.0193 Rozvětvené regulační obvody

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Robotika

Osnova přednášky. Univerzita Jana Evangelisty Purkyně Základy automatizace Robotika Osnova přednášky 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika)

Témata profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) ta profilové maturitní zkoušky z předmětu Souborná zkouška z odborných elektrotechnických předmětů (elektronická zařízení, elektronika) 1. Cívky - vlastnosti a provedení, řešení elektronických stejnosměrných

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k přednášce 5 - Identifikace Michael Šebek Automatické řízení 07 5-3-7 Jiná metoda pro. řád bez nul kmitavý Hledáme ωn Gs () k s + ζωn s + ωn Aplikujeme u( ) us () s. Změříme y( ), A, A, Td y(

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST

VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST VLASTNOSTI KOMPONENTŮ MĚŘICÍHO ŘETĚZCE - ANALOGOVÁČÁST 5.1. Snímač 5.2. Obvody úpravy signálu 5.1. SNÍMAČ Napájecí zdroj snímač převod na el. napětí - úprava velikosti - filtr analogově číslicový převodník

Více

Dvoustupňový Operační Zesilovač

Dvoustupňový Operační Zesilovač Dvoustupňový Operační Zesilovač Blokové schéma: Kompenzační obvody Diferenční stupeň Zesilovací stupeň Výstupní Buffer Proudové reference Neinvertující napěťový zesilovač Invertující napěťový zesilovač

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Návrh frekvenčního filtru

Návrh frekvenčního filtru Návrh frekvenčního filtru Vypracoval: Martin Dlouhý, Petr Salajka 25. 9 2010 1 1 Zadání 1. Navrhněte co nejjednodušší přenosovou funkci frekvenčního pásmového filtru Dolní propusti typu Bessel, která bude

Více

Příklady k přednášce 13 - Návrh frekvenčními metodami

Příklady k přednášce 13 - Návrh frekvenčními metodami Příklady k přednášce 13 - Návrh frekvenčními metodami Michael Šebek Automatické řízení 2015 30-3-15 Nastavení šířky pásma uzavřené smyčky Na přechodové frekvenci v otevřené smyčce je (z definice) Hodnota

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2

Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2 PŘEDNÁŠKA 3 - OBSAH Přednáška 3 - Obsah i 1 Parazitní substrátový PNP tranzistor (PSPNP) 1 1.1 U NPN tranzistoru... 1 1.2 U laterálního PNP tranzistoru... 1 1.3 Příklad: proudové zrcadlo... 2 2 Parazitní

Více

Prostředky vnější regulace tkacího procesu

Prostředky vnější regulace tkacího procesu Teorie tkaní Prostředky vnější regulace tkacího procesu M. Bílek 2016 Autoregulační procesy však nejsou schopny vyřešit nestejnoměrnosti rezultující ze systematických variabilit a neshod procesu tkaní.

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

Regulační obvody se spojitými regulátory

Regulační obvody se spojitými regulátory Regulační obvody se spojitými regulátory U spojitého regulátoru výstupní veličina je spojitou funkcí vstupní veličiny. Regulovaná veličina neustále ovlivňuje akční veličinu. Ta může dosahovat libovolné

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Operační zesilovač, jeho vlastnosti a využití:

Operační zesilovač, jeho vlastnosti a využití: Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

KMS cvičení 6. Ondřej Marek

KMS cvičení 6. Ondřej Marek KMS cvičení 6 Ondřej Marek NETLUMENÝ ODDAJNÝ SYSTÉM S DOF analytické řešení k k Systém se stupni volnosti popisují pohybové rovnice: x m m x m x + k + k x k x = m x k x + k x = k x m x k x x m k x x m

Více

REGULAČNÍ TECHNIKA základní pojmy, úvod do předmětu

REGULAČNÍ TECHNIKA základní pojmy, úvod do předmětu REGULAČNÍ TECHNIKA základní pojmy, úvod do předmětu Mechanizace je zavádění mechanizačních prostředků do lidské činnosti, při které tyto prostředky nahrazují člověka jako zdroj energie, ale ne jako zdroj

Více

Řízení modelu letadla pomocí PLC Mitsubishi

Řízení modelu letadla pomocí PLC Mitsubishi Řízení modelu letadla pomocí PLC Mitsubishi Jakub Nosek TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

26 Nelineární systémy a řízení

26 Nelineární systémy a řízení 6 Nelineární systémy a řízení Michael Šebek Automatické řízení 016 18-5-16 Lineární vs. nelineární Reálné systémy jsou většinou (ne vždy) nelineární, při relativně malých signálech (výchylkách) je často

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Spojité

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 8. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů

Snímání biologických signálů. A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů Snímání biologických signálů A6M31LET Lékařská technika Zdeněk Horčík Katedra teorie obvodů horcik@fel.cvut.cz Snímání biologických signálů problém: převést co nejvěrněji spojitý signál do číslicové podoby

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_3_INOVACE_EM_.0_měření kmitočtové charakteristiky zesilovače Střední odborná škola a Střední

Více

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu

popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu 4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační

Více

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc.

Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. Řízení a regulace I Základy regulace lineárních systémů - spojité a diskrétní Ing. Petr BLAHA, PhD. Prof. Ing. Petr VAVŘÍN, DrSc. ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY Fakulta elektrotechniky a komunikačních

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Fakulta elektrotechnická. GUI pro návrh PID regulátorů

Fakulta elektrotechnická. GUI pro návrh PID regulátorů České vysoké učení technické v Praze Fakulta elektrotechnická BAKALÁŘSKÁ PRÁCE GUI pro návrh PID regulátorů Praha, 2008 Autor: Karel Jonáš Prohlášení Prohlašuji, že jsem svou bakalářskou práci vypracoval

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

1. VÝBĚR ZÁKLADNÍCH POJMŮ

1. VÝBĚR ZÁKLADNÍCH POJMŮ 1. VÝBĚR ZÁKLADNÍCH POJMŮ 1.1 Měřicí technika Kalibrace (starší název cejchování) je soubor úkonů, hledající za určených podmínek vztah mezi hodnotami udávanými měřicím přístrojem (nebo měřicí sestavou)

Více

VY_32_INOVACE_AUT -2.N-09-REGULACNI TECHNIKA. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_AUT -2.N-09-REGULACNI TECHNIKA. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_AUT -2.N-09-REGULACNI TECHNIKA Střední odborná škola a Střední odborné učiliště, Dubno Ing.

Více

2. Základní teorie regulace / Regulace ve vytápění

2. Základní teorie regulace / Regulace ve vytápění Regulace v technice prostředí (staveb) (2161087 + 2161109) 2. Základní teorie regulace / Regulace ve vytápění 9. 3. 2016 a 16. 3. 2016 Ing. Jindřich Boháč Regulace v technice prostředí Ing. Jindřich Boháč

Více

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy

(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více