1.1 Oslunění vnitřního prostoru

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1 Oslunění vnitřního prostoru"

Transkript

1 1.1 Oslunění vnitřního prostoru Úloha Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den jeho narození, v hodinu H má být deska přesně osvícena slunečními paprsky, procházejícími oknem. Určete rozměr a umístění okna. Rozměr desky je 3 x 2 m, její výška 1 m. Určete orientaci galerie ke světovým stranám tak, aby byly splněny předchozí podmínky. Pokud to bude nutné, je možné okno umístit ve stropě (ploché střeše). Zhotovte nákres půdorysu a řezu budovy. Podle zadaných údajů určete o jaké město (ve které zemi) a jakého fyzika se jedná a čím se proslavil. 10m 0,6m V=? D=15m 0,8m 15m 3m 1m 0,8m 7m AxB=? Den D = datum narození osobnosti Město X dány souřadnice GPS Hodina H = 10+0,2n Obr. 1 Půdorys a řez muzejní halou Řešení: Zeměpisná šířka φ = 42 24'2.738" N = 42,4 severní šířky, datum 5.10, 11 hodin Deklinace Slunce ( 29,7 M + 0,98 ) ( 29, , ) = 5, δ = 23,45 sin D 109 δ = 23,45 sin 2 6

2 Výška Slunce nad obzorem (τ je hodinový úhel; τ = 15.H) h = arcsin [ sinϕ( sinδ cosδ cosϕ cosτ )] [ ( sin( 5,2) cos( 5,2) cos42,4 cos(11.15 )] = h = arcsin sin 42,4 40 Tab. 1 Zadání místa stavby a doby výpočtu N, W 55 40'18.116"N, 12 34'55.248"E 45 4'4.792"N, 7 43'26.791"E 61 21'41.305"N, 15 53'27.004"E 54 20'57.278"N, 18 38'48.621"E 48 24'7.925"N, 9 58'40.468"E 53 33'39.601"N, 10 2'11.805"E 45 4'4.792"N, 7 43'26.791"E 53 29'28.237"N, 2 17'2.905"W 54 35'40.871"N, 5 55'48.236"W 47 47'47.237"N, 3 34'17.085"E 49 22'40.727"N, 2 25'2.116"E 54 35'40.871"N, 5 55'48.236"W 48 52'9.438"N, 2 20'51.306"E 49 36'12.977"N, 11 0'21.777"E 4. ledna října ledna listopadu května března července srpna prosince června března června srpna června března '12.977"N, 11 0'21.777"E 45 48'37.488"N, 9 5'5.015"E 44 29'41.956"N, 11 20'34.795"E 48 12'22.687"N, 16 21'45.899"E 54 19'35.16"N, 10 6'56.211"E 52 9'29.898"N, 4 29'9.77"E 55 57'16.876"N, 3 11'59.687"W 50 5'36.361"N, 16 26'34.14"E 47 48'1.734"N, 13 1'25.502"E 47 33'16.337"N, 7 34'36.974"E 43 42'30.915"N, 10 23'33.35"E 59 19'58.939"N, 18 3'57.293"E 55 57'5.751"N, 4 46'41.434"W 54 11'26.31"N, 16 10'48.391"E 45 48'37.488"N, 9 5'5.015"E 16. března února září února dubna prosince března března listopadu dubna února října ledna ledna února 1745 Azimut Slunce ( τ ) cos( δ ) sin( 15.11) cos( 5,2) sin a = 180 arcsin = arcsin = 160 cos h cos 40 7

3 V=? D=15m 0,8m 15m Výška parapetu okna ( ) = V tg( h V D V = D. tg ( h) ) = 15. tg (40 ) = 0,85.15 = 12,8m požadovaný parapet je vyšší než stěna, tj. okno bude ve střeše D3=7,5 D2=4,5m V=15,3m V=12,8m 10m h=40 3m 1m 0,8m V2=3,2m 0,6m 10m V=? D=15m h=40 0,8m 15m 3m 1m 0,8m Obr. 2 Výpočtové schéma stínu Výsledek nutno korigovat dle denní doby na konvenci, že sever = 0 a dále po směru Vodorovná vzdálenost okna od stěny ( ) tg( h V 2 V 2 = D2 = D2 tg h = 3,2 tg 40 ( ) ( ) = 4,5m 8

4 Určení délky (výšky) okna V 3 tg ( h) = V 3 = D.tg ( h) = 18. tg (40) = 0,85.16 = 15,3m D + 3 V3 = 15,3 9 = 6,3 m V 3 tg ( h) = D3 = D 3 L = 7,5 4,5 = 3 m V 3 6,3 = 40 tg( h) tg ( ) = 7,5mm Okno je stejně dlouhé jako osvětlovaná deska, což je důsledek toho, že sluneční paprsky jsou považovány za rovnoběžné Obr. 3 Půdorysné umístění objektu do směru slunečního paprsku Výsledek Okno je dlouhé (vysoké) 3m, široké 2m, stejně jako osvětlovaná deska, což je důsledek toho, že slu- neční paprsky jsou považovány za rovnoběžné. Je vzdáleno 4,5 m od stěny. Zeměpisná poloha daná souřadnicemi 49 26'59.299"N, 11 5'5.377"E odpovídá německému městu Nürnberg,, kde se narodil průkopník termody- namiky Wilhelm Nusselt,, autor kritéria zvaného Nusseltovo číslo, které udává podobnost při sdílení tepla přestupem mezi pevným povrchem a tekutinou. Poznámka: Hodnota azimutu odpovídá skutečnosti, že Slunce vychází přibližně na SVV až V, v poledne prochází kolem J a odpoledne zapadá na Z až ZZS. Výška Slunce nad obzorem je v poledne na 50 s.š. max. 63, v zimě 17, v 10 h v létě 55, v zimě 12. 9

5 Úloha Zadání Určete vyložení vodorovného slunolamu nad oknem podle obrázku, jestliže má být okno mezi 11 a 15 h v období od 5. června do 25. srpna zastíněno z nejméně z poloviny své výšky. Zeměpisnou polohu stavby určete dle příkladu 1. Orientace okna je na jih. Zhotovte nákres. H= 150 mm e 2 c D= 500 mm Obr. 4 Řez zadaným oknem Řešení Svislý stín tan cos c hloubka slunolamu až ke sklu γ azimut stěny (úhel mezi normálou stěny směřující ven a severem; pro východní stěnu 90, pro jižní 180 apod.) h výška Slunce Úloha Zadání Z měření meteorologické stanice jsou známy hodnoty slunečního záření dopadající na vodorovnou plochu. Určete, jaké bude rozdělení sluneční energie na svislé roviny orientované k jednotlivým světovým stranám. Použijte naměřená data uvedená v následujícím grafu, nebo si vyberte aktuální hodnoty z meteorologické stanice FAST-TUBO. Každý vypracuje průběh globálního slunečního záření v kroku 1 h pro jeden den a orientaci ke 4 základním (S, V, J, Z) nebo vedlejším směrům (SV, JV, JZ, SZ). Řešení Azimut slunce pro 50 s.š. sin 15. cos cos 10

6 Výška slunce pro 50 s.š. sin 0,766. sin 0,643. cos. cos 15. Úhel mezi normálou osluněné roviny a směrem slunečního paprsku se stanoví pro vodorovnou rovinu VII 28.II 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 I (W/m 2 ) Obr. 5 Průběh intenzity dopadajícího záření v minutovém kroku (horní graf) a hodinovém kroku (dolní graf) na vodorovnou plochu. Naměřená hodnota odpovídá globálnímu slunečnímu záření, které se skládá z přímého a difúzního záření, jejichž podíl je obtížné stanovit. Čím je obloha jasnější, je přímé záření větší a difúzní menší a naopak při zatažené obloze přímé záření klesá a difúzní záření vlivem odrazu od mraků roste. Přibližně rozdělíme difúzní záření z globálního takto,, 410.,, pokud 1 pak 1 Závislost mezi difúzní radiací dopadající na svislou a vodorovnou rovinu popisuje vztah,, 29., VII II

7 Pro další výpočet již uvažujeme přímou složku slunečního záření I p,h na vodorovnou rovinu,,,., Měrný tepelný tok dopadající na orientovanou rovinu v závislosti na intenzitě ve směru slunečního paprsku popisuje další vztah, z čehož odvodíme intenzitu ve směru slunečního paprsku I n, cos Z této hodnoty můžeme dopočítat intenzitu radiace dopadající na libovolnou svislou stěnu s azimutem γ, která svírá se slunečním paprskem úhel Θ, který vypočteme pro svislou rovinu cos Ovšem v případě, že rozdíl azimutů stěny a slunce je větší jak 90, je stěna ve stínu a přímé záření na ni nedopadá. Pak působí jen složka difúzní. Pokud je stěna osluněná, dopadá na ni jak záření přímé, tak difúzní. Tab. 2 Příklad řešení pro 21.7, 15 h; poloha Slunce a = 246 ; h = 44 ; θ V = 46 Globální na vodorovnou rovinu Difúzní na vodorovnou rovinu Přímé na vodorovnou rovinu Přímé ve směru slunečního paprsku Difúzní na svislé stěny Přímá na svislou stěnu SEVER VÝCHOD JIH ZÁPAD Tab. 3 řešení pro 21.5, 11 h; poloha Slunce a = 152 ; h = 58 ; θ V = 32 Globální na vodorovnou rovinu Difúzní na vodorovnou rovinu Přímé na vodorovnou rovinu Přímé ve směru slunečního paprsku Difúzní na svislé stěny Přímá na svislou stěnu SEVER VÝCHOD JIH ZÁPAD Úloha Zadání Pan Novák má u svého domu zahrádku a je vyhlášeným pěstitelem citrusů. V jeho sousedství však má být postaven nový bytový dům podle nákresu a on má obavy, že jeho zahrada bude ve stínu. Určete pro každý měsíc (den = pořadové číslo n) dobu, kdy jeho zahrada bude alespoň částečně ve stínu. Objekt je na jižní Moravě. Rozměry zahrady X = 10+0,3n Y = 15+0,5n Výška nové budovy H = 50-n 12

8 Obr. 6 Situace a řez zadaného objektu a přilehlé zahrady Úloha Zadání Pro zadání z příkladu 1 (místo a datum) určete dobu východu a západu Slunce, azimut pro tuto dobu, výšku Slunce nad obzorem v poledne slunečního času, dobu občanského, nautického a astronomického soumraku a teoretickou dobu slunečního svitu. Vyneste na časovou osu. Řešení Definice soumraků: - Astronomický soumrak - Slunce se nachází 12 až 18 pod obzorem. - Nautický/námořní soumrak - Slunce se nachází 6 až 12 pod horizontem. - Občanský soumrak - je doba mezi západem (východem) Slunce a okamžikem, kdy je Slunce 6 pod obzorem. Výška Slunce nad obzorem je při východu a západu slunce rovna 0. Z následující rovnice můžeme při předpokladu, že sin(h) = 0 vyjádřit τ

9 Vypočítanou hodnotu τ ( ), pomocí funkce arccos je nutné vydělit 15, abychom získali čas v hodinách H. Pokud od výsledku odečteme 12 h, získáme čas, kdy vychází Slunce. Přičtením 12 h dostaneme hodinu západu Slunce.. 20, ,1 3, ; Teoretická doba slunečního svitu Při výpočtu azimutu v jiné době než mezi 6 a 18 h je vypočtenou hodnotu upravit přičtením nebo odečtením 180 tak, aby měla fyzikálně smysl. 14

10 1.2 Sluneční hodiny Sluneční hodiny udávají pravý sluneční čas, který se od našeho běžného času liší. Zejména tím, že pohyb Slunce během roku je nepravidelný (to postihuje časová rovnice) a také tím, že náš čas je pásmový, tj. platí pro určité pásmo zeměpisné délky (náš středoevropský čas je středním slunečním časem pro 15. poledník). V pravé sluneční poledne (tj. poledne na slunečních hodinách) je Slunce vždy na jihu a to s větší přesností než kompas. Obr. 7 Průmět slunečního stínu od polosu (tyč mezi svislou a vodorovnou rovinou) do roviny rovníku a roviny svislé a vodorovné, čímž jsou definovány jednotlivé druhy slunečních hodin Úloha Zadání Sestrojte přenosné sluneční hodiny ve vodorovné poloze pro místo Vašeho trvalého bydliště. Sestrojte datovou čáru pro den Vašich narozenin. K jejich konstrukci využijte znalosti o zdánlivém pohybu Slunce na obloze. Vypočtěte rozdíl mezi pravým slunečním časem a naším běžným pásmovým časem v den Vašich narozenin. Zeměpisné souřadnice místa bydliště odečtěte z mapy P1. Obr. 8 Vodorovné sluneční hodiny 15

11 Za 24 oběhne Slunce Zemi o celý kruh, tedy o 360. Za jednu hodinu je to 360/24 = 15, to se nazývá hodinový (časový) úhel. Pro libovolnou hodinu je definován: Např. pro 15 hodinu je to (15-12).15 = 45. V heliotechnice se často využívá symetrie pohybu Slunce kolem 12 h, využijeme ji i při této konstrukci. Výpočet směrníků T hodinových přímek se odvodí sférickou trigonometrií z obrázku 10. Rovina s označením světových stran je rovina horizontu (obzorníku). Hodinová kružnice k je od poledníku odkloněna o hodinový úhel t. Směrník T tedy určíme pro hodinu H, zeměpisnou šířku φ a její hodinový úhel t ze vzorce:. Obr. 9 Princip číselníku vodorovných hodin. Polos tvaru trojúhelníku směřuje k severu, jeho přepona svírá s rovinou číselníku úhel místní zeměpisné šířky a je rovnoběžná s osou rotace Země. Obr. 10 Číselník vodorovných hodin. Směrníky Τ jsou symetrické podle polopřímky pro 12 hodinu (velké písmeno T a řecké τ znamenají to stejné). Hodinová čára pro 12 je ve směru místního poledníku (sever jih) přesně podle kompasu. 16

12 Obr. 11 Pohyb stínu po vodorovných hodinách (ukazují 15:45) Nyní vyrobíme polos ukazatel tvaru trojúhelníku, jehož vrchol bude umístěn tam, kde se sbíhají hodinové čáry. Sklon šikmé hrany odpovídá zeměpisné šířce. Obr. 12 Umístění polosu. Svislá stěna je tvarovaná, aby se zabránilo chybám při čtení hodin podle stínu. Nyní zbývá vyznačit datovou čáru pro den narozenin. Jak je vidět na obr. 12, stín z polosu je zpravidla příliš dlouhý, proto se k určení délky stínu používá zářez, označený jako N. Během dne a roku se délka stínu mění podle výšky Slunce nad obzorem a azimutu. Na slunečních hodinách bylo zvykem označovat datové čáry ke 20. dni každého měsíce, tedy vstup Slunce do jednotlivých znamení zvěrokruhu. Nejkratší stín je za letního slunovratu (Slunce vstupuje do znamení Raka odtud obratník Raka), nejdelší v zimním slunovratu (Kozoroh). Nám však postačí vyznačit jednu křivku. Jsou to vždy hyperboly a pro polovinu hodin (12 až 18 hodin) jsou vyznačeny na obr. 14. Polohu datové čáry určíme v ortogonálních souřadnicích x a y podle geometrie slunečního stínu z obr

13 (Beran) Obr. 13 Hodinové čáry (13 až 18 h) a datové čáry udávající vstup Slunce do jednotlivých znamení ve tvaru hyperboly (všechny měsíce mimo slunovratných mají vždy po dvou jednu datovou čáru společnou: leden = listopad, květen = červenec). Obr. 14 Sluneční paprsek vrhá stín definovaný polárními souřadnicemi. Polohu bodu pro každou hodinu zadaného dne (narozenin) určíme z pravoúhlého trojúhelníku NOC. Svislá tyč má výšku s (představuje úsečku u výřezu polosu). 18

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ -tíhové zrychlení je cca 9,81 m.s ² -určuje se z doby kyvu matematického kyvadla (dlouhý závěs nulové hmotnosti s hmotným bodem na konci) T= π. (l/g) takže g=π².l/(t²)

Více

Orientace v terénu bez mapy

Orientace v terénu bez mapy Písemná příprava na zaměstnání Terén Orientace v terénu bez mapy Zpracoval: por. Tomáš Diblík Pracoviště: OVIÚ Osnova přednášky Určování světových stran Určování směrů Určování č vzdáleností Určení č polohy

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Úvod do předmětu Základní pojmy Faktory ovlivňující kvalitu vnitřního prostoru Působení Slunce na budovu

Úvod do předmětu Základní pojmy Faktory ovlivňující kvalitu vnitřního prostoru Působení Slunce na budovu CT 52 Technika prostředí LS 2013 Úvod do předmětu Základní pojmy Faktory ovlivňující kvalitu vnitřního prostoru Působení Slunce na budovu 1. Přednáška Ing. Olga Rubinová, Ph.D. 1 Cíl předmětu / profil

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6

Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6 Daniela Bošová-DANCON IČ: 68856849, Na Dlouhém lánu 430/26, 160 00 Praha 6 Rezidence AURUM Na pláni, Praha 5 - Smíchov STUDIE PROSLUNĚNÍ A DENNÍHO OSVĚTLENÍ Vypracovala: Ing. Daniela Bošová, Ph.D. Spolupráce:

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Orientace. Světové strany. Orientace pomocí buzoly

Orientace. Světové strany. Orientace pomocí buzoly Orientace Orientováni potřebujeme být obvykle v neznámém prostředí. Zvládnutí základní orientace je předpokladem k použití turistických map a plánů měst. Schopnost určit světové strany nám usnadní přesuny

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

TERÉNNÍ ČÁST. Celkem 30 bodů. S výjimkou práce v terénu v úkolu č. 2 pracujte samostatně.

TERÉNNÍ ČÁST. Celkem 30 bodů. S výjimkou práce v terénu v úkolu č. 2 pracujte samostatně. TERÉNNÍ ČÁST Celkem 30 bodů S výjimkou práce v terénu v úkolu č. 2 pracujte samostatně. 1 12 bodů MAPOVÁNÍ ZMĚN MĚSTSKÉ KRAJINY (autor: J. Kabrda, autor map: J. D. Bláha) Pomůcky: Dodané organizátorem:

Více

Výkonový poměr. Obsah. Faktor kvality FV systému

Výkonový poměr. Obsah. Faktor kvality FV systému Výkonový poměr Faktor kvality FV systému Obsah Výkonový poměr (Performance Ratio) je jedna z nejdůležitějších veličin pro hodnocení účinnosti FV systému. Konkrétně výkonový poměr představuje poměr skutečného

Více

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ vyplňuje žák Identifikace práce Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město PSČ jiný kontakt (např. e-mail) A. Přehledový test

Více

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m

(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m . Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Kolektor: SK 218 Objednatel:

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ VY_32_INOVACE_06_III./20._SOUHVĚZDÍ Severní obloha Jižní obloha Souhvězdí kolem severního pólu Jarní souhvězdí Letní souhvězdí Podzimní souhvězdí Zimní souhvězdí zápis Souhvězdí Severní hvězdná obloha

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

Tvorba technická dokumentace

Tvorba technická dokumentace Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

TZB - VZDUCHOTECHNIKA

TZB - VZDUCHOTECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ HIRŠ, GÜNTER GEBAUER TZB - VZDUCHOTECHNIKA MODUL BT02-04 METEOROLOGICKÉ ZÁKLADY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA TZB-Vzduchotechnika,

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

ČAS, KALENDÁŘ A ASTRONOMIE

ČAS, KALENDÁŘ A ASTRONOMIE ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu

VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu Materiál pro domácí přípravu žáků: Název programu: Název projektu: Registrační číslo projektu: Předmět: Ročník: Autor: Téma učivo: Učební pomůcky: Zápis z vyučovací hodiny: VY_06_Vla5E_45 Operační program

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení.

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Základní přehled Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Reflektor zrcadlový dalekohled, používající ke zobrazení dvou (primárního a

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách

Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách Zpracoval Doc. RNDr. Zdeněk Hlaváč, Cc Vlivem vzájemné polohy lunce, Země a dalšího tělesa(např. jiné planety nebo Měsíce) dochází k jevu,

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Orbit TM Tellerium Kat. číslo 113.4000

Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium s velkým glóbusem Země pro demonstrování ročních období, stínů a dne a noci Orbit TM Tellerium s malou Zemí pro demonstrování fází Měsíce a zatmění

Více

Téma: Geografické a kartografické základy map

Téma: Geografické a kartografické základy map Topografická příprava Téma: Geografické a kartografické základy map Osnova : 1. Topografické mapy, měřítko mapy 2. Mapové značky 3. Souřadnicové systémy 2 3 1. Topografické mapy, měřítko mapy Topografická

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU Projekt ŠLONY N GVM Gymnázium Velké Meziříčí registrační číslo projektu: Z.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SINOVÁ KOSINOVÁ

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Analytická geometrie. Hyperbola VY_32_INOVACE_M0119. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI Pravoúhlé rovnoběžné promítání na několik vzájemně kolmých průměten Použití pomocné průmětny Čistě ploché předměty Souměrné součásti Čistě rotační součásti

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

3.2.4 Huygensův princip, odraz vlnění

3.2.4 Huygensův princip, odraz vlnění ..4 Huygensův princip, odraz vlnění Předpoklady: 0 Izotropní prostředí: prostředí, které je ve všech bodech a směrech stejné vlnění se všech směrech šíří stejnou rychlostí ve všech směrech urazí za čas

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Postup 1 Půdorys. Zvolíme prostor nutné pro schodiště jak v půdorysu tak i v řezu

Postup 1 Půdorys. Zvolíme prostor nutné pro schodiště jak v půdorysu tak i v řezu Návrh schodiště Postup 1 Půdorys Zvolíme prostor nutné pro schodiště jak v půdorysu tak i v řezu Zvolený prostor Zvolený prostor Postup 1 Půdorys 2 Zvolený prostor Postup 1a Řez Z řezu určíme konstrukční

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT ZÁSADY TVORBY VÝKRESŮ POZEMNÍCH STAVEB II. Autor

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

MATEMATICKÉ DOVEDNOSTI

MATEMATICKÉ DOVEDNOSTI Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu

Více

Orologi Solari Longitude: 17 58 E Latitude: 49 57 N J.C. 2010. Čas jde jen jedním směrem

Orologi Solari Longitude: 17 58 E Latitude: 49 57 N J.C. 2010. Čas jde jen jedním směrem 8 18 11 12 13 14 15 Orologi Solari Longitude: 17 58 E Latitude: 49 57 N J.C. 2010 17 Čas jde jen jedním směrem Sluneční hodiny patří k nejstarším známým zařízením používaným k měření času a nejstarším

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více