Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Rozměr: px
Začít zobrazení ze stránky:

Download "Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008"

Transkript

1 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 180(4) Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu porovnáváme stejný kvantitativní znak ve dvou populacích máme dva nezávislé výběry z těchto populací co když nelze předpokládat normální rozdělení? nechťx 1,...,X n1 ay 1,...,Y n jsounezávislévýběryze spojitého rozdělení(například věk matek, střední délka života mužůpřinarozenívedvouskupináchzemí,potratovost...) H 0 tvrdí,žeoběrozděleníjsoustejná(mezipopulaceminení rozdíl, zpravidla nás zajímá, že není rozdíl v mírách polohy) specielně to znamená, že populační mediány jsou shodné postupzaložennapořadíbezohledunavýběr idea: kdyby nebyl mezi populacemi rozdíl, byla by takto zjištěná průměrná pořadí v obou výběrech podobná Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 181(4) příklad: potraty na 1000 obyv.(čechy vers. Morava) vroce003 kraj Pha Stč Jč Pl KV Ús Lb potratovost 4,03 4,0 4,11 4,70 5,5 5,80 4,98 pořadí kraj HK Par Vys JM Ol Zl MS potratovost 4,33 3,38 3,57 3,70 3,5 3,4 3,87 pořadí H 0 :shodapopulací(zejm.mediánů),h 1 :neshoda nejasné, kam patří kraj Vysočina; vynecháme jej průměrné pořadí českých krajů: 77/9=8,5 W 1 = =77 průměrné pořadí moravských krajů: 14/4=3,5 W =4+3++5=14 Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 18(4) přibližnérozhodování(n 1,n desítky) W 1,W součtypořadí,w 1 standardizujeme W 1 n 1 (n 1 +n +1)/ n1 n (n 1 +n +1)/ za hypotézy(není rozdíl mezi populacemi) je použitím centrálnílimitnívětyz N(0,1) hypotézuzamítáme,je-li Z z(α/) náš příklad: [wilcox.test(potr Cechy)] / =,1 >1,9=z(0,05/) p=3,1% / na 5% hladině jsme prokázali rozdíl

2 Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 183(4) přesný výpočet p-hodnoty Wilcoxonova testu zajímánás,nakolikjenášvýsledek(w 1 =77,W =14) výjimečný mámecelkemn 1 +n =13pozorování,čtyřiznich(tolikjich jevmenšískupině,zmoravy)lzevybratcelkem ( 13) 4 =715 způsoby kolikztěchtozpůsobůvedektakextrémněnestejným průměrným pořadím? budeme hledat, kolik čtveřic označených za moravské by dalo v součtu nejvýš 14, jak nám doopravdy vyšlo vždyplatíw 1 +W =(n 1 +n )(n 1 +n +1)/=91 (součetčísel n 1 +n ) stačízabývatsejedinouzestatistikw 1,W,zpravidlatoupro menší výběr Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 184(4) přehled možných čtveřic v nichž je součet pořadí nejvýš 14 (čtveřicevybírámezčísel1,,...,13) nejvýš 14 mohl být součet pořadí za platnosti hypotézy spravděpodobnostíp 1 =/715=0,0178 protože máme oboustrannou alternativu, musíme vzít v úvahu také situaci, kdy by byla na Moravě velká pořadí, p-hodnotu nutnozdvojnásobit:p=4/715=3,4% Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 185(4) příklad: klesá potratovost?(párový t-test zde nevhodný) potratů na 100 těhotenství Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 18(4) příklad: klesá potratovost? Y i Z i X i R + i 4,7 3,1 1, 4 5,7 3,,1 31, 7,9 3,7 4,3,,1 7,8 3,4 3, , 7,9,7 10 1,1 1,5-0,4 1 3,5,0 -,5 8,9 4,3, 9,5 3,9-1,4 3 3,1 1, 1,9 5 4,9 5,7-0,8 použijemeúdajezokresůvletech 000(Y i )a001(z i ) hypotézah 0 :vobouletechpotratovost stejná, rozdíly dány náhodným kolísáním; H 1 :potratovostklesá(jednostrannáalt.) zah 0 byrozdílymělykolísatsymetricky kolem nuly zah 1 bymělypřevládatkladnérozdíly, spíše velké průměrnépořadíz8kladnýchrozdílů:8 (součetw=4),průměrnépořadíze4 záporných rozdílů 3,5(součet 14) vývoj velikost poklesu

3 Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 187(4) párový Wilcoxonův(Wilcoxon signed rank) test Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 188(4) rozhodování nechť(y 1,Z 1 )...,(Y n,z n )nezávislédvojice, rozdílyx i =Y i Z i majíspojitérozdělení H 0 :Y i,z i majístejnérozdělení(populacejsoustejné) mají-liy i,z i stejnérozdělení,pakrozdílyx i =Y i Z i jsou symetricky rozděleny kolem nuly postup vyloučitnulovéhodnotyxi (tedyshodnéhodnotyy i,z i ), podle toho případně zmenšit n určitpořadír + i absolutníchhodnot X i = Y i Z i určitw,tj.součetpořadípůvodněkladnýchhodnotxi podlew rozhodnout na základě centrální limitní věty lze použít W EW S.E.(W) = W n(n+1)/4 n(n+1)(n+1)/4 hypotézuoshodězamítneme,bude-li Z z(α/) při jednostranné alternativě porovnat Z a z(α) pro malý počet dvojic(do deseti) raději použít tabulky příklad(w=4,n=,jinakpřesnějep=,%) 4 13/4 13 5/4 =1,91 >1,45=z(0,05),p=,5% Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 189(4) poznámky k výpočtu Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 190(4) párový znaménkový(sign) test nezapomenout vyloučit nulové rozdíly shodným absolutním hodnotám rozdílům přiřadíme jejich průměrné pořadí Excel nám v takovém případě moc nepomůže, protože řeší problém shod nestandardně, např.: X i X i R + i 4,5 7 4,5 8 Excel v tabulce patrné nestandardní chování Excelu [wilcox.test(pokles,alternative= greater )] hodnotí pouze počet kladných a záporných rozdílů, nezáleží na tom, jak jsou rozdíly veliké(slabší test než Wilcoxonův) H 0 :Y i,z i majístejnérozdělení;zahypotézyočekáváme,že počtykladnýchazápornýchx i jsoupodobné označmey početkladnýchx i zcelkemnnenulových,za hypotézyy bi(n,1/) přibližné rozhodování(centrální limitní věta) Y n/ Y n =, zamítatpro Z z(α/) n/4 n při jednostranné alternativě porovnáme Z a z(α)

4 Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 191(4) poznámky Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 19(4) souvisí spolu výšky rodičů? proznaménkovýtestnenítřebaznáthodnotyy i,z i,stačí vědět,kterázmožnostíy i >Z i,y i <Z i,y i =Z i nastala nášpříkladomožnémpoklesupotratovosti(n=,y=8) 8 =1,155, p=p(z >1,155)=0,4 při malých hodnotách n(do 30) se doporučuje Yatesova korekce Y n 1 Z Yates = sign(y n) n náš příklad(yatesova korekce, jiným způsobem přesně p=0,194) výška otce =0,8, p=1 Φ(0,8)=0, výška matky Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 193(4) prokazování závislosti spojitých veličin Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 194(4) příklad: výšky rodičů víme,žepronezávisléx,y je ρ X,Y =0 r xy jeodhadem ρ X,Y ;jakdalekoodnulymusíbýtr xy, abychomnahladině αprokázalizaávislostx,y? zapředpokladu,žex,y majínormálnírozdělení(nebopočet pozorovanýchdvojicx i,y i jevelký),hypotézunezávislosti zamítámepokudje T t n (α),kde T= r 1 r n pron=99dvojicbylspočítánkorelačníkoeficientr=0,05; T= 0,05 1 0,05 97=,07 >t97 (0,05)=1,98 na 5% hladině jsme závislost prokázali t 97 (0,01)=,3,tudížna1%hladinějsmezávislost neprokázali výška zpravidla splňuje předpoklad o normálním rozdělení [cor.test( vyska.m+vyska.o,data=kojeni)] [CORREL(x;y)](pouze výpočet korelačního koeficientu) není-li normální rozdělení a nemnoho pozorování, raději použít Spearmanův korelační koeficient

5 Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 195(4) příklad: výšky rodičů Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 19(4) Spearmanův korelační koeficient výška otce y=b[0]+b[1]x x=c[0]+c[1]y místopůvodníchhodnotx i,y i používájejichpořadír i,q i je to vlastně Pearsonův korelační koeficient použitý na pořadí výpočet lze upravit, zjednodušit na r S =1 n(n 1) n (R i Q i ) vhodný pro nelineární monotonní závislost, nevadí odlehlé hodnoty i=1 při testování nemusí být normální rozdělení výška matky Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 197(4) příklad: alkohol a úmrtnost na cirhózu Mann-Whitney párový Wilcoxon párový znaménkový (Pearsonův) korel. koef. Spearmanův korel. koef. 198(4) cirhóza jater a spotřeba alkoholu země spotřeba úmrtnost R i Q i R i Q i Finsko 3,9 3, Norsko 4, 4,3 5-3 Irsko 5, 3,4 3 1 Holandsko 5,7 3, Švédsko,0 7, Anglie 7, 3,0 1 5 Belgie 10,8, Rakousko 10,9 7,0 8 SRN,3 3, Itálie 15,7 3, Francie 4,7 4, úmrtnost ( r S = ) =0, r = 0,95 zdánlivě mnohem těsnější závislost! alkohol

příklad: předvolební průzkum Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 příklad: souvisí plánované těhotenství se vzděláním?

příklad: předvolební průzkum Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 příklad: souvisí plánované těhotenství se vzděláním? Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno 17. prosince 2007) 1(249) závislost kvalitativních znaků

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics

IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics IBM Software IBM SPSS Exact Tests Přesné analýzy malých datových souborů Při rozhodování o existenci vztahu mezi proměnnými v kontingenčních tabulkách a při používání neparametrických ů analytici zpravidla

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

NEPARAMETRICKÉ TESTY

NEPARAMETRICKÉ TESTY NEPARAMETRICKÉ TESTY Výhodou neparametrických testů je jejich použitelnost bez ohledu na typ rozdělení, z něhož výběr pochází. K testování se nepoužívají parametry výběru (např.: aritmetický průměr či

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Případové studie k finanční dostupnosti bydlení: regionální disparity ve finanční dostupnosti bydlení u vybraných typů domácností

Případové studie k finanční dostupnosti bydlení: regionální disparity ve finanční dostupnosti bydlení u vybraných typů domácností Případové studie k finanční dostupnosti bydlení: regionální disparity ve finanční dostupnosti bydlení u vybraných typů domácností Martina Mikeszová Oddělení ekonomické sociologie, tým socioekonomie bydlení

Více

Potraty podle věku ženy v roce Abortions by age of woman in year 2009

Potraty podle věku ženy v roce Abortions by age of woman in year 2009 Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 21. 6. 2010 31 Potraty podle věku ženy v roce 2009 Abortions by age of woman in year 2009 Souhrn V roce 2009 bylo v

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

charakteristiky variability Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 směrodatná odchylka rozptyl(variance)

charakteristiky variability Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 směrodatná odchylka rozptyl(variance) Statistika MD360P03Z, MD360P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara 8. října 007 18) charakteristiky variability charakteristiky tvaru závislost dvojice

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

charakteristiky polohy v geografii/demografii Statistika míry nerovnoměrnosti charakteristiky polohy v geografii/demografii(2)

charakteristiky polohy v geografii/demografii Statistika míry nerovnoměrnosti charakteristiky polohy v geografii/demografii(2) Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara 16. října 2007 1(173) char. polohy v geogr./demogr. Giniho index Lorenzova křivka

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Potraty podle věku ženy v roce Abortions by age of woman in year 2007

Potraty podle věku ženy v roce Abortions by age of woman in year 2007 Aktuální informace Ústavu zdravotnických informací a statistiky České republiky Praha 28. 5. 2008 14 Potraty podle věku ženy v roce 2007 Abortions by age of woman in year 2007 Souhrn V roce 2007 bylo v

Více

Metodické postupy: Nástroje ke zvýšení finanční dostupnosti bydlení za cílem pozitivně ovlivnit demografické chování mladé generace

Metodické postupy: Nástroje ke zvýšení finanční dostupnosti bydlení za cílem pozitivně ovlivnit demografické chování mladé generace Metodické postupy: Nástroje ke zvýšení finanční dostupnosti bydlení za cílem pozitivně ovlivnit demografické chování mladé generace Tomáš Kostelecký, Jana Vobecká tomas.kostelecky@soc.cas.cz jana.vobecka@soc.cas.cz

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

Dovednosti dospělých v prostředí informačních technologií

Dovednosti dospělých v prostředí informačních technologií Mezinárodní výzkum dospělých Programme for the International Assessment of Adult Competencies Dovednosti dospělých v prostředí informačních technologií Lucie Kelblová PIAAC Mezinárodní výzkum vědomostí

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68

marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové

Více

Statistická data o cestovním ruchu na Vysočině k 31/12 2008

Statistická data o cestovním ruchu na Vysočině k 31/12 2008 Statistická data o cestovním ruchu na Vysočině k 31/12 28 kapacity hromadných ubytovacích zařízení počet hostů počet přenocování srovnání v rámci ČR Počet hostů eviduje ČSÚ a to pouze v ubytovacích zařízeních

Více

alternativní rozdělení Statistika binomické rozdělení bi(n, π)(2)

alternativní rozdělení Statistika binomické rozdělení bi(n, π)(2) Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara 5. listopadu 2007 1(178) binomické rozdělení Poissonovo rozdělení normální rozdělení

Více

Neparametrické testy. 1. Úvod. 2. Medián

Neparametrické testy. 1. Úvod. 2. Medián Neparametrické testy. Úvod Testy hypotéz o parametrech základních souborů, které jsme zatím poznali, jsou založeny na předpokladu, že tyto soubory mají normální rozdělení pravděpodobnosti, popřípadě i

Více

Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11

Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11 Analýza výsledků testu čtenářské gramotnosti v PRO23 2010/11 Zpracoval: www.scio.cz, s.r.o. (15. 2. 2012) Datové podklady: výsledky a dotazníky z PRO23, test čtenářské gramotnosti, www.scio.cz, s.r.o.

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Ranní úvahy o statistice

Ranní úvahy o statistice Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku

Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v

Více

*+, -+. / 0( & -.7,7 8 (((!# / (' 9., /,.: (; #< # #$ (((!# / "

*+, -+. / 0( & -.7,7 8 (((!# / (' 9., /,.: (; #< # #$ (((!# / !"!#$ %" &' ( ) *+, -+. / 0(123! " ## $%%%& %' 45 6& -.7,7 8 (((!# / (' 9., /,.: (; #< # #$ (((!# / " * = < & ' ; '.: '. 9'= '= -+. > 8= '7 :' ' '.8 55, 5' 9'= '= -?7 +., '+.8 @ A:.. =. 0(1237 7 : :' @.

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

Dovednosti dospělých v prostředí informačních technologií

Dovednosti dospělých v prostředí informačních technologií Mezinárodní výzkum dospělých Programme for the International Assessment of Adult Competencies Dovednosti dospělých v prostředí informačních technologií Lucie Kelblová PIAAC Mezinárodní výzkum vědomostí

Více

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10

1.1 Úvod... 1 1.2 Data... 1. 3 Statistická analýza dotazníkových dat 8. Literatura 10 MÍRY STATISTICKÉ VAZBY, VÝBĚROVÁ ŠETŘENÍ, STATISTICKÁ ANALÝZA DOTAZNÍKOVÝCH DAT Obsah 1 Statistická data 1 1.1 Úvod.......................................... 1 1. Data...........................................

Více

Dostupnost bydlení a demografické chování analýza regionálních rozdílů a jejich vývoje v čase

Dostupnost bydlení a demografické chování analýza regionálních rozdílů a jejich vývoje v čase analýza regionálních rozdílů a jejich vývoje v čase Tomáš Kostelecký, Jana Vobecká tomas.kostelecky@soc.cas.cz jana.vobecka@soc.cas.cz Oddělení lokální a regionální studia, tým socioekonomie bydlení Struktura

Více

Kontexty porodnosti v České republice a Praze

Kontexty porodnosti v České republice a Praze Kontexty porodnosti v České republice a Praze Jitka Rychtaříková Katedra demografie a geodemografie Přírodovědecká fakulta Univerzity Karlovy v Praze Albertov 6, 128 43 Praha rychta@natur.cuni.cz +420

Více

PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.

PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10. PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

Program rozvoje Plzeňského kraje 2014-2018. Odborná skupina EKONOMIKA

Program rozvoje Plzeňského kraje 2014-2018. Odborná skupina EKONOMIKA Program rozvoje Plzeňského kraje 214-218 Odborná skupina EKONOMIKA Struktura Významnější zastoupení větších podniků 1 1,5 tis. zam. Úbytek malých a středních podniků (do 25 zam.) od r. 28 až v roce 211

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

4ST201 STATISTIKA CVIČENÍ Č. 8

4ST201 STATISTIKA CVIČENÍ Č. 8 4ST201 STATISTIKA CVIČENÍ Č. 8 analýza závislostí kontingenční tabulky test závislosti v kontingenční tabulce analýza rozptylu regresní analýza lineární regrese Analýza závislostí Budeme ověřovat existenci

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více