4EK211 Základy ekonometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4EK211 Základy ekonometrie"

Transkript

1 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá

2 Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné mimo interval pozorování s užitím minulé i současné informace extrapolace modelu do budoucna extrapolace modelu do minulosti tj. před interval pozorování (tzv. retrospektiva) predikcí získáváme vyrovnané hodnoty (tj. hodnoty fitted ) Predikce ex-ante (resp. dopředu) tzv. podmíněná podmíněná volbou vysvětlujících proměnných na napozorované hodnoty musíme čekat Predikce ex-post (resp. dozadu) tzv. pseudopředpověď slouží k testování kvality modelu napozorované hodnoty jsou již k dispozici 2

3 Aplikace EM predikce ex-ante volba podmíněných exogenních proměnných, možné způsoby: zadáno z jiné analýzy zadáno pomocí procentuální změny oproti minulému období (např. o 10 %) zadáno pomocí diferencí predikce bodová predikce intervalová se směrodatnou odchylkou sigma: se směrodatnou odchylkou : s ~ s ve vzorci je sigma, výpočet viz předchozí cvičení nebo to je S.E. of regression ve výstupu v EViews vždy platí: s ~ p sigma intervalový odhad se sigma bývá podhodnocený p ŷ s ~ p p ˆ p ± sigma * t1 α / 2( n ( k 1)) y s 1 x X s ~ p X ) x ( T 1 T p p 3

4 Aplikace EM predikce ex-ante + příklad Soubor: CV4_PR1.xls Data: Mira_nezam_obec = obecná míra nezaměstnanosti (%) x Inflace = míra inflace (%) y Zadání: Odhadněte závislost míry inflace (y) na obecné míře nezam (x). Proveďte bodovou předpověď ex-ante ručně i pomocí EViews, víte-li, že hodnota Mira_nezam_obec v roce 2008 je 4,4. Proveďte intervalovou předpověď ex-ante ručně i pomocí EViews, víte-li, že hodnota Mira_nezam_obec v roce 2008 je 4,4 a α = 1 %. y t = β 0 + β 1 x t + u t, t = 1, 2,...,15 EViews: range (příkazový řádek) doplnit do dat Mira_nezam_obec hodnotu 4.4 smpl (příkazový řádek) ls inflace c mira_nezam_obec (příkazový řádek) okno Equation Forecast S.E. jako sp predikci vidím v inflacef a naleznu v sp s ~ p 4

5 Aplikace EM predikce ex-post testuje se kvalita modelu vyřadíme určitý počet pozorování z modelu odhadneme model provedeme predikci vynechaných hodnot porovnáme získané předpovědi se skutečnými hodnotami obecně platí, že predikce je dobrá, pokud je průměrná absolutní hodnota chyby predikce menší než 5 % ze skutečné hodnoty pro dané období (EViews Mean Absolute Percent Error) 5

6 Aplikace EM predikce ex-post + příklad Příklad: Proveďte predikci/předpověď ex-post pro roky 2006 a 2007 na datech CV4_PR1.xls. inflace 2006 = 20,606 2,157 7,1 = 5,29 % EViews: smpl (příkazový řádek) ls inflace c mira_nezam_obec (příkazový řádek) okno Equation Forecast Mean Abs. Percent Error = 111,72 % > 5% model není vhodný k predikci 6

7 Aplikace EM predikce ex-post + příklad Příklad: Proveďte predikci/předpověď ex-post pro roky 2006 a 2007 na datech CV4_PR1.xls. inflace 2007 = 20,606 2,157 5,3 = 9,18 % EViews: smpl (příkazový řádek) ls inflace c mira_nezam_obec (příkazový řádek) okno Equation Forecast Mean Abs. Percent Error = 227,68 % > 5% model není vhodný k predikci 7

8 Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = 0 náhodné vlivy se vzájemně vynulují 2. E(u u T ) = σ 2 I n konečný a konstantní rozptyl = homoskedasticita porušení: heteroskedasticita náhodné složky jsou sériově nezávislé porušení: autokorelace 3. X je nestochastická matice E(X T u) = 0 veškerá náhodnost je obsažena v náhodné složce 4. X má plnou hodnost k matice X neobsahuje žádné perfektně lineárně závislé sloupce pozorování vysvětlujících proměnných porušení: multikolinearita 8

9 Multikolinearita - definice momentová matice X T X není singulární, existuje determinant matice různý od 0, lze spočítat odhadovou funkci b lineární nezávislost sloupců matice X porušení vede k multikolinearitě multikolinearita = existence více než jednoho vztahu lineární závislosti mezi pozorováními vysvětlujících proměnných kolinearita = existence pouze jednoho lineárního vztahu týká se pouze výběrového vzorku, nikoliv abstraktního modelu multikolinearita se NETESTUJE, jen měří v jednom konkrétním výběru podstata zkoumání: intenzita závislosti mezi dvěma nebo více vysvětlujícími proměnnými, zda je či není multikolinearita únosná perfektní multikolinearita: x 1, x 2 = 2x 1 +5, neplatí ceteris paribus!!! v modelech je téměř vždy nějaká mutikolinearita problém jak velká a jestli to je problém 9

10 Multikolinearita příčiny a důsledky Příčiny tendence časových řad ekonomických ukazatelů (makroúdajů) vyvíjet se stejným směrem (např. HDP, C, I, S, Ex, Im) průřezová analýza (velikost firmy, objem kapitálu, příjmy) zahrnutí zpožděné endogenní nebo exogenní proměnné špatně diskretizovaná proměnné pomocí 0, 1 (v cvičení o umělých proměnných) Důsledky snížená přesnost odhadů regresních koeficientů velké standardní chyby odhadové funkce MNČ pochybnosti či nejistotu pokud jde o správnost specifikace modelu odhady zůstávají nestranné, vydatné velká citlivost odhadové funkce MNČ na velmi malé změny v matici X obtížné vyjádření odděleného působení silně kolineárních proměnných 10

11 Měření multikolinearity metoda I použití párových korelačních koeficientů pro pouze 2 vysvětlující proměnné: r cov( x 1 2 x, 1, x 2 sx sx multikolinearita je únosná, pokud: 0 9 a současně r x 1, x, 2 x 2 ) r x R 2 ( y.x x 2 1 x2 1 2 ) koeficient vícenásobné determinace modelu EViews cor x1 x2 (příkazový řádek) 11

12 Měření multikolinearity příklad na metodu I Soubor: CV3_PR1.xls Data: y = maloobchodní obrat potřeb pro domácnost v mld. CZK x 1 = disponibilní příjem v mld. CZK x 2 = cenový index v % Zadání: Odhadněte závislost maloobchodního obratu (y) na disponibilním příjmu (x 1 ) a cenovém indexu (x 2 ). Vyhodnoťte multikolinearitu. y i = β 0 + β 1 x 1i + β 2 x 2i + u i, i = 1, 2,...,8 12

13 Měření multikolinearity metoda II více vysvětlujících proměnných (tj. nelze dělat párové korelační koeficienty) využívá se koeficientů pomocné regrese R i 2 y = f(x 1, x 2, x 3 ) z modelu R 2 x 1 = f(x 2, x 3 ) R 1 2 x 2 = f(x 1, x 3 ) R 2 2 x 3 = f(x 1, x 2 ) R 3 2 jsou-li všechna R i2 < R 2, pak je multikolinearita únosná 13

14 Měření multikolinearity příklad na metodu II Soubor: CV4_PR2.xls Data: y = počet prodaných kuřat (v desítkách milionů kusů) x 1 = výše dotace do zemědělství (v mld. Kč) x 2 = cena za kuře (Kč/kg) x 3 = cena vepřového (Kč/kg) Zadání: Odhadněte závislost počtu prodaných kuřat (y) na proměnných x 1, x 2 a x 3. Vyhodnoťte multikolinearitu. y t = β 0 + β 1 x 1t + β 2 x 2t + β 3 x 3t + u t, t = 1, 2,...,23 Eviews ls y c x1 x2 x3 R-squared ls x1 c x2 x3 R-squared ls x2 c x1 x3 R-squared ls x3 c x1 x2 R-squared 14

15 Měření multikolinearity příklad na metodu I a II Soubor: CV4_PR3.xls Data: HDP = hrubý domácí produkt (v mld. Kč) C = spotřeba (v mld. Kč) I = investice (v mld. Kč) G = vládní výdaje (v mld. Kč) Zadání metoda I: Odhadněte závislost HDP na proměnných C a I. Vyhodnoťte multikolinearitu. HDP t = β 0 + β 1 C t + β 2 I t + u t, t = 1, 2,...,19 Zadání metoda II: Odhadněte závislost HDP na proměnných C, I a G. Vyhodnoťte multikolinearitu. HDP t = β 0 + β 1 C t + β 2 I t + β 3 G t + u t, t = 1, 2,...,19 15

16 Multikolinearita řešení získání dalších pozorování snížení počtu exogenních proměnných (pozor, jestli tam podle teorie proměnná patří, ponechám ji tam) použití jinak specifikovaného modelu použití jiné odhadové techniky transformace pozorování první diference - pozor na autokorelaci poměrové veličiny - pozor na heteroskedasticitu 16

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Cvičení z ekonometrie

Cvičení z ekonometrie Cvičení z ekonometrie Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Katedra ekonomiky Ing. Lukáš Čechura, Ph.D. Dr. Ing. Pavlína Hálová Ing. Zdeňka Kroupová Ing. Michal Malý, Ph.D. Ing.

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

DIPLOMOVÁ PRÁCE. Ekonometrické modely

DIPLOMOVÁ PRÁCE. Ekonometrické modely UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Ekonometrické modely Vedoucí diplomové práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

Indexy, analýza HDP, neaditivnost

Indexy, analýza HDP, neaditivnost Indexy, analýza HDP, neaditivnost 1.) ŘETĚZOVÉ A BAZICKÉ INDEXY 1999 2000 2001 2002 Objem vkladů (mld. Kč) 80,8 83,7 91,5 79,4 a) určete bazické indexy objemu vkladů (1999=100) Rok 1999=100 báze. Pro rok

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Výzkum trhu. Vzdělávací materiál ke kurzu Zahraniční obchod, tutoriál Mezinárodní podnikání

Výzkum trhu. Vzdělávací materiál ke kurzu Zahraniční obchod, tutoriál Mezinárodní podnikání Výzkum trhu Vzdělávací materiál ke kurzu Zahraniční obchod, tutoriál Mezinárodní podnikání Slezská univerzita v Opavě Okresní hospodářská komora Karviná 2010-2013 Výukový materiál je výstupem projektu

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404

SOLVER UŽIVATELSKÁ PŘÍRUČKA. Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 SOLVER UŽIVATELSKÁ PŘÍRUČKA Kamil Šamaj, František Vižďa Univerzita obrany, Brno, 2008 Výzkumný záměr MO0 FVT0000404 1. Solver Program Solver slouží pro vyhodnocení experimentálně naměřených dat. Základem

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Základy ekonometrie Příklady ze cvičení (ZS 2012)

Základy ekonometrie Příklady ze cvičení (ZS 2012) Základy ekonometrie Příklady ze cvičení (ZS 2012) Katedra ekonometrie FIS VŠE v Praze, zouharj@vse.cz 1. října 2014 Pár slov úvodem. Zadání příkladů je rozděleno po jednotlivých cvičeních. Jedná se o orientační

Více

Mezi makroekonomické subjekty náleží: a) domácnosti b) podniky c) vláda d) zahraničí e) vše výše uvedené

Mezi makroekonomické subjekty náleží: a) domácnosti b) podniky c) vláda d) zahraničí e) vše výše uvedené Makroekonomická rovnováha může být představována: a) tempem růstu skutečného produktu, odpovídající vývoji tzv. potenciálního produktu b) vyrovnanou platební bilancí c) mírou nezaměstnanosti na úrovni

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

Plán přednášek makroekonomie

Plán přednášek makroekonomie Plán přednášek makroekonomie Úvod do makroekonomie, makroekonomické agregáty Agregátní poptávka a agregátní nabídka Ekonomické modely rovnováhy Hospodářský růst a cyklus, výpočet HDP Hlavní ekonomické

Více

Třídění statistických dat

Třídění statistických dat 2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.

Více

Determinace vývoje tržních specifik, působících na cenovou hladinu v segmentu bytové výstavby

Determinace vývoje tržních specifik, působících na cenovou hladinu v segmentu bytové výstavby Determinace vývoje tržních specifik, působících na cenovou hladinu v segmentu bytové výstavby David Opočenský Vývoj na trhu s nemovitostmi v segmentu bytové výstavby probíhá vývojem v závislosti na vývoji

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

MĚŘENÍ A PŘEDPOVÍDÁNÍ POPTÁVKY TRHU

MĚŘENÍ A PŘEDPOVÍDÁNÍ POPTÁVKY TRHU MĚŘENÍ A PŘEDPOVÍDÁNÍ POPTÁVKY TRHU Co budeme řešit?? 1. Jaké jsou hlavní koncepce měření a předpovídání poptávky? 2. Jak lze odhadnou současnou poptávku? 3. Jak lze předpovědět budoucí poptávku? 1.Hlavní

Více

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e

D D P. e e e. ...požadovaná výnosová míra D...očekávané dividendy P. očekávaná prodejní cena. D n. n nekonečno. e e e e Téma 8: Chování cen akcií a investiční management Struktura přednášky: 1. Chování cen akcií fundamentální a technická analýza a teorie efektivních trhů. Riziko a výnos Markowitzův model 3. Kapitálový trh

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

ANALÝZA ROSTOUCÍHO VÝVOJE OBJEMU POSKYTNUTÝCH HYPOTEČNÍCH ÚVĚRŮ V ČESKÉ REPUBLICE

ANALÝZA ROSTOUCÍHO VÝVOJE OBJEMU POSKYTNUTÝCH HYPOTEČNÍCH ÚVĚRŮ V ČESKÉ REPUBLICE ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LVII 17 Číslo 3, 2009 ANALÝZA ROSTOUCÍHO VÝVOJE OBJEMU POSKYTNUTÝCH

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat Kalibrace a limity její přesnosti Semestrální práce 2009 RNDr. Markéta

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Aplikace matematiky v ekonomii

Aplikace matematiky v ekonomii KMA/SZZAE Aplikace matematiky v ekonomii Matematické modely v ekonomii 1. Klasifikace prostředků matematického modelování v ekonomii. 2. Modely síťové analýzy: metody CPM a PERT. 3. Modely hromadné obsluhy:

Více

Matematika a statistika

Matematika a statistika KMA/SZZMS Matematika a statistika Matematika 1. Číselné posloupnosti: Definice, vlastnosti, operace s posloupnostmi; limita posloupnosti a její vlastnosti, operace s limitami 2. Limita funkce jedné proměnné:

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Rozpracovaná verze testu z makroekonomie s částí řešení

Rozpracovaná verze testu z makroekonomie s částí řešení Rozpracovaná verze testu z makroekonomie s částí řešení Schéma čtyřsektorového modelu ekonomiky Obrázek 1: Do přiloženého schématu čtyřsektorového modelu ekonomiky doplňte chybějící toky: YD (disponibilní

Více

nejen Ing. Jaroslav Zlámal, Ph.D. Ing. Zdeněk Mendl Vzdìlávání, které baví www.computermedia.cz Nakladatelství a vydavatelství

nejen Ing. Jaroslav Zlámal, Ph.D. Ing. Zdeněk Mendl Vzdìlávání, které baví www.computermedia.cz Nakladatelství a vydavatelství nejen 1. díl Obecná ekonomie Ing. Jaroslav Zlámal, Ph.D. Ing. Zdeněk Mendl Nakladatelství a vydavatelství R Vzdìlávání, které baví www.computermedia.cz TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY EKONOMIE NEJEN K MATURITĚ

Více

Státní rozpočet 2015 a připravované změny daní s dopady do rozpočtů samospráv

Státní rozpočet 2015 a připravované změny daní s dopady do rozpočtů samospráv Státní rozpočet 2015 a připravované změny daní s dopady do rozpočtů samospráv Rozpočet a finanční vize měst a obcí Autoklub ČR Praha - 11. září 2014 Mgr. Simona Hornochová Náměstkyně ministra financí Obsah

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

Statistická analýza složek kvality bílého vína

Statistická analýza složek kvality bílého vína Statistická analýza složek kvality bílého vína Petr Voborník Fakulta informatiky a managementu, Katedra informatiky a kvantitativních metod Univerzita Hradec Králové, Rokitanského 62, 5 Hradec Králové,

Více

Popis modelu pro odhady PH mléčné užitkovosti

Popis modelu pro odhady PH mléčné užitkovosti Popis modelu pro odhady PH mléčné užitkovosti Zvířata zařazená do hodnocení V modelu plemene H jsou hodnoceny krávy s podílem krve H nebo 75% a výše. V modelu plemene C jsou hodnoceny krávy s podílem krve

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Zápočtové úkoly Statistika II PAEK, LS 2014 2015

Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Pokyny Každý student odevzdává domácí úkol sám za sebe. Odevzdání proběhne přes systém moodle v předmětu Statistika II PaEK (ESE74E) přes odkaz Zápočtový

Více

Forecasting, demand planning a řízení zásob: Skrytý potenciál. Tomáš Hladík Logio

Forecasting, demand planning a řízení zásob: Skrytý potenciál. Tomáš Hladík Logio Forecasting, demand planning a řízení zásob: Skrytý potenciál Tomáš Hladík Logio 14.3.2012 Obsah Cíl správného řízení zásob Proč segmentovat portfolio? Dobrý forecasting je základ Jak na pomaluobrátkové

Více

Model výkonnosti hokejových reprezentačních týmů

Model výkonnosti hokejových reprezentačních týmů www.pwc.com/cz Model výkonnosti hokejových reprezentačních týmů Duben 5 Poradenská společnost analyzovala předpoklady jednotlivých zemí pro úspěch na mistrovství světa v hokeji, které začíná. května v

Více

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost

Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost Pravidla a podmínky k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen společnost) stanoví k vydání osvědčení o způsobilosti vykonávat aktuárskou činnost (dále jen osvědčení) následující

Více

Hedonický cenový index na datech poskytovatelů hypotečních úvěrů. Ing. Mgr. Martin Lux, Ph.D.

Hedonický cenový index na datech poskytovatelů hypotečních úvěrů. Ing. Mgr. Martin Lux, Ph.D. Hedonický cenový index na datech poskytovatelů hypotečních úvěrů Ing. Mgr. Martin Lux, Ph.D. Proč nový index? V ČR existuje již několik cenových indexů například index ČSÚ (na transakčních i nabídkových

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Předpokládaný vývoj hospodaření měst a obcí v roce 2014 a predikce na rok 2015 Zadluženost obcí

Předpokládaný vývoj hospodaření měst a obcí v roce 2014 a predikce na rok 2015 Zadluženost obcí Předpokládaný vývoj hospodaření měst a obcí v roce 2014 a predikce na rok 2015 Zadluženost obcí Miroslav Matej, Ministerstvo financí leden 2015 Hospodaření obcí v roce 2014 stav: listopad 2013 vs. listopad

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Metodický list. Makroekonomie I METODICKÝ LIST

Metodický list. Makroekonomie I METODICKÝ LIST Metodický list pro 3. soustředění kombinovaného Bc. studia předmětu Makroekonomie I METODICKÝ LIST Předmět Makroekonomie I Typ studia KS Semestr 2. Způsob zakončení Zápočet, ústní zkouška Přednášející

Více

(Pracovní podklad v rámci koordinace prací na aktualizaci ROP)

(Pracovní podklad v rámci koordinace prací na aktualizaci ROP) ORIENTAČNÍ FINANČNÍ RÁMEC REGIONÁLNÍCH OPERAČNÍCH PROGRAMŮ A JEDNOTNÉHO PROGRAMOVÉHO DOKUMENTU PRO OBDOBÍ 2004 2006 (Pracovní podklad v rámci koordinace prací na aktualizaci ROP) Počínaje rokem vstupu

Více

Měnová politika - cíle

Měnová politika - cíle Měnová politika - cíle Hlavním cílem ČNB (podle Ústavy) je péče o cenovou stabilitu. Pokud tím není dotčen tento hlavní cíl, má ČNB za úkol podporovat obecnou hospodářskou politiku vlády vedoucí k udržitelnému

Více

IBM SPSS Complex Samples

IBM SPSS Complex Samples IBM Software IBM SPSS Complex Samples Analyzujte výsledky komplexních výběrových šetření korektním způsobem Korektní zpracování výzkumů založených na komplexních výběrových plánech není snadné. Statistické

Více

Credit scoring. Libor Vajbar Analytik řízení rizik. 18. dubna 2013. Brno

Credit scoring. Libor Vajbar Analytik řízení rizik. 18. dubna 2013. Brno Credit scoring Libor Vajbar Analytik řízení rizik 18. dubna 2013 Brno 1 PROFIL SPOLEČNOSTI Home Credit a.s. přední poskytovatel spotřebitelského financování Úvěrové produkty nákup na splátky u obchodních

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách

VNITROSKUPINOVÝ ROZPTYL. Je mírou variability uvnitř skupin Jiný název: průměr rozptylů Vypočítává se jako průměr rozptylů v jednotlivých skupinách ROZKLAD ROZPTYLU ROZKLAD ROZPTYLU Rozptyl se dá rozložit na vnitroskupinový a meziskupinový rozptyl. Celkový rozptyl je potom součet meziskupinového a vnitroskupinového Užívá se k výpočtu rozptylu, jestliže

Více

Možnosti vyhodnocení časových řad v softwaru STATISTICA

Možnosti vyhodnocení časových řad v softwaru STATISTICA StatSoft Možnosti vyhodnocení časových řad v softwaru STATISTICA Mnoho informací se zachycuje ve formě chronologicky uspořádaných údajů, jinak řečeno ve formě časových řad. Časová řada je tedy v čase uspořádaná

Více

Průzkum makroekonomických prognóz

Průzkum makroekonomických prognóz Průzkum makroekonomických prognóz Makroekonomický scénář Konvergenčního programu, makroekonomické rámce státního rozpočtu a rozpočtového výhledu a predikce MF ČR jsou pravidelně srovnávány s výsledky šetření

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Zadání zkouškové studie 2015

Zadání zkouškové studie 2015 Zadání zkouškové studie Modely řízení ve firmě Možné zdroje dat: obecně příkladný seznam www.imf.org - mezinárodní měnový fond www.oecd.org - OECD www.cnb.cz - centrální banka ČR www.eia.doe.gov - USA,

Více

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza korelační koeficient říká, že mezi dvěma proměnnými existuje souvislost - jsme schopni vyslovit

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing.

Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. 1.2 Prezentace statistických dat Statistická prezentace je umění vytvořit dobrou tabulku nebo graf, které přitáhnou oko k tomu, co je zajímavé. Mgr. Ing. Jan Spousta Co se dozvíte Statistické ukazatele.

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: 7.2.2 STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28.

PROGRAMECH JOSEF TVRDÍK ČÍSLO OBLASTI PODPORY: 7.2.2 STUDIJNÍCH PROGRAMECH OSTRAVSKÉ UNIVERZITY REGISTRAČNÍ ČÍSLO PROJEKTU: CZ.1.07/2.2.00/28. ANALÝZA VÍCEROZMĚRNÝCH DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH JOSEF TVRDÍK ČÍSLO OPERAČNÍHO PROGRAMU: CZ.1.07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Rozdělení populace v ČR podle věku a pohlaví (v %)

Rozdělení populace v ČR podle věku a pohlaví (v %) tabulka č. 1 Rozdělení populace v ČR podle věku a pohlaví (v %) Populace celkem* Populace ohrožená chudobou ** Věk Celkem Muži Ženy Celkem Muži Ženy Celkem 100 100 100 100 100 100 0-15 18 32 16-24 12 13

Více

Případové studie k finanční dostupnosti bydlení: regionální disparity ve finanční dostupnosti bydlení u vybraných typů domácností

Případové studie k finanční dostupnosti bydlení: regionální disparity ve finanční dostupnosti bydlení u vybraných typů domácností Případové studie k finanční dostupnosti bydlení: regionální disparity ve finanční dostupnosti bydlení u vybraných typů domácností Martina Mikeszová Oddělení ekonomické sociologie, tým socioekonomie bydlení

Více

Co přinese rok 2013?

Co přinese rok 2013? Co přinese rok 213? Eva Zamrazilová Členka bankovní rady ČNB Očekávaný vývoj realitního trhu a developerských projektů v ČR a na Slovensku Brno 5. Prosince 212 Proč centrální banky zajímá realitní trh?

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více