4EK211 Základy ekonometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4EK211 Základy ekonometrie"

Transkript

1 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE

2 1. Jednoduchá regrese opakování Zdroj: ECON2300, University of Queensland, Australia, Data: domy.wf1 Zadání: Zkoumáme závislost ceny domu (v dolarech, proměnná cena) na jeho obytném prostoru (v m 2, proměnná rozloha). CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 2

3 1. Jednoduchá regrese opakování Vykreslete bodový graf závislosti ceny domů na obytném prostoru. 600, , ,000 PRICE 300, , , M2 CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 3

4 1. Jednoduchá regrese opakování 1. Odhadněte regresi: cena = β 0 + β 1 rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? 5. Na 5% hladině významnosti otestujte nulovou hypotézu o nevýznamnosti β 1. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 4

5 1. Jednoduchá regrese opakování 1. Odhadněte regresi: cena = 18385, rozloha 2. Interpretujte odhadnutý parametry β 1. S každým metrem čtverečním vzroste cena domu o 876 dolarů. 3. Jaký je koeficient determinace? 0,67 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? dolarů 5. Na 5% hladině významnosti otestujte nulovou hypotézu o nevýznamnosti β 1. t = ,65 = 42,4. Kritická hodnota: 1,96. Zamítáme nulovou hypotézu. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 5

6 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) = β 0 + β 1 rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 6

7 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) =10,59+ 0,0064 rozloha Quick Estimate equation log(cena) c rozloha 2. Interpretujte odhadnutý parametr β 1. S každým metrem čtverečním vzroste cena domu o 0,64 %. 3. Jaký je koeficient determinace? 0,71 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? exp(11,87) = dolarů CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 7

8 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) = β 0 + β 1 ln rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 8

9 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln( cena) = 6,56+ 1 ln(rozloha) Quick Estimate equation log(cena) c log(rozloha) 2. Interpretujte odhadnutý parametr β 1. S každým růstem rozlohy o 1 % vzroste cena domu o 1 %. 3. Jaký je koeficient determinace? 0,69 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? exp(11,86) = dolarů CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 9

10 1. Jednoduchá regrese opakování Vysvětlovaná proměnná Vysvětlující proměnná Interpretace β 1 y x y = β 1 x y ln(x) y = (β 1 /100)% x ln(y) x % y = (100β 1 ) x ln(y) ln(x) % y = β 1 % x CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 10

11 2. Vícenásobná regrese příklad 1 Data: sleep.wf1 Zdroj: Zouhar, Původní zdroj: model vychází z článku Biddleho a Hamermeshe (1990) Co budeme zkoumat: Kompenzují lidé delší pracovní dobu zkrácením délky spánku? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 11

12 2. Vícenásobná regrese příklad 1 Proměnné: - totwrk: celková doba spánku za týden (v minutách) - sleep: celková doba práce za týden (v minutách) - educ: počet let vzdělání (v letech) - age: věk (v letech) Regresní přímka: sleep = β 0 + β 1 totwrk + β 2 educ + β 3 age + u CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 12

13 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = β 0 + β 1 totwrk + β 2 educ + β 3 age + u 1. Jaká znaménka byste očekávali u koeficientů β 1, β 2, β 3? 2. Může u b 1 vyjít jiné znaménko, než jste očekávali, i v případě, že je model správně specifikován a jsou splněny G-M předpoklady? 3. Odhadněte regresní přímku. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 13

14 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age Interpretujte odhadnuté koeficienty. Jak se změní doba spánku, začneme-li pracovat o 10 hodin týdně více? Kolik hodin spánku denně byste dle modelu předpověděli sobě? Jaký je koeficient vícenásobné determinace? Připomeňte, co vyjadřuje. Jaký je korigovaný koeficient vícenásobné determinace? Co to je? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 14

15 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age 1. Otestujte nulovou hypotézu, že β 2 = 0. Spočítejte 95 % interval spolehlivosti pro β 2 a učiňte na základě něj nějaký závěr ohledně testované hypotézy. 2. Otestujte nulovou hypotézu, že β 2 < Otestujte významnost modelu jako celku. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 15

16 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age 1. Otestujte nulovou hypotézu, že β 2 = 0. H 0 : β 2 = 0 H 1 : β 2 0 Testová statistika: 1,89 Kritická hodnota: 1,96 1,89 < 1,96 Nezamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 16

17 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age % interval spolehlivosti pro β 2 < 11,1 5,88 1,96; 11,1 + 5,88 1,96 > < 22,6; 0,4 > Obsahuje nulu nezamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 17

18 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age 2. Otestujte nulovou hypotézu, že β 2 < 0. H 0 : β 2 = 0 H 1 : β 2 < 0 Testová statistika: 1,89 Kritická hodnota: 1,64 1,89 > 1,64 Zamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 18

19 2. Vícenásobná regrese příklad 1-1,89-1,89 CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 19

20 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age 3. Otestujte významnost modelu jako celku. H 0 : β 1 = β 2 = β 3 = 0 H 1 : non H 0 F = R2 n k 1 0, = = 29,9 1 R 2 k 1 0, Porovnáváme s kritickou hodnotou z Fisherova rozdělení: F*(k, n - k - 1) EViews uvádí p-hodnotu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 20

21 2. Vícenásobná regrese příklad 1 CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 21

22 3. Vícenásobná regrese příklad 2 Data: pizza.wf1 Zdroj: ECON2300, University of Queensland, 2012, upraveno Co budeme zkoumat: kolik utrácí lidi za pizzu v závislosti na různých faktorech CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 22

23 3. Vícenásobná regrese příklad 2 Proměnné: - pizza: roční útrata za pizzu v dolarech - zena: = 1 pro ženy, jinak 0 (umělá proměnná, dummy variable) - muz: = 1 pro muže, jinak 0 (umělá proměnná, dummy variable) - prijem roční příjem v dolarech - vek věk (v letech) - hranolky roční útrata za hranolky v dolarech - hamburgery roční útrata za hamburgery v dolarech - salaty roční útrata za saláty v dolarech CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 23

24 3. Vícenásobná regrese příklad 2 Upravte proměnnou prijem tak, že ji vydělíte Odhadněte tři modely: (a) pizza = β 0 + β 1 prijem + u (b) pizza = β 0 + β 1 prijem+ β 2 vek + u (c) pizza = β 0 + β 1 prijem+ β 2 vek + β 3 vek prijem + u CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 24

25 3. Vícenásobná regrese příklad 2 Odhadněte tři modely a vždy řekněte, které proměnné jsou v modelu významné. Interpretujte parametry. (a) (b) (c) pizza = ,46 prijem pizza = ,38 prijem 7,58 vek pizza = ,07 prijem 2,98 vek 0,16 vek prijem Jak se ve třetím případě změní útrata za pizzu s 1 rokem věku navíc? Jak se změní s růstem ročního příjmu o 1 tisíc dolarů? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 25

26 3. Vícenásobná regrese příklad 2 (c) pizza = ,07 prijem 2,98 vek 0,16 vek prijem pizza prijem = β 1 + β 3 vek pizza vek = β 2 + β 3 prijem S rostoucím věkem útrata za pizzu klesá, a to tím více, čím vyšší má daná osoba příjem. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 26

27 4. Multikolinearita Budeme zkoumat vliv pohlaví na útratu za pizzu. Odhadněte model: pizza = β 0 + β 1 prijem+ β 2 vek + β 3 zena + β 4 muz + u V čem je problém? Který G-M předpoklad je porušen? Jakou úpravu modelu byste navrhli? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 27

28 4. Multikolinearita Odhadněte následující modely a posuďte, zda jsou proměnné v modelu významné. pizza = β 0 + β 1 hranolky + u pizza = β 0 + β 1 hranolky + β 2 hamburgery + u pizza = β 0 + β 1 hranolky + β 2 hamburgery + β 3 salaty + u Může zde hrát roli multikolinearita? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 28

29 4. Multikolinearita jde o lineární závislost vysvětlujících proměnných je pak obtížné poznat, jak každá z vysvětlujících proměnných ovlivňuje vysvětlující proměnnou (poznáme, jak ji ovlivňují dohromady) příčiny: Tendence časových řad vyvíjet se stejným směrem Průřezová data Zpožděné hodnoty proměnných Nesprávný počet dummy proměnných - kdy jsme se s tím dnes setkali? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 29

30 4. Multikolinearita netestujeme ji, nýbrž ji měříme v jednom konkrétním souboru důsledky: Odhady jsou nestranné i vydatné, ale Odhady nejsou stabilní, jsou citlivé i na malé změny v matici X Směrodatné chyby koeficientů jsou velké - proměnná se může jevit jako nevýznamná, i když to nemusí být pravda CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 30

31 4. Multikolinearita Měření - 2 proměnné: multikolinearita je v modelu únosná, pokud platí současně: r x1,x 2 0,9 r2 x1,x 2 R 2 Kde r x1,x 2 je párový korelační koeficient mezi dvěma vysvětlujícími proměnnými R 2 je koeficient determinace z modelu CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 31

32 2. Multikolinearita Měření - více než 2 proměnné: Tabulka párových korelačních koeficientů (Quick Group Statistics Correlations) Odhalí lineární závislost mezi dvojicemi proměnných. Nedokáže ale zachytit například závislost hamburgery = 2 hranolky - 0,5 hamburgery, pokud by tam taková třeba byla. V případě více proměnných používáme pomocné regrese. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 32

33 4. Multikolinearita Měření - více než 2 proměnné: Původní regrese: y = f(x 1,x 2,x 3 ) R 2 Pomocné regrese: x 1 = f(x 2,x 3 ) R 1 2 x 2 = f(x 1,x 3 ) R 2 2 x 3 = f(x 1,x 2 ) R 3 2 Jsou-li všechny dílčí koeficienty determinace z pomocných regresí menší než koeficient determinace z původní regrese, je multikolinearita v modelu únosná. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 33

34 4. Multikolinearita pizza = β 0 + β 1 hranolky + β 2 hamburgery + β 3 salaty + u R 2 = 0,16 hranolky = β 0 + β 1 hamburgery + β 2 salaty + u R 2 = 0,72 hamburgery = β 0 + β 1 hranolky + β 2 salaty + u R 2 = 0,73 salaty = β 0 + β 1 hranolky + β 2 hamburgery + u R 2 = 0,60 Multikolinearita není v modelu únosná. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 34

35 4. Multikolinearita řešení: Získat další pozorování Použít jiný model (jiná formulace, vypuštění proměnné), pozor na specifikační chybu Transformace pozorování (první diference, podíly) CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 35

36 Na doma: Co byste měli umět 1. Jak se interpretují odhadnuté koeficienty, jsou-li proměnné zlogaritmované? 2. Co je to koeficient determinace a korigovaný koeficient determinace? 3. Jak otestujeme významnost modelu jako celku? 4. Co je to multikolinearita, co je její příčinou? 5. Jak se měří multikolinearita v daném výběru? 6. Co je důsledkem multikolinearity? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 36

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 11: Speciální případy použití MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 2. Nelineární funkce

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 2: Metoda nejmenších čtverců LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Doplnění a opakování z

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

T E O R I E C H Y B A V Y R O V N Á V A C Í P O

T E O R I E C H Y B A V Y R O V N Á V A C Í P O ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu T E O R I E C H Y B A V Y R O V N Á V A C Í P O Č E T 2 č. úlohy 6 název úlohy T

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Doporučené příklady k procvičení k 2. Průběžnému testu

Doporučené příklady k procvičení k 2. Průběžnému testu Doporučené příklady k procvičení k 2. Průběžnému testu - Statistika v příkladech Marek a kol. (2013) - kapitola 2.3, 9 řešené příklady 2.52-2.53, 2.58a,b - kapitola 3.1 o řešené příklady: 3.1, 3.2, 3.4

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Cvičení z ekonometrie

Cvičení z ekonometrie Cvičení z ekonometrie Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Katedra ekonomiky Ing. Lukáš Čechura, Ph.D. Dr. Ing. Pavlína Hálová Ing. Zdeňka Kroupová Ing. Michal Malý, Ph.D. Ing.

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

FAKTORY PŮSOBÍCÍ NA CESTUJÍCÍ V DOPRAVNÍM SYSTÉMU FACTORS WHICH HAVE EFFECT ON PASSENGERS IN TRANSPORT SYSTEM

FAKTORY PŮSOBÍCÍ NA CESTUJÍCÍ V DOPRAVNÍM SYSTÉMU FACTORS WHICH HAVE EFFECT ON PASSENGERS IN TRANSPORT SYSTEM FAKTORY PŮSOBÍCÍ NA CESTUJÍCÍ V DOPRAVNÍM SYSTÉMU FACTORS WHICH HAVE EFFECT ON PASSENGERS IN TRANSPORT SYSTEM Kateřina Pojkarová 1 Anotace:Pro uskutečňování svých cest si lidé vybírají různé způsoby, a

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných

Ekonomický a ekonometrický model. Předpoklady, formulace EKO modelu a očekávání o chování proměnných Exogenní (γ) Simultánní dynamický model Tento model zkoumá vzájemné závislosti vývoje tempa růstu/poklesu HDP, míry nezaměstnanosti a míry inflace v České republice v závislosti na indexu spotřebitelských

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Základy ekonometrie Příklady ze cvičení (ZS 2012)

Základy ekonometrie Příklady ze cvičení (ZS 2012) Základy ekonometrie Příklady ze cvičení (ZS 2012) Katedra ekonometrie FIS VŠE v Praze, zouharj@vse.cz 1. října 2014 Pár slov úvodem. Zadání příkladů je rozděleno po jednotlivých cvičeních. Jedná se o orientační

Více

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí

2011 (datový soubor life expectancy CR.txt). Budeme predikovat vývoj očekávané doby dožití pomocí Příklady užití časových řad k predikci rizikových jevů 1 Očekávaná doba dožití v ČR Máme k dispozici časovou řadu udávající očekávanou dobu dožití v České republice od roku 1960 do roku 2011 (datový soubor

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Kalibrace a limity její přesnosti

Kalibrace a limity její přesnosti Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Zápočtové úkoly Statistika II PAEK, LS 2014 2015

Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Pokyny Každý student odevzdává domácí úkol sám za sebe. Odevzdání proběhne přes systém moodle v předmětu Statistika II PaEK (ESE74E) přes odkaz Zápočtový

Více

DIPLOMOVÁ PRÁCE. Ekonometrické modely

DIPLOMOVÁ PRÁCE. Ekonometrické modely UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Ekonometrické modely Vedoucí diplomové práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR

VÍCEROZMĚRNÝ STATISTICKÝ SOUBOR KORELACE A REGRESE 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/..00/8.001)

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE

5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE 5. PŘEDNÁŠKA EKONOMETRICKÝ MODEL REGRESNÍ ANALÝZA DUMMIES VÍCENÁSOBNÁ REGRESE 1 STRUKTURA PŘEDNÁŠKY - DNES - Formulace a strukturace problému za pomoci teorie; data; ekonometrický model; identifikační

Více

Analýza dat z dotazníkových šetření

Analýza dat z dotazníkových šetření Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší

Více

T T. Think Together 2013. Marta Gryčová THINK TOGETHER

T T. Think Together 2013. Marta Gryčová THINK TOGETHER Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 4. února 2013 T T THINK TOGETHER Think Together 2013 Mzdová disparita v českém agrárním sektoru v období od

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza)

ZX510 Pokročilé statistické metody geografického výzkumu. Téma: Měření síly asociace mezi proměnnými (korelační analýza) ZX510 Pokročilé statistické metody geografického výzkumu Téma: Měření síly asociace mezi proměnnými (korelační analýza) Měření síly asociace (korelace) mezi proměnnými Vztah mezi dvěma proměnnými existuje,

Více

Dynamické metody pro predikci rizika

Dynamické metody pro predikci rizika Dynamické metody pro predikci rizika 1 Úvod do analýzy časových řad Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých časových intervalech okamžikové např

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Katedra ekonomiky Prognostické metody Seminární práce Autor: Miloš Uldrich Cvičící: Ing. Lukáš Čechura, Ph.D. ČT 12:15 (su) 2009 ČZU v Praze

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Zobecněná analýza rozptylu, více faktorů a proměnných

Zobecněná analýza rozptylu, více faktorů a proměnných Zobecněná analýza rozptylu, více faktorů a proměnných Menu: QCExpert Anova Více faktorů Zobecněná analýza rozptylu (ANalysis Of VAriance, ANOVA) umožňuje posoudit do jaké míry ovlivňují kvalitativní proměnné

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá

STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá STATISTICA Téma 8. Regresní a korelační analýza, regrese prostá 1) Lineární i nelineární regrese prostá, korelace Naeditujeme data viz obr. 1. Obr. 1 V menu Statistika zvolíme submenu Pokročilé lineární/nelineární

Více

IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics

IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics IBM Software IBM SPSS Exact Tests Přesné analýzy malých datových souborů Při rozhodování o existenci vztahu mezi proměnnými v kontingenčních tabulkách a při používání neparametrických ů analytici zpravidla

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Informační technologie a statistika 1

Informační technologie a statistika 1 Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 4 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat

Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE Semestrální práce z CHEMOMETRIE I Statistické zpracování jednorozměrných dat DOMINIKA BURKOŇOVÁ 4.ročník 2000/2001 Dominika Burkoňová Příklad č.1

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více