4EK211 Základy ekonometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4EK211 Základy ekonometrie"

Transkript

1 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE

2 1. Jednoduchá regrese opakování Zdroj: ECON2300, University of Queensland, Australia, Data: domy.wf1 Zadání: Zkoumáme závislost ceny domu (v dolarech, proměnná cena) na jeho obytném prostoru (v m 2, proměnná rozloha). CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 2

3 1. Jednoduchá regrese opakování Vykreslete bodový graf závislosti ceny domů na obytném prostoru. 600, , ,000 PRICE 300, , , M2 CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 3

4 1. Jednoduchá regrese opakování 1. Odhadněte regresi: cena = β 0 + β 1 rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? 5. Na 5% hladině významnosti otestujte nulovou hypotézu o nevýznamnosti β 1. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 4

5 1. Jednoduchá regrese opakování 1. Odhadněte regresi: cena = 18385, rozloha 2. Interpretujte odhadnutý parametry β 1. S každým metrem čtverečním vzroste cena domu o 876 dolarů. 3. Jaký je koeficient determinace? 0,67 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? dolarů 5. Na 5% hladině významnosti otestujte nulovou hypotézu o nevýznamnosti β 1. t = ,65 = 42,4. Kritická hodnota: 1,96. Zamítáme nulovou hypotézu. CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 5

6 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) = β 0 + β 1 rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 6

7 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) =10,59+ 0,0064 rozloha Quick Estimate equation log(cena) c rozloha 2. Interpretujte odhadnutý parametr β 1. S každým metrem čtverečním vzroste cena domu o 0,64 %. 3. Jaký je koeficient determinace? 0,71 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? exp(11,87) = dolarů CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 7

8 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln(cena) = β 0 + β 1 ln rozloha + u 2. Interpretujte odhadnutý parametr β Jaký je koeficient determinace? 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 8

9 1. Jednoduchá regrese opakování 1. Odhadněte regresi: ln( cena) = 6,56+ 1 ln(rozloha) Quick Estimate equation log(cena) c log(rozloha) 2. Interpretujte odhadnutý parametr β 1. S každým růstem rozlohy o 1 % vzroste cena domu o 1 %. 3. Jaký je koeficient determinace? 0,69 4. Jakou byste předpověděli cenu domu o rozloze 200 m 2? exp(11,86) = dolarů CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 9

10 1. Jednoduchá regrese opakování Vysvětlovaná proměnná Vysvětlující proměnná Interpretace β 1 y x y = β 1 x y ln(x) y = (β 1 /100)% x ln(y) x % y = (100β 1 ) x ln(y) ln(x) % y = β 1 % x CVIČENÍ 3 LINEÁRNÍ REGRESNÍ MODEL 10

11 2. Vícenásobná regrese příklad 1 Data: sleep.wf1 Zdroj: Zouhar, Původní zdroj: model vychází z článku Biddleho a Hamermeshe (1990) Co budeme zkoumat: Kompenzují lidé delší pracovní dobu zkrácením délky spánku? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 11

12 2. Vícenásobná regrese příklad 1 Proměnné: - totwrk: celková doba spánku za týden (v minutách) - sleep: celková doba práce za týden (v minutách) - educ: počet let vzdělání (v letech) - age: věk (v letech) Regresní přímka: sleep = β 0 + β 1 totwrk + β 2 educ + β 3 age + u CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 12

13 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = β 0 + β 1 totwrk + β 2 educ + β 3 age + u 1. Jaká znaménka byste očekávali u koeficientů β 1, β 2, β 3? 2. Může u b 1 vyjít jiné znaménko, než jste očekávali, i v případě, že je model správně specifikován a jsou splněny G-M předpoklady? 3. Odhadněte regresní přímku. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 13

14 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age Interpretujte odhadnuté koeficienty. Jak se změní doba spánku, začneme-li pracovat o 10 hodin týdně více? Kolik hodin spánku denně byste dle modelu předpověděli sobě? Jaký je koeficient vícenásobné determinace? Připomeňte, co vyjadřuje. Jaký je korigovaný koeficient vícenásobné determinace? Co to je? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 14

15 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age 1. Otestujte nulovou hypotézu, že β 2 = 0. Spočítejte 95 % interval spolehlivosti pro β 2 a učiňte na základě něj nějaký závěr ohledně testované hypotézy. 2. Otestujte nulovou hypotézu, že β 2 < Otestujte významnost modelu jako celku. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 15

16 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwrk 11,1 educ + 2,2 age 1. Otestujte nulovou hypotézu, že β 2 = 0. H 0 : β 2 = 0 H 1 : β 2 0 Testová statistika: 1,89 Kritická hodnota: 1,96 1,89 < 1,96 Nezamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 16

17 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age % interval spolehlivosti pro β 2 < 11,1 5,88 1,96; 11,1 + 5,88 1,96 > < 22,6; 0,4 > Obsahuje nulu nezamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 17

18 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age 2. Otestujte nulovou hypotézu, že β 2 < 0. H 0 : β 2 = 0 H 1 : β 2 < 0 Testová statistika: 1,89 Kritická hodnota: 1,64 1,89 > 1,64 Zamítáme nulovou hypotézu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 18

19 2. Vícenásobná regrese příklad 1-1,89-1,89 CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 19

20 2. Vícenásobná regrese příklad 1 Regresní přímka: sleep = ,15 totwork 11,1 edu + 2,2 age 3. Otestujte významnost modelu jako celku. H 0 : β 1 = β 2 = β 3 = 0 H 1 : non H 0 F = R2 n k 1 0, = = 29,9 1 R 2 k 1 0, Porovnáváme s kritickou hodnotou z Fisherova rozdělení: F*(k, n - k - 1) EViews uvádí p-hodnotu. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 20

21 2. Vícenásobná regrese příklad 1 CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 21

22 3. Vícenásobná regrese příklad 2 Data: pizza.wf1 Zdroj: ECON2300, University of Queensland, 2012, upraveno Co budeme zkoumat: kolik utrácí lidi za pizzu v závislosti na různých faktorech CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 22

23 3. Vícenásobná regrese příklad 2 Proměnné: - pizza: roční útrata za pizzu v dolarech - zena: = 1 pro ženy, jinak 0 (umělá proměnná, dummy variable) - muz: = 1 pro muže, jinak 0 (umělá proměnná, dummy variable) - prijem roční příjem v dolarech - vek věk (v letech) - hranolky roční útrata za hranolky v dolarech - hamburgery roční útrata za hamburgery v dolarech - salaty roční útrata za saláty v dolarech CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 23

24 3. Vícenásobná regrese příklad 2 Upravte proměnnou prijem tak, že ji vydělíte Odhadněte tři modely: (a) pizza = β 0 + β 1 prijem + u (b) pizza = β 0 + β 1 prijem+ β 2 vek + u (c) pizza = β 0 + β 1 prijem+ β 2 vek + β 3 vek prijem + u CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 24

25 3. Vícenásobná regrese příklad 2 Odhadněte tři modely a vždy řekněte, které proměnné jsou v modelu významné. Interpretujte parametry. (a) (b) (c) pizza = ,46 prijem pizza = ,38 prijem 7,58 vek pizza = ,07 prijem 2,98 vek 0,16 vek prijem Jak se ve třetím případě změní útrata za pizzu s 1 rokem věku navíc? Jak se změní s růstem ročního příjmu o 1 tisíc dolarů? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 25

26 3. Vícenásobná regrese příklad 2 (c) pizza = ,07 prijem 2,98 vek 0,16 vek prijem pizza prijem = β 1 + β 3 vek pizza vek = β 2 + β 3 prijem S rostoucím věkem útrata za pizzu klesá, a to tím více, čím vyšší má daná osoba příjem. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 26

27 4. Multikolinearita Budeme zkoumat vliv pohlaví na útratu za pizzu. Odhadněte model: pizza = β 0 + β 1 prijem+ β 2 vek + β 3 zena + β 4 muz + u V čem je problém? Který G-M předpoklad je porušen? Jakou úpravu modelu byste navrhli? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 27

28 4. Multikolinearita Odhadněte následující modely a posuďte, zda jsou proměnné v modelu významné. pizza = β 0 + β 1 hranolky + u pizza = β 0 + β 1 hranolky + β 2 hamburgery + u pizza = β 0 + β 1 hranolky + β 2 hamburgery + β 3 salaty + u Může zde hrát roli multikolinearita? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 28

29 4. Multikolinearita jde o lineární závislost vysvětlujících proměnných je pak obtížné poznat, jak každá z vysvětlujících proměnných ovlivňuje vysvětlující proměnnou (poznáme, jak ji ovlivňují dohromady) příčiny: Tendence časových řad vyvíjet se stejným směrem Průřezová data Zpožděné hodnoty proměnných Nesprávný počet dummy proměnných - kdy jsme se s tím dnes setkali? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 29

30 4. Multikolinearita netestujeme ji, nýbrž ji měříme v jednom konkrétním souboru důsledky: Odhady jsou nestranné i vydatné, ale Odhady nejsou stabilní, jsou citlivé i na malé změny v matici X Směrodatné chyby koeficientů jsou velké - proměnná se může jevit jako nevýznamná, i když to nemusí být pravda CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 30

31 4. Multikolinearita Měření - 2 proměnné: multikolinearita je v modelu únosná, pokud platí současně: r x1,x 2 0,9 r2 x1,x 2 R 2 Kde r x1,x 2 je párový korelační koeficient mezi dvěma vysvětlujícími proměnnými R 2 je koeficient determinace z modelu CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 31

32 2. Multikolinearita Měření - více než 2 proměnné: Tabulka párových korelačních koeficientů (Quick Group Statistics Correlations) Odhalí lineární závislost mezi dvojicemi proměnných. Nedokáže ale zachytit například závislost hamburgery = 2 hranolky - 0,5 hamburgery, pokud by tam taková třeba byla. V případě více proměnných používáme pomocné regrese. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 32

33 4. Multikolinearita Měření - více než 2 proměnné: Původní regrese: y = f(x 1,x 2,x 3 ) R 2 Pomocné regrese: x 1 = f(x 2,x 3 ) R 1 2 x 2 = f(x 1,x 3 ) R 2 2 x 3 = f(x 1,x 2 ) R 3 2 Jsou-li všechny dílčí koeficienty determinace z pomocných regresí menší než koeficient determinace z původní regrese, je multikolinearita v modelu únosná. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 33

34 4. Multikolinearita pizza = β 0 + β 1 hranolky + β 2 hamburgery + β 3 salaty + u R 2 = 0,16 hranolky = β 0 + β 1 hamburgery + β 2 salaty + u R 2 = 0,72 hamburgery = β 0 + β 1 hranolky + β 2 salaty + u R 2 = 0,73 salaty = β 0 + β 1 hranolky + β 2 hamburgery + u R 2 = 0,60 Multikolinearita není v modelu únosná. CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 34

35 4. Multikolinearita řešení: Získat další pozorování Použít jiný model (jiná formulace, vypuštění proměnné), pozor na specifikační chybu Transformace pozorování (první diference, podíly) CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 35

36 Na doma: Co byste měli umět 1. Jak se interpretují odhadnuté koeficienty, jsou-li proměnné zlogaritmované? 2. Co je to koeficient determinace a korigovaný koeficient determinace? 3. Jak otestujeme významnost modelu jako celku? 4. Co je to multikolinearita, co je její příčinou? 5. Jak se měří multikolinearita v daném výběru? 6. Co je důsledkem multikolinearity? CVIČENÍ 5 VÍCENÁSOBNÁ REGRESE 36

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Cvičení z ekonometrie

Cvičení z ekonometrie Cvičení z ekonometrie Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Katedra ekonomiky Ing. Lukáš Čechura, Ph.D. Dr. Ing. Pavlína Hálová Ing. Zdeňka Kroupová Ing. Michal Malý, Ph.D. Ing.

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Základy ekonometrie Příklady ze cvičení (ZS 2012)

Základy ekonometrie Příklady ze cvičení (ZS 2012) Základy ekonometrie Příklady ze cvičení (ZS 2012) Katedra ekonometrie FIS VŠE v Praze, zouharj@vse.cz 1. října 2014 Pár slov úvodem. Zadání příkladů je rozděleno po jednotlivých cvičeních. Jedná se o orientační

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC

MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC MEZIREGIONÁLNÍ PŘEPRAVA NA ŽELEZNICI V ČR INTERREGINAL RAILWAY TRANSPORT IN CZECH REPUBLIC Kateřina Pojkarová 1 Anotace:Článek se věnuje železniční přepravě mezi kraji v České republice, se zaměřením na

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183

otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 Regresní analýza 1. Byla zjištěna výška otců a výška jejich nejstarších synů [v cm]. otec 165 178 158 170 180 160 170 167 185 165 173 175 syn 162 184 163 170 189 165 177 170 187 176 171 183 c) Odhadněte

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

DIPLOMOVÁ PRÁCE. Ekonometrické modely

DIPLOMOVÁ PRÁCE. Ekonometrické modely UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY DIPLOMOVÁ PRÁCE Ekonometrické modely Vedoucí diplomové práce: Mgr. Jaroslav Marek, Ph.D. Rok odevzdání:

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Modul Analýza síly testu Váš pomocník při analýze dat.

Modul Analýza síly testu Váš pomocník při analýze dat. 6..0 Modul Analýza síly testu Váš pomocník při analýze dat. Power Analysis and Interval Estimation Analýza síly testu Odhad velikosti vzorku Pokročilé techniky pro odhad intervalu spolehlivosti Rozdělení

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Zápočtové úkoly Statistika II PAEK, LS 2014 2015

Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Zápočtové úkoly Statistika II PAEK, LS 2014 2015 Pokyny Každý student odevzdává domácí úkol sám za sebe. Odevzdání proběhne přes systém moodle v předmětu Statistika II PaEK (ESE74E) přes odkaz Zápočtový

Více

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické

Cronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší:

Z metodologie známe dělení proměnných do několika skupin. Nejčastěji se užívá dělení dle S. Stevense. Nicméně nám postačí dělení jednodušší: Slovo úvodem Ne všechno, co si řekneme v tomto kurzu, je pravda. Není to proto, že by mým záměrem bylo před posluchači něco tajit nebo je uvádět ve zmatek. Problematika testování statistických hypotéz

Více

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod

Vícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Přednáška 10. Analýza závislosti

Přednáška 10. Analýza závislosti Přednáška 10 Analýza závislosti Analýza závislosti dvou kategoriálních proměnných Analýza závislosti v kontingečních tabulkách Analýza závislosti v asociačních tabulkách Simpsonův paradox Analýza závislosti

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Statistická analýza složek kvality bílého vína

Statistická analýza složek kvality bílého vína Statistická analýza složek kvality bílého vína Petr Voborník Fakulta informatiky a managementu, Katedra informatiky a kvantitativních metod Univerzita Hradec Králové, Rokitanského 62, 5 Hradec Králové,

Více

Projekt z předmětu Statistika

Projekt z předmětu Statistika Projekt z předmětu Téma: Typologie hráče české nejvyšší hokejové soutěže VŠB-TU Ostrava:Fakulta Elektrotechniky a informatiky jaro 2011 Martin Dočkal doc068 dockal.martin@gmail.com 1 Obsah 2 Zadání...

Více

Model výkonnosti hokejových reprezentačních týmů

Model výkonnosti hokejových reprezentačních týmů www.pwc.com/cz Model výkonnosti hokejových reprezentačních týmů Duben 5 Poradenská společnost analyzovala předpoklady jednotlivých zemí pro úspěch na mistrovství světa v hokeji, které začíná. května v

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH. Jitka Bartošová

FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH. Jitka Bartošová FAKTORY OVLIVŇUJÍCÍ PŘÍMÉ VÝDAJE DOMÁCNOSTÍ NA ZDRAVÍ FACTORS AFFECTING THE DIRECT HOUSEHOLD EXPENDITURES ON HEALTH Jitka Bartošová Abstract This paper focuses on the search of factors affecting direct

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Vícerozměrné statistické metody

Vícerozměrné statistické metody Vícerozměrné statistické metody Smysl a cíle vícerozměrné analýzy dat a modelování, vztah jednorozměrných a vícerozměrných statistických metod Jiří Jarkovský, Simona Littnerová Průběh výuky 13 přednášek

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Masarykova Univerzita Ekonomicko-správní fakulta. Kolektiv autorů (Jaroslav Bil, Daniel Němec, Martin Pospiš)

Masarykova Univerzita Ekonomicko-správní fakulta. Kolektiv autorů (Jaroslav Bil, Daniel Němec, Martin Pospiš) Masarykova Univerzita Ekonomicko-správní fakulta gretl uživatelská příručka Kolektiv autorů (Jaroslav Bil, Daniel Němec, Martin Pospiš) podzim 2009 ii Obsah Předmluva ix 1 Úvod 1 1.1 Co je Gretl?..............................

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTIKA V SPSS Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2014 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTIKA V SPSS 1. vydání

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce

Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na

Více

ANALÝZA ROSTOUCÍHO VÝVOJE OBJEMU POSKYTNUTÝCH HYPOTEČNÍCH ÚVĚRŮ V ČESKÉ REPUBLICE

ANALÝZA ROSTOUCÍHO VÝVOJE OBJEMU POSKYTNUTÝCH HYPOTEČNÍCH ÚVĚRŮ V ČESKÉ REPUBLICE ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS SBORNÍK MENDELOVY ZEMĚDĚLSKÉ A LESNICKÉ UNIVERZITY V BRNĚ Ročník LVII 17 Číslo 3, 2009 ANALÝZA ROSTOUCÍHO VÝVOJE OBJEMU POSKYTNUTÝCH

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 76 1 / 76 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová

Matematická Statistika. Ivan Nagy, Jitka Kratochvílová Texty k přednáškám Matematická Statistika Ivan Nagy, Jitka Kratochvílová Obsah 1 Náhodný výběr 4 1.1 Pojem náhodného výběru (Sripta str. 68).................... 4 1.2 Charakteristiky výběru (Sripta str.

Více

Credit scoring. Libor Vajbar Analytik řízení rizik. 18. dubna 2013. Brno

Credit scoring. Libor Vajbar Analytik řízení rizik. 18. dubna 2013. Brno Credit scoring Libor Vajbar Analytik řízení rizik 18. dubna 2013 Brno 1 PROFIL SPOLEČNOSTI Home Credit a.s. přední poskytovatel spotřebitelského financování Úvěrové produkty nákup na splátky u obchodních

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

Statistika (4ST201) Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu

Statistika (4ST201) Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu Statistika (4ST201) 1 Popsisná statistika (1. a 2. cvičení) 1.1 Úvodní příklad Vytvoříme datový soubor, který obsahuje věk, výšku a pohlaví studentů tohoto semináře. V Excelu určete: 1. Vytvořte histogram

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček

VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA. Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT. Jana Borůvková, Petra Horáčková, Miroslav Hanáček VYSOKÁ ŠKOLA POLYTECHNICKÁ JIHLAVA Katedra matematiky STATISTICA ÚVOD DO ZPRACOVÁNÍ DAT Jana Borůvková, Petra Horáčková, Miroslav Hanáček 2013 Jana Borůvková, Petra Horáčková, Miroslav Hanáček STATISTICA

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese

Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza jednoduchá lineární regrese mnohonásobná lineární regrese logistická regrese Regresní analýza korelační koeficient říká, že mezi dvěma proměnnými existuje souvislost - jsme schopni vyslovit

Více

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846

5 ANALÝZA ROZPTYLU. Počet sloupců, K = 7 Počet dat, N = 70 Celkový průměr = 3.9846 1 5 ANALÝZA ROZPTYLU Vzorová úloha 5.1 Zkrácený postup jednofaktorové analýzy rozptylu Na úloze B5.02 Porovnání nové metody v sedmi laboratořích ukážeme postup 16 jednofaktorové analýzy rozptylu. Kirchhoefer

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

IBM SPSS Complex Samples

IBM SPSS Complex Samples IBM Software IBM SPSS Complex Samples Analyzujte výsledky komplexních výběrových šetření korektním způsobem Korektní zpracování výzkumů založených na komplexních výběrových plánech není snadné. Statistické

Více

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37.

x T 1 matici 45.53 25.22 57.81 12.39 11.88 36.09 22.15 7.52 &0.31 20.94 27.97 48.06 1.41 16.77 66.21 S 1 kovarianční matici 74.42 &9.52 37. Vzorová úloha 4.7 Užití lineární diskriminační funkce Předpokládejme, že máme data o 2 třídách objektů tibetských lebek v úloze B4.14 Aglomerativní hierarchické shlukování při analýze lebek Tibeťanů: prvních

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Možnosti vyhodnocení časových řad v softwaru STATISTICA

Možnosti vyhodnocení časových řad v softwaru STATISTICA StatSoft Možnosti vyhodnocení časových řad v softwaru STATISTICA Mnoho informací se zachycuje ve formě chronologicky uspořádaných údajů, jinak řečeno ve formě časových řad. Časová řada je tedy v čase uspořádaná

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat

SEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE LICENČNÍ STUDIUM - STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Ing. Věra Fialová BIOPHARM VÝZKUMNÝ ÚSTAV BIOFARMACIE A VETERINÁRNÍCH

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr

Kurz SPSS: Jednoduchá analýza dat. Jiří Šafr Kurz SPSS: Jednoduchá analýza dat Jiří Šafr vytvořeno 29. 6. 2009 Dva základní typy statistiky 1. Popisná statistika: metody pro zjišťování a sumarizaci informací grfy, tabulky, popisné chrakteristiky

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004.

ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 2004. ANALÝZA OBTÍŽNOSTI TESTU STUDIJNÍCH PŘEDPOKLADŮ NA EKONOMICKO SPRÁVNÍ A PRÁVNICKÉ FAKULTĚ MASARYKOVY UNIVERZITY V ROCE 04 Marie Budíková Katedra aplikované matematiky, Přírodovědecká fakulta, Masarykova

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek

CHEMOMETRIKA a STATISTIKA. Prozatímní učební text vybrané příklady (srpen 2012) Miloslav Suchánek CHEMOMETRIKA a STATISTIKA Prozatímní učební text vybrané příklady (srpen 01) Miloslav Suchánek Úkol č. 1 Maticové operace s využitím EXCELu V EXCELu jsou dvě důležité maticové operace, které nám pomohou

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více