Analýza a vyhodnocení výsledků Experimentu Náhoda
|
|
- Ludvík Bartoš
- před 8 lety
- Počet zobrazení:
Transkript
1 Analýza a vyhodnocení výsledků Experimentu Náhoda Prosinec 2016
2 1. VEŘEJNÁ ČÁST EXPERIMENTU Termín: Specifika: Vrhací stroj byl postupně instalován na 3 místech (NTK, NC Metropole Zlíčín, NC Géčko) a data s lidmi byla sbírána přibližně od 9.30 do Každý účastník měl za úkol uskutečnit 12 hodů s pomocí tlačítka s dálkovým ovládáním a pokusit se hodit co nejvíce šestek. Neplatné hody byly označeny a vyřazeny (například kostka stojící na hraně či technická kontrola stroje). Níže uvedené počty jsou po vícenásobné kontrole všech uložených fotografií s vyznačenou časovou značkou. Celkový počet hodů po dnech jedničky dvojky trojky čtyřky pětky šestky celkem jedničky dvojky trojky čtyřky pětky šestky celkem celkem
3 Celkové počty hodů pro jednotlivá čísla - veřejná část experimentu Očekávaný počet Pozorovaný počet Kategorie Celkový počet šestek - veřejná část experimentu Je procento šestek odlišné od 16,6667? Statistika Ano Procento šestek se výrazně neliší od očekávané hodnoty (p > 0,05). Ne Celkový počet hodů Počet šestek % šestek 95% konfidenční interval Předpokládaná hodnota Komentář 95% konfidenční interval pro počet šestek. Leží předpokládaná hodnota uvnitř intervalu? Test - Nemáme dostatek důkazů, abychom prohlásili, že se skutečné procento šestek liší od 16,6667 na hladině významnosti 0,05 Konfidenční interval - Kvantifikuje nejistotu spojenou s odhadem skutečného procenta šestek ze zadaných údajů. Můžeme si být z 95% jisti, že skutečné procento šestek bude ležet v intervalu od 15,89-17,04. 3
4 4
5 2. NEVEŘEJNÉ FINÁLE EXPERIMENTU Termín: Specifika: Vrhací stroj byl umístěn v klidném prostředí umělecké školy Artual. Finále se zúčastnilo 11 vážných zájemců, každý měl za úkol uskutečnit 2. série po 36 hodech, celkem tedy 792 hodů. Každý z účastníků byl při pokusu v absolutním soukromí, kontrolu zajišťovala pouze kamera. Souhrnné výsledky všech finalistů jedničky dvojky trojky čtyřky pětky šestky Série Série Celkem finále
6 SOUHRNNÉ VÝSLEDKY PRO 1. SÉRII FINÁLE Při této první sérii 36 hodů byli účastníci sami v místnosti svrhacím strojem a náhledovou obrazovkou. Celkové počty hodů pro jednotlivá čísla - 1. série finále Očekávaný počet Pozorovaný počet Počet Kategorie Celkový počet šestek - 1. série finále Je procento šestek odlišné od 16,6667? Statistika Ano Procento šestek se liší od očekávané hodnoty (p > 0,05). Ne Celkový počet hodů Počet šestek % šestek 95% konfidenční interval Předpokládaná hodnota Komentář 95% konfidenční interval pro počet šestek. Leží předpokládaná hodnota uvnitř intervalu? Test - Můžeme dojít k závěru, že skutečné procento šestek se liší od 16,6667 na hladině významnosti 0,05 Konfidenční interval - Kvantifikuje nejistotu spojenou s odhadem skutečného procenta šestek ze zadaných údajů. Můžeme si být z 95% jisti, že skutečné procento šestek bude ležet v intervalu od 16,82-25,04. 6
7 SOUHRNNÉ VÝSLEDKY PRO 2. SÉRII FINÁLE Při tomto druhém pokusu, který proběhl ihned po první sérii, byli účastníci usazeni v tzv. ganzfeld izolaci v jiné místnosti bez vizuálního kontaktu se strojem. Po 10 minut trvající relaxaci spouštěli hody tlačítkem poslepu a přes zavřené dveře k místnosti se strojem. Celkové počty hodů pro jednotlivá čísla - 2. série finále Očekávaný počet Pozorovaný počet Počet Kategorie Celkový počet šestek - 2. série finále Je procento šestek odlišné od 16,6667? Statistika Ano Procento šestek se výrazně neliší od očekávané hodnoty (p > 0,05). Ne Celkový počet hodů Počet šestek % šestek 95% konfidenční interval Předpokládaná hodnota Komentář 95% konfidenční interval pro počet šestek. Leží předpokládaná hodnota uvnitř intervalu? Test - Nemáme dostatek důkazů, abychom prohlásili, že se skutečné procento šestek liší od 16,6667 na hladině významnosti 0,05 Konfidenční interval - kvantifikuje nejistotu spojenou s odhadem skutečného procenta šestek ze zadaných údajů. Můžeme si být z 95% jisti, že skutečné procento šestek bude ležet v intervalu od 12,67-20,16. 7
8 SOUHRNNÉ VÝSLEDKY PRO CELÉ FINÁLE Zahrnuje 1. i 2. sérii finálového experimentu. Celkové počty hodů pro jednotlivá čísla - finále Očekávaný počet Pozorovaný počet Počet Kategorie Celkový počet šestek - finále Je procento šestek odlišné od 16,6667? Statistika Ano Procento šestek se výrazně neliší od očekávané hodnoty (p > 0,05). Ne Celkový počet hodů Počet šestek % šestek 95% konfidenční interval Předpokládaná hodnota Komentář 95% konfidenční interval pro počet šestek. Leží předpokládaná hodnota uvnitř intervalu? Test - Nemáme dostatek důkazů, abychom prohlásili, že se skutečné procento šestek liší od 16,6667 na hladině významnosti 0,05 Konfidenční interval - kvantifikuje nejistotu spojenou s odhadem skutečného procenta šestek ze zadaných údajů. Můžeme si být z 95% jisti, že skutečné procento šestek bude ležet v intervalu od 15,79-21,31. 8
9 3. KONTROLNÍ TESTY KOSTKY V průběhu experimentu jsme použili 5 certifikovaných kostek z castina Cosmopolitan v Las Vegas se specifickými sériovými čísly. Kostky jsme průběžně testovali každý den v noci při automatickém režimu bez lidí. Všechny průběžné testy dopadly bez podezření na zásadní poškození kostky, přesto jsme z preventivních důvodů kostku měnili. Data výměny kostky a sériová čísla číslo kostky datum nasazení datum stažení čas stažení :19: :43: :55: :22: :03:30 9
10 SOUHRNNÉ VÝSLEDKY NOČNÍCH TESTOVACÍCH HODŮ - VEŘEJNÁ ČÁST Kostky jsme průběžně testovali každý den v noci při automatickém režimu bez lidí. Všechny průběžné testy dopadly bez podezření na zásadní nerovnoměrnost kostky, přesto jsme z preventivních důvodů kostku měnili. Uvedená data jsou ze dnů jedničky dvojky trojky čtyřky pětky šestky celkem Celkové počty hodů pro jednotlivá čísla - noční testy Očekávaný počet Pozorovaný počet Počet Kategorie Test dobré shody (chí-kvadrát test) pro hody kostkou - Noční testy Kategorie Pozorováno Poměr Očekáváno Příspěvek k Chi-kvadrátu jedničky , ,23723 dvojky , ,00659 trojky , ,83402 čtyřky , ,11862 pětky , ,50453 šestky , ,96046 N DF Chi-kvadrát P-Hodnota ,6614 0,027 10
11 SOUHRNNÉ VÝSLEDKY NOČNÍCH TESTOVACÍCH HODŮ - FINÁLE Proveden dne brzy ráno. jedničky dvojky trojky čtyřky pětky šestky celkem Celkové počty hodů pro jednotlivá čísla - noční test před finále Očekávaný počet Pozorovaný počet Počet Kategorie Test dobré shody (chí-kvadrát test) pro hody kostkou - Noc před finále Kategorie Pozorováno Poměr Očekáváno Příspěvek k Chi-kvadrátu jedničky 122 0, ,00000 dvojky 116 0, ,29508 trojky 105 0, ,36885 čtyřky 136 0, ,60656 pětky 131 0, ,66393 šestky 122 0, ,00000 N DF Chi-kvadrát P-Hodnota , ,424 11
12 ŽÁDNÁ VĚDA Z.S., 2016 Všechna zdrojová data z experimentu jsou ke stažení na stránce nahoda.zadnaveda.cz/vysledky. V případě jakýchkoliv dotazů nás neváhejte kontaktovat: Ivan Sobička, sobicka@zadnaveda.cz, Generální partner: Hlavní partner: Produkce:
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Mlýnek (typový výrobek)
Mlýnek (typový výrobek) Popis: Středověká a dodnes oblíbená desková hra, známá po celé Evropě (například u Velkomoravanů). Hra je určena pro dva hráče. Počet žetonů celkem: 9 vs. 9 Parametry: Čtvercová
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
PROJEKT DO STATISTIKY PRŮZKUM V TECHNICKÉ MENZE
PROJEKT DO STATISTIKY PRŮZKUM V TECHNICKÉ MENZE Náplní tohoto projektu byl prvotní průzkum, následné statistické zpracování dat a vyhodnocení. Data jsme získaly skrze internetový dotazník, který jsme rozeslaly
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.
Neparametricke testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Seminář 6 statistické testy
Seminář 6 statistické testy Část I. Volba správného testu Chceme zjistit, zda se Ježkovy a Širůčkovy seminární skupiny liší ve výsledcích v. průběžné písemce ze statistiky. Chceme zjistit, zda 1. průběžná
Statistika. pro žáky 8. ročníku. úterý, 26. března 13
Statistika pro žáky 8. ročníku Co je to statistika? Statistika je věda, která se snaží zkoumat reálná data a přibližuje nám zkoumaný jev a zákonitosti s ním spojené. Co nám statistika přináší? Co nám statistika
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky PRAVDĚPODOBNOST A STATISTIKA Zadání 1 JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL
Kontrola: Sečteme-li sloupec,,četnost výskytu musí nám vyjít hodnota rozsahu souboru (našich 20 žáků)
Základní výpočty pro MPPZ Teorie Aritmetický průměr = součet hodnot znaku zjištěných u všech jednotek souboru, dělený počtem všech jednotek souboru Modus = hodnota souboru s nejvyšší četností Medián =
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
KONTINGENČNÍ TABULKY Komentované řešení pomocí programu Statistica
KONTINGENČNÍ TABULKY Komentované řešení pomocí programu Statistica Vstupní data transformace před vložením Než data vložíme do tabulky ve Statistice, musíme si je předpřipravit. Označme si P Prahu, S Šumperk
Induktivní statistika. z-skóry pravděpodobnost
Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
Návod na obsluhu odbavovací jednotky (pokladny) v autobusech SOR
Návod na obsluhu odbavovací jednotky (pokladny) v autobusech SOR Odbavovací jednotka je umístěna u předních dveří autobusu. Umožňuje tisk jízdenek a čtení OpenCard. K její obsluze slouží dotykový displej
StatSoft Jak poznat vliv faktorů vizuálně
StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie.
Slovní úlohy - řešené úlohy Úměra, poměr Úloha č. 1 Rozměry fotografie jsou a = 12 cm a b = 9 cm. Fotografii zvětšíme v poměru 5 : 3. Určete rozměry zvětšené fotografie. Každý rozměr zvětšíme tak, že jeho
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.
P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky SMAD
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: SMAD Cvičení Ostrava, AR 2016/2017 Popis datového souboru Pro dlouhodobý
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Cvičení 12: Binární logistická regrese
Cvičení 12: Binární logistická regrese Příklad: V roce 2014 konalo státní závěrečné zkoušky bakalářského studia na jisté fakultě 167 studentů. U každého studenta bylo zaznamenáno jeho pohlaví (0 žena,
Intervalové Odhady Parametrů II Testování Hypotéz
Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení
Buffonova jehla. Jiří Zelenka. Gymnázium Zikmunda Wintra Rakovník
Buffonova jehla Jiří Zelenka Gymnázium Zikmunda Wintra Rakovník jirka-zelenka@centrum.cz Abstrakt Zaměřil jsem se na konstantu π. K určení hodnoty jsem použil matematický experiment nazývaný Buffonova
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VŠB Technická univerzita Ostrava BIOSTATISTIKA
VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:
ANALÝZA DAT V R 9. VÝPOČET VELIKOSTI SOUBORU. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 9. VÝPOČET VELIKOSTI SOUBORU Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz DATA, VÝZKUM, ANALÝZY ve výzkumu se střídají fáze prozkoumávací
RNDr. Zdeněk Horák 23. 11. 2013 VII.
Jméno RNDr. Zdeněk Horák Datum 23. 11. 2013 Ročník VII. Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA Tematický okruh ZLOMKY Téma klíčová slova Slovní úlohy se zlomky, početní
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
Téma 9: Vícenásobná regrese
Téma 9: Vícenásobná regrese 1) Vytvoření modelu V menu Statistika zvolíme nabídku Vícerozměrná regrese. Aktivujeme kartu Detailní nastavení viz obr.1. Nastavíme Proměnné tak, že v příslušném okně viz.
4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek
cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Slovní úlohy řešené lineární rovnicí. pracovní list. Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace
Slovní úlohy řešené lineární rovnicí pracovní list Název školy: Číslo projektu: Autor: Základní škola Zaječí, okres Břeclav Školní 402, 691 05, příspěvková organizace CZ.1.07/1.4.00/21.1131 Mgr. Lenka
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY Facebook vs. studium Vypracovali: Martina Grivalská Nikola Karkošiaková Barbora Brůhová Obsah 1. Úvod 2. Dotazník 3.
Inovace studia obecné jazykovědy a teorie komunikace ve spolupráci s přírodními vědami. reg. č.: CZ.1.07/2.2.00/
Inovace studia obecné jazykovědy a teorie komunikace ve spolupráci s přírodními vědami reg. č.: CZ.1.07/2.2.00/28.0076 Úvod do kvantitativní lingvistiky Radek Čech Kvantitativní lingvistika co Vás napadne,
Popis potřeb, které mají být splněním veřejné zakázky naplněny. Popisu předmětu veřejné zakázky.
Odůvodnění účelnosti veřejné zakázky Nízkonákladový pasivní dozimetr pro hodnocení externího ozáření osob v operačním prostředí Odůvodnění účelnosti veřejné zakázky podle 1 vyhlášky Popis potřeb, které
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
Průzkum spokojenosti uživatelů do 15 let
KNIHOVNA EDAURDA PETIŠKY Průzkum spokojenosti uživatelů do 15 let Vyhodnocení 26.5.2016 Vyhodnocení průzkumu spokojenosti uživatelů do 15 let Obsah A. Základní údaje... 2 B. Statistika respondentů... 2
Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého
8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)
Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník
Testování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
Návrhy dalších možností statistického zpracování aktualizovaných dat
Návrhy dalších možností statistického zpracování aktualizovaných dat Při zjišťování disparit ve fyzické dostupnosti bydlení navrhuji použití těchto statistických metod: Bag plot; Krabicové grafy a jejich
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)
Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah
ČT 2 15% ČT 1? nesleduje 42% Nova 13% Prima 10% a. 210 b. 100 c. 75 d. 50
1. Rada pro televizní vysílání prováděla průzkum sledovanosti českých televizních stanic. Průzkumu se zúčastnilo 500 tzv. respondentů. Sledovanost stanic ČT1, ČT2, Nova a Prima je uvedena v diagramu. Kolik
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Národníinformačnístředisko pro podporu jakosti
Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov
Pravděpodobnost, náhoda, kostky
Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
Inovace systému kvality sociálních služeb
Individuální projekt Inovace systému kvality sociálních služeb Newsletter 29 říjen 2014 Aktuální dění v realizaci veřejné zakázky najdete na webu MPSV, odkaz http://www.mpsv.cz/cs/11748. Ohlédnutí za Metodickými
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
VÝSLEDKY DOTAZNÍKOVÉHO ŠETŘENÍ ŠKOLNÍ DRUŽINA
VÝSLEDKY DOTAZNÍKOVÉHO ŠETŘENÍ ŠKOLNÍ DRUŽINA Na začátku prosince proběhlo dotazníkové šetření, jehož cílem bylo zjistit názor na fungování školní družiny. Papírové dotazníky byly distribuovány mezi žáky
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.
! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR
LEKCE 5 STATISTICKÁ INFERENCE ANEB ZOBECŇOVÁNÍ VÝSLEDKŮ Z VÝBĚROVÉHO NA ZÁKLADNÍ SOUBOR Ve většině případů pracujeme s výběrovým souborem a výběrové výsledky zobecňujeme na základní soubor. Smysluplné
TESTOVÁNÍ STONOŽKA 3. TŘÍD /2015
Kolik procent škol jste předstihli Škola: Název: Obec: Soukromá ZŠ Lesná s.r.o., Soukromá Janouškova ZŠ Lesná 2 s.r.o., Janouškova 2 Brno Brno TESTOVÁNÍ STONOŽKA 3. TŘÍD - 14/15 ČESKÝ JAZYK Výsledky Vaší
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chb v této presentaci mě prosím upozorněte. Děkuji. Tto slid berte pouze jako doplňkový materiál není v nich
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Cvičící Kuba Kubina Kubinčák Body u závěrečného testu
1. Příklad U 12 studentů jsme sledovali počet dosažených bodů na závěrečném testu (od 0 do 60). Vždy 4 z těchto studentů chodili k jednomu ze 3 cvičících panu Kubovi, panu Kubinovi, nebo panu Kubinčákovi.
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
Návod na zadávání nabídky na stránkách www.imalina.cz a orientace v administračním prostředí partnera krok za krokem. Je to jednoduché!
Návod na zadávání nabídky na stránkách www.imalina.cz a orientace v administračním prostředí partnera krok za krokem. Je to jednoduché! V případě jakýchkoliv dotazů nás neváhejte kontaktovat. Jsme Vám
Testy nezávislosti kardinálních veličin
Testy nezávislosti kardinálních veličin Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Načtení vstupních dat Vstupní data
SOFTWARE STAT1 A R. Literatura 4. kontrolní skupině (viz obr. 4). Proto budeme testovat shodu středních hodnot µ 1 = µ 2 proti alternativní
ŘEŠENÍ PRAKTICKÝCH ÚLOH UŽITÍM SOFTWARE STAT1 A R Obsah 1 Užití software STAT1 1 2 Užití software R 3 Literatura 4 Příklady k procvičení 6 1 Užití software STAT1 Praktické užití aplikace STAT1 si ukažme
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza
Kapitola 1 INTERNÍ AUDIT A JEHO POSTUPY 5. Kapitola 2 LOGIKA V INTERNÍM AUDITU 11
OBSAH ÚVOD 1 ODDÍL A INTERNÍ AUDIT A JEHO POSTUPY 3 Kapitola 1 INTERNÍ AUDIT A JEHO POSTUPY 5 Kapitola 2 LOGIKA V INTERNÍM AUDITU 11 2.1 Základní pojmy z logiky vztažené k internímu auditu 12 2.2 Postup
Národní Inventarizace lesů ČR
Národní Inventarizace lesů ČR 2011 2015 Ing. Miloš Kučera, Ph.D. Vedoucí oddělení NIL 80. výročí ÚHÚL 7.října 2015 Obsah prezentace Národní inventarizace lesů (NIL) a její historie První cyklus NIL ČR
Požadavky zaměstnavatelů v Karlovarském a Ústeckém kraji: omezení byrokracie a korupce, zlepšení dopravní infrastruktury
VÝSLEDKY DOTAZNÍKOVÉHO ŠETŘENÍ - ŘÍJEN / LISTOPAD 2010 Zveřejněno: 9. 11. 2010 Požadavky zaměstnavatelů v Karlovarském a Ústeckém kraji: omezení byrokracie a korupce, zlepšení dopravní infrastruktury Definovat
Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze
Komentované řešení pomocí programu R Ústav matematiky Fakulta chemicko inženýrská Vysoká škola chemicko-technologická v Praze Popis vstupních dat Vstupní data pro úlohu (A) se nacházejí v souboru "glukoza.csv".
TESTOVÁNÍ KVALITATIVNÍCH ZNAKŮ V PROGRAMU
TESTOVÁNÍ KVALITATIVNÍCH ZNAKŮ V PROGRAMU Copyright StatSoft CR s.r.o. 2014 Dell Information Management Group, Dell Software Ringhofferova 115/1 155 21 Praha 5 Zličín tel.: +420 233 325 006 fax: +420 233
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy
EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých
MATEMATICKÁ STATISTIKA 1 ( )
MATEMATICKÁ STATISTIKA 1 (2014 15) Zápočtové domácí úkoly (společné pro obě paralelky) Obecné pokyny q q Úlohy se odevzdávají vždy na začátku Vašeho cvičení (Vašemu cvičícímu, případně jeho záskoku). Úlohy
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Příloha č. 1 Grafy a protokoly výstupy z adstatu
1 Příklad 3. Stanovení Si metodou OES Byly porovnávány naměřené hodnoty Si na automatickém analyzátoru OES s atestovanými hodnotami. Na základě testování statistické významnosti regresních parametrů (úseku
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti