Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Alternace 2012/13 ALTERNACE MATEMATIKA 4. ROČNÍK 2012/13"

Transkript

1 ALTERNACE MATEMATIKA 4. ROČNÍK 01/13-1-

2 Obsah Posloupnosti... 4 Aritmetická posloupnost... 5 Geometrická posloupnost... 6 Geometrické řady... 7 Finanční matematika... 8 Vektor, operace s vektory... 9 Vzdálenosti bodů, přímek, střed úsečky Parametrický, obecný a směrnicový tvar rovnice přímky Vzájemná poloha bodů, přímek, odchylka přímek... 1 Kružnice Elipsa, hyperbola a parabola Vzájemná poloha přímky a kuželosečky Dělitelnost, reálná čísla Procenta Lomené výrazy a mnohočleny Mocniny a odmocniny Lineární rovnice, soustavy lineárních rovnic... 0 Řešení lineárních nerovnic a jejich soustav... 1 Kvadratická rovnice, soustavy rovnic... Iracionální rovnice... 3 Kvadratické nerovnice... 4 Nerovnice s neznámou ve jmenovateli... 5 Diskuse lineárních rovnic s parametrem... 6 Lineární a kvadratické rovnice a nerovnice s absolutní hodnotou... 7 Funkce, vlastnosti funkcí... 8 Funkce konstantní a lineární... 9 Funkce kvadratická Funkce lineární lomená Grafy funkcí s absolutní hodnotou... 3 Mocninné funkce Eponenciální a logaritmická funkce Logaritmické rovnice

3 Eponenciální rovnice Goniometrické funkce Goniometrické rovnice Goniometrické vzorce Goniometrie ostrého úhlu, pravoúhlý trojúhelník Řešení obecného trojúhelníku Nerovnice v C... 4 Algebraický a goniometrický tvar kompleního čísla Řešení rovnic s kompleními kořeny Moivreova věta Binomická rovnice Vlastnosti kombinačních čísel, Pascalův trojúhelník, výrazy s faktoriály Variace, permutace, kombinace Binomická věta Pravděpodobnost Základní statistické pojmy Polohové vztahy útvarů ve stereometrii... 5 Povrchy a objemy válců a kuželů Povrchy a objemy hranatých těles Povrch a objem koule a jejích částí Obvody a obsahy rovinných obrazců Podobnost, Euklidovy věty a Pythagorova věta Obvodový a středový úhel Stejnolehlost v konstrukčních úlohách Shodná zobrazení

4 POSLOUPNOSTI 1. Určete prvních šest členů posloupnosti a nakreslete graf. a n n + 1 = n ; ; ; ; ; Určete prvních šest členů posloupnosti. a 0 + a [0; 1; 1; ; 3; 5] 1 = ; a = 1; an+ = an+ 1 n 3. Určete, která z následujících posloupností je rostoucí nebo klesající. a) n + 1 n + n= 1 a) rostoucí b) rostoucí c) není rostoucí ani klesající log b) ( ) n=1 n n 14n + 39 n 1 c) ( ) = -4-

5 ARITMETICKÁ POSLOUPNOST 1. Určete počet členů aritmetické posloupnosti, je-li dáno: Sn = 800, an = 78, d = 4. [0 ]. Ve které aritmetické posloupnosti platí: a a 7 1 = ; a4 + a5 = 0 [a1 = 3; d = ] 3 3. Určete součet všech sudých trojciferných čísel. [47 050] 4. Rozměry kvádru tvoří členy AP. Součet velikostí všech hran je 96cm a povrch kvádru je 334cm. Vypočtěte objem kvádru. [31cm 3 ] -5-

6 GEOMETRICKÁ POSLOUPNOST 1. Kvádr, jehož délky hran a, b, c tvoří geometrickou posloupnost, má povrch S =700 cm. Součet délek hran, vycházejících z jednoho vrcholu, je 35cm. Vypočítejte objem. [ 1000 cm 3 ]. Určete číslo, které zvětšeno postupně o 3, 8, 18 dává tři po sobě jdoucí členy geometrické posloupnosti. [ ] 3. V osmičlenné geometrické posloupnosti je součet prvních čtyř členů roven 15 a q = ;a 1 = 1 posledních čtyř členů roven 40. Určete posloupnost. q = -; a 1 = 3-6-

7 GEOMETRICKÉ ŘADY 1. Řešte rovnici: 3 = [ (-1;1); = 0,414]. Číslo,763 zapište ve tvaru zlomku. [ 89/300] 3. Určete hodnotu součinu [ 9]

8 FINANČNÍ MATEMATIKA 1) Slečna Hermína disponuje částkou korun, proto se rozhodla navštívit velký svět financí. Zaujal ji plakát firmy,,moula&spol, v němž stálo: Naše firmy zhodnotí Vaše peníze! Za 100 dnů si splníte své sny! Za jednorázovou investici v hodnotě korun a více garantujeme 6 % zisk za 100 dnů. Dokonce i investice pod korun Vám přinese za 100 dnů 3 % zisk. Chybí Vám peníze? Půjčíme Vám až korun na sto dnů! Teprve až uběhne celých 100 dnů, zaplatíte 15 % úrok z půjčené částky. a) Jaký bude zisk Hermíny, pokud si žádné peníze nepůjčí a investuje jen částku 8 500? [55] b) O kolik korun se zvýší zisk,pokud si chybějící peníze od firmy půjčí a investuje korun? [10] c) Pokud by měla Hermína o něco méně než korun, investice s půjčkou by se jí mohla stále ještě vyplatit. Naopak pro nízké částky je výhodnější investice bez půjčky. Pro jakou částku přinášejí obě možnosti (investice s půjčkou i bez půjčky ) stejný zisk? [7 500] ) Počátkem každého roku se na účet s roční úrokovou mírou 3 % uloží částka korun. Úroky se připisují na konci každého roku. Po 0 letech bude na účtu: a) asi korun b) asi korun c) asi korun d) jiné [asi ] 3) Výnosy z vkladní knížky jsou sníženy o 15 % daň. Vklad ve výši Kč vynesl za rok čistý úrok Kč. Jaká byla roční úroková míra? Výsledek zaokrouhlete na desetiny procenta. [8 %] -8-

9 VEKTOR, OPERACE S VEKTORY 1. Jsou dány body A = [-3; 0], B [8; -3], C = [10; ]. Určete souřadnice bodu D tak aby: a) ABCD byl rovnoběžník [[-1; 5]] b) ABDC byl rovnoběžník [[1; -1]] c) ADBC byl rovnoběžník [[-5;-5]]. Trojúhelník ABC je určen dvěma vrcholy A, B a těžištěm T. Určete souřadnice vrcholu C. A = [ ; 0], B [4; -], T = [3 ; 1] [[3; 5]] 3. Sečtěte a odečtěte graficky vektory a + b; a b. a = (;1); b = 1; ( ) 4. Určete vektor a, který je jednotkový (velikost vektoru je 1) a kolmý na vektor b b = ( ; 1) ; ; ;

10 VZDÁLENOSTI BODŮ, PŘÍMEK, STŘED ÚSEČKY 1. V trojúhelníku A = [ 15; 4], B = [ 1; -3], C = [5; 9] vypočítejte velikost výšky vc. [4 5 ]. Vypočtěte velikost těžnice ta v trojúhelníku A = [ 15; 4], B = [ 1; -3], C = [5; 9] [ 145 ] 3. Určete vzdálenost přímek: k: + y - 6 = 0 l: - y + 5 = 0 m: = 3 + t y = -4 + t d ( m, l) = 3 5; 5 d ( n, l) = d ( m, n) = 5 n: - y + 3 = 0 [přímka k je různoběžná s ostatními přímkami] -10-

11 PARAMETRICKÝ, OBECNÝ A SMĚRNICOVÝ TVAR ROVNICE PŘÍMKY 1. Určete obecnou rovnici výšky vb v trojúhelníku ABC; A = [ 8; 7], B [-; 5], C = [-6; -3]. [7 + 5y -11-0]. Přímky jedné osnovy jsou dány rovnicí 3 + 7y + c = 0, kde c R; a) Určete souřadnice jejich směrového a normálového vektoru. b) Napište rovnici té přímky této osnovy, která prochází bodem A = [ 5; -]. s = ( 7; 3 ); n = ( 3;7 ) 3 + 7y 1 = 0 3. Napište směrnicový tvar přímky a, která prochází bodem A = [ 5; ] a je rovnoběžná s přímkou BC: B [ ; -5], C = [-1; -3] y =

12 VZÁJEMNÁ POLOHA BODŮ, PŘÍMEK, ODCHYLKA PŘÍMEK 1. Určete odchylku a průsečík přímek: a: - y +1 = 0 b: + y + 1 = 0 [ φ= ; P[-/3; -1/3]]. Napište parametrické a obecnou rovnici přímky která prochází bodem A = [-4; ] a je kolmá k přímce l. l: 3 + y - 5 = 0-3y + 10 = 0 = l y = + l l R 3. Určete odchylku a průsečík přímek k = KL a p = PQ. K = [-3; 5]; L = [0; 3]; P = [-5; 0]; Q = [; -3] [ φ= 10 9 ; P[108/5; -57/5]] -1-

13 KRUŽNICE 1. Napište rovnici kružnice se středem v počátku soustavy, procházející bodem A=[-/3; 3]. Které body této kružnice mají souřadnici = 7 5? [ + y = 85/9; K[1,4; ±,74];. Určete rovnici kružnice, která prochází body A = [ 4; -3], B = [5; - ] a má střed na přímce 3 + 4y - 6 = 0. [(-) + y = 13] 3. Určete rovnici kružnice, která prochází bodem M = [- ; -16] a dotýká se obou souřadných os. [( +10) + (y + 10) = 100; ( + 6) + (y + 6) = 676] 4. Určete střed a poloměr kružnice, která má rovnici + y - 6-4y - 3 = 0. [S[3; ]; r = 6] -13-

14 ELIPSA, HYPERBOLA A PARABOLA 1. Vypočítejte souřadnice bodu P, který leží na parabole y = a má od jejího ohniska vzdálenost a = 6,5. P = 6; 3 ; P = 6; 3. Napište rovnici elipsy se středem v počátku soustavy souřadnic a osami v osách,y, která prochází body A = [; 4], B = [5; - ]. [4 + 7y = 18; y + = 1] Určete druh kuželosečky, její střed, ohniska a poloosy: 4-9y y -36 = 0 [hyperbola; S = [ 3;- ]; a = 3; b = ; e = 13 ; F = [3-13 ; -]; G = [3+ 13 ; -]] -14-

15 VZÁJEMNÁ POLOHA PŘÍMKY A KUŽELOSEČKY 1. Jakou směrnici musí mít přímka p: y = k +, aby se dotýkala paraboly y = 4? [k = 0,5]. Pro jaká b R je přímka p: + by - 5 = 0 a) sečnou, b) tečnou, c) nesečnou kuželosečky 4 + 9y = 900? ( ) ( ) { } ( ) a) b ; ; b) b ; c) b ; 3. Určete vzájemnou polohu přímky p: = 8 + 4t, y = 5t a kuželosečky 5-16y = 400. [R = [5; -15/4] sečna rovnoběžná s asymptotou] -15-

16 DĚLITELNOST, REÁLNÁ ČÍSLA 1) Určete všechny společné dělitele čísel 100 a 150. [ 1; ; 5; 10; 5; 50] ) Najděte nejmenší přirozené číslo c takové, aby nejmenší společný násobek čísel c; 4 a 1 byl 5, tedy n(c, 4, 1) = 5. [9] 3 9 3) Počet celých čísel v intervalu 10 ; 10000) je: a) b) c)1101 d) [1 100] 4) Na divadelní představení byly zakoupeny dva druhy vstupenek. Jistý počet vstupenek prvního druhu za 48 Kč a o pět vstupenek více po 68 Kč. Za vstupenky bylo celkem zaplaceno Kč. Kolik vstupenek každého druhu bylo zakoupeno? [10 a 15] -16-

17 PROCENTA 1) Mlékárna prodává 0 % svých výrobků na zahraničním trhu, zbytek dodává na trh domácí. To, že o výrobky je zájem, potvrzují podepsané kontrakty. Rozhodněte o každém z následujících tvrzení, zda je pravdivé (ANO), nebo nepravdivé (NE). a) Pokud se má vývoz zvýšit o 10 % a dodávky na domácí trh vzrostou o 5 %, mlékárna musí zvýšit výrobu o 6 %. b) Pokud má mlékárna zachovat objem výroby a vývoz se má zvýšit o 10 %, dodávky na domácí trh budou o,5 % nižší. [ANO] [ANO] c) Pokud má mlékárna zvýšit objem výroby o 10 % a dodávky na domácí trh se nezmění, je nasmlouváno zvýšení vývozu do zahraničí o 50 %. [ANO] d) Pokud má mlékárna zvýšit objem výroby o 10 % a vývoz do zahraničí má být beze změny, je nasmlouváno zvýšení dodávky na domácí trh o 15 %. [NE] -17-

18 LOMENÉ VÝRAZY A MNOHOČLENY 1. Upravte: 1 1 y + z y + z : = + yz y + z yz ( ) + y + z, y, z 0 + y + z 0 y z y + z. Upravte: : 4 = [ 1; ±1] 3. Upravte: 4 4 y y : + = y y y y + y, y 0 ± y -18-

19 -19- MOCNINY A ODMOCNINY 1. Upravte: y y y = y. Upravte: = : b a b a b a b a b a b a ( ) ( ) 4 a b a b + 3. Upravte: = : y y y y y y y y ( ) ( ) + + y y y y

20 LINEÁRNÍ ROVNICE, SOUSTAVY LINEÁRNÍCH ROVNIC 1. Řešte početně i graficky: + 3y = 4, y R 3 - y = - 5 [[-1; ]]. Řešte soustavu pro, y R : = 1 y 3 = 3 y 3 [[0; 4]] 3. Dva nákladní vozy měly navézt kámen na stavbu silnice za 18 dní. Po 15 dnech byl první vůz pro poruchu vyřazen. Druhý vůz pak ještě vozil kámen 7,5 dne, aby byl úkol splněn. Kolik dní by na odvoz potřeboval každý vůz sám? [1. vůz 30 dní;. vůz 45 dní] 4. Řešte soustavu pro, y, z R: + 3y = z = 11 3y + 4z = 10 [[3; ; 1]] -0-

21 ŘEŠENÍ LINEÁRNÍCH NEROVNIC A JEJICH SOUSTAV 1. Určete N, pro která platí: > + 4 ( + 1) 8 [ {1; ; 3; 4}]. V množině R řešte soustavu nerovnic: > ( + 3) > [ < ] 3. Dané soustavy nerovnic řešte postupně v R, Z, N. a) ( - 3) 3 +5 b) ( - 3) > < ( - 5) < ( - 5) c) ( - 3) < 3 +5 d) ( - 3) > ( - 5) > ( - 5) -1-

22 KVADRATICKÁ ROVNICE, SOUSTAVY ROVNIC 1. Určete rozměry a, b obdélníku, jehož úhlopříčka má délku 6cm a jehož obvod je 68cm. [10cm a 4cm]. Řešte soustavu rovnic: 5-9y = 75, y R 5 + 3y = 65 [[10; 5]] 3. Určete hodnotu parametru m R tak, aby rovnice m + (m + ) + m = 0 měla dvojnásobný kořen. [m {; - /3}] --

23 IRACIONÁLNÍ ROVNICE 1. Vypočtěte kořeny rovnice pro R : = + 1 [-1/] + 3. Vypočtěte kořeny rovnice pro R : + 3 = [7] 3. Vypočtěte kořeny rovnice pro R : = [1] -3-

24 KVADRATICKÉ NEROVNICE 1. Zjistěte, kdy má daný výraz smysl: + 0 [ (-5; 4)]. Určete definiční obor funkce: f 4 : y = log [ (0; )] 3. Pro které hodnoty parametru m R má rovnice : - 3m + m m = 0 imaginární kořeny? [ m (5; 9)] -4-

25 NEROVNICE S NEZNÁMOU VE JMENOVATELI 3 1. Řešte nerovnici pro R: [ ( ; 3) 6; ) ]. Řešte nerovnici pro R: 0 < < [ ( ; 0) (4; ) ] Řešte nerovnici pro R: > [ ( 3;) (3; ) ] -5-

26 DISKUSE LINEÁRNÍCH ROVNIC S PARAMETREM 1. Řešte a proveďte diskusi rovnice s parametrem a: + a a = a 1 a +1 a = 0 R a = ± 1 NS a { 0;1; 1} = 1. Řešte a proveďte diskusi rovnice s parametrem a: + a a + 1 = a + a + 1 a = 0 NŘ a = 1 NS ( a 1 + ) a {0; 1} = a 3. Vypočítejte a určete, pro které hodnoty parametru a nabývá neznámá kladných hodnot: 1 a = a a ( 1; 0,5) -6-

27 LINEÁRNÍ A KVADRATICKÉ ROVNICE A NEROVNICE S ABSOLUTNÍ HODNOTOU 1. Řešte rovnici pro R: = 3 3 ± 4. Řešte nerovnici pro R: + 3 < 3 1 [ ( ; )] 3. Pro R řešte rovnici 1 = 0. [±4] -7-

28 FUNKCE, VLASTNOSTI FUNKCÍ 1. U daných funkcí určete Df, Hf, intervaly monotónnosti, omezenost.. Doplňte grafy funkcí tak, aby vzniklá funkce byla a) sudá b) lichá a) b) 3. Na obrázku je graf funkce y = f(). Načrtněte graf funkce y = f(+1), y = f() - -8-

29 FUNKCE KONSTANTNÍ A LINEÁRNÍ 1. Nakreslete a popište graf funkce, která je dána rovnicí: a) + 3y -1 = 0 b) y = 0,5; y = 0,5 -; y = 0,5 ; y = 0,5 - ; y = 0,5 -; y = 0,5 -. V nádrži je 500 litrů vody. Čerpadlo odčerpává 0 1/min. Určete funkci vyjadřující množství vody v nádrži v závislosti na čase (v minutách). Určete definiční obor a obor hodnot této funkce a znázorněte ji graficky. 3. V rovnici ( + m ) + 9y + - n = 0 určete parametry m, n tak, aby graf lineární funkce určené touto rovnicí byl totožný s grafem funkce y = 1 4 ( - ). [n = -5/; m = -17/4] -9-

30 FUNKCE KVADRATICKÁ 1. Vyšetřete danou funkci, načrtněte její graf. f: y = [V[;1]]. Vyšetřete danou funkci, načrtněte její graf. f: y = [V[-;-1]] g: y = a) Vyšetřete průběh funkce f: y = b) Řešte graficky nerovnici >

31 FUNKCE LINEÁRNÍ LOMENÁ 1. Vyšetřete průběh funkce: f: y = 3 1. Vyšetřete průběh funkce: f: y = Vyšetřete průběh funkce: f: y =

32 GRAFY FUNKCÍ S ABSOLUTNÍ HODNOTOU 1. Načrtněte graf funkce: f : y = ( ) 1. Načrtněte graf funkce: y = Načrtněte graf funkce: y =

33 -33- MOCNINNÉ FUNKCE 1. Sestrojte grafy funkcí a určete definiční obor, obor hodnot a průsečíky s osou a y. 1 : 1 : 4 4 = = y g y f. Sestrojte grafy funkcí a určete definiční obor, obor hodnot a průsečíky s osou a y. 1 : 1 : 3 3 = = y g y f 3. Sestrojte graf funkce a určete definiční obor, obor hodnot a průsečíky s osou a y. : = + y f

34 EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE 1 1. Sestrojte graf funkce f: y = obor, obor hodnot a průsečíky s osou a y.. Napište předpis f -1. U obou funkcí určete definiční. Sestrojte grafy funkcí a určete definiční obor, obor hodnot a průsečíky s osou a y. f : y = log3( + 3) - 1 g: y =log3( + 3) Sestrojte graf funkce a určete definiční obor, obor hodnot a průsečíky s osou a y. + 1 f: y = 3-34-

35 LOGARITMICKÉ ROVNICE 1. Řešte rovnici pro R: ( + ) log 7 ( + ) log 7 = [-3].. Řešte rovnici pro R: log ( - 1) = + log ( + 1) [101]. 3. Řešte rovnici pro R: -1+log = 100 [100; 0,1] -35-

36 EXPONENCIÁLNÍ ROVNICE 1. Řešte rovnice pro R: = 3 [4]. Řešte rovnice pro R: = + -1 [1] 3. Řešte rovnice pro R: = [ =,753746] 4. Řešte rovnice pro R: = 810 [] -36-

37 GONIOMETRICKÉ FUNKCE 1. Načrtněte graf funkce, určete Df a Hf. f: y = sin() - 1. Načrtněte graf funkce, určete Df a Hf. f: 1 π y = cos 3 π. Načrtněte graf funkce, určete Df a Hf. f: y = tg

38 GONIOMETRICKÉ ROVNICE 1. Řešte rovnici pro R: sin 3 sin cos = 0 1 = kπ k Z π = + kπ 3. Řešte rovnici: = sin 3 cos sin 1 = 90 + k360 k Z 36 5 k360 = + 3 = k Řešte rovnici: 3 sin sin cos 3 = 0 1 = 30 + k180 k Z = 60 + k Řešte rovnici: sin + π = = π + kπ 1 1 = π + kπ 1 k Z -38-

39 -39- GONIOMETRICKÉ VZORCE 1) Řešte v R. cotg sin = 0 + = + = π π π π k Z k k 4 1 ) Řešte v R. sin + sin = tg + = + = = π π π π π k k Z k k

40 GONIOMETRIE OSTRÉHO ÚHLU, PRAVOÚHLÝ TROJÚHELNÍK 1. Vrchol věže spatříme z určitého místa ležícího 14,75 m nad horizontální rovinou pod výškovým úhlem α = 31 a patu věže pod hloubkovým úhlem β = 8. Jak vysoká je věž? [ 77,81m]. Tělesová úhlopříčka kvádru je u = 17 a odchylka této úhlopříčky od roviny podstavy je α = 70. Úhel úhlopříček podstavy je ω = 55. Vypočítejte objem.[ 1,19 j 3 ] 3. Jakou hloubku a šířku má příkop, jehož profil má tvar rovnoramenného lichoběžníku, když ramena svírají s vodorovnou rovinou úhel 8, šířka dna je,75 m a délka ramen je 3,5 m. [ 1,64 m; 8,93m ] -40-

41 ŘEŠENÍ OBECNÉHO TROJÚHELNÍKU 1. V lichoběžníku je dáno: a = 7,3, c = 0,4, α = 68 14, β = Vypočítejte b, d, γ, δ. [b = 11,035; d = 11,54; γ = , δ = ]. Vypočítejte největší úhel v trojúhelníku ABC: a = 50, b= 37, c= 3. [ ] 3. Nosník ABC s rameny AC, BC, je upevněn na svislé stěně a v bodě C zatížen břemenem o tíze G = N. Jakým tahem F1 je namáháno rameno AC, které svírá s přímkou AB úhel α = 75? Jakým tlakem F je namáháno rameno BC, jehož odchylka od přímky AB je β = 34? [F1 = N; F = 5 765N] -41-

42 NEROVNICE V C V Gaussově rovině zakreslete řešení následujících rovnic a nerovnic v C. 1) z ( 1 + i) = ) z 1 i 3) z + i < z + i -4-

43 ALGEBRAICKÝ A GONIOMETRICKÝ TVAR KOMPLEXNÍHO ČÍSLA 1. Určete, y R, pro něž platí : ( + 4i) + 4( 4 - i )y + 14 = ( 6 - i)y - 6( - - i ) 9 [ = 87/46; y = -34/3 ]. a) Převeďte komplení číslo 5π 5π a = cos + isin 6 6 do algebraického tvaru. [ 3 + i ] b) Převeďte komplení číslo b = + i do goniometrického tvaru. 3 3 [ cos 3 π sin 3 π + i ] 3. Ke komplenímu číslu ( 3 i) a = najděte číslo kompleně sdružené. [-3 + 4i] i -43-

44 ŘEŠENÍ ROVNIC S KOMPLEXNÍMI KOŘENY 1. Řešte rovnici pro C: = Napište kvadratickou rovnici, která má kořeny 1 = + i a = i Řešte rovnici pro C: ( 3) ( 1) = -44-

45 MOIVREOVA VĚTA 1. Pomocí Moivreovy věty vypočítejte: 1 3 i + 3 [1]. Pomocí Moivreovy věty vypočítejte: ( 3 4i) 6 [ i] 3. Pomocí Moivreovy věty vypočítejte: 1 i 1+ i = [-3-3i] -45-

46 BINOMICKÁ ROVNICE 1. Řešte rovnici pro C: 4 4 = 0 [ ± ; ± i 6]. Řešte rovnici pro C: = 0 [ ± i; 3 ± i; 3 ± i ] 3. Řešte rovnici pro C: = 0 [0,5; 0,15 ± 0,48i; -0,4 ± 0,9i ] -46-

47 VLASTNOSTI KOMBINAČNÍCH ČÍSEL, PASCALŮV TROJÚHELNÍK, VÝRAZY S FAKTORIÁLY 1. Řešte rovnici: 1 + = [5] n =. Upravte: ( n + 3 )! ( n + )! ( n + 1 )! ( n + ) 1! n! ( n ) 3. Upravte: ( ) ( ) ( n ) ( ) + 1! +! + + ( n + 4) = n 3! n! n 1! [3n 3 n + 3n - 4] -47-

48 VARIACE, PERMUTACE, KOMBINACE 1. Kolik maimálně čtyřciferných čísel s různými číslicemi lze vytvořit z cifer 0, 1,, 3, 4, 5, 6? Kolik je jich menších než 3 000? [943; 463]. Zvětší-li se počet prvků o zvětší se počet permutací těchto prvků 56 krát. Určete počet prvků. [6] 3. V rovině jsou dány dvě různé rovnoběžky a, b. Na přímce a leží 10 různých bodů A1 až A10 na přímce b leží 8 různých bodů B1 až B8. Kolik různých trojúhelníků s vrcholy v těchto bodech lze vytvořit? [640] -48-

49 BINOMICKÁ VĚTA 1. Vypočítejte 3. člen binomického rozvoje ( ) 5 3 i. [-540]. V binomickém rozvoji určete člen, který neobsahuje. [ 17.člen] 3. Užitím binomické věty zjistěte, zda číslo = 0. = + i je řešením rovnice [ ano] -49-

50 PRAVDĚPODOBNOST 1. V osudí jev 5 bílých a 4 modré lístky. Náhodně vybereme lístky. Jaká je pravděpodobnost, že budou: a) oba bílé b) oba modré c) jeden bílý a jeden modrý a ) b) ; c) 18; 6 9. Student při zkoušce losuje z 10 otázek, je připraven na 6 z nich. Jaká je pravděpodobnost, že: a) bude umět obě b) bude umět právě jednu c) nebude umět žádnou d) bude umět alespoň jednu z losovaných otázek a ) ; b) ; c) ; d) Mezi dvaceti výrobky jsou čtyři vadné. Jaká je pravděpodobnost, že při náhodné kontrole tří výrobků bude alespoň jeden vadný? Při řešení využívejte poznatky o doplňkových jevech

51 ZÁKLADNÍ STATISTICKÉ POJMY 1. Ve třídě je 8 žáků zařazeno do volitelného předmětu informatika, 10 do cvičení z biologie a 14 do anglické konverzace. Průměrný prospěch v informatice byl 1,60, ve cvičení z biologie 1,40 a v anglické konverzaci 1,0. Jaký je průměrný prospěch třídy ve volitelných předmětech? [ 1,365]. Ve třídě s 5 žáky prospělo s vyznamenáním 7 žáků, prospělo 14 žáků, neprospěli 3 žáci, nebyl klasifikován 1 žák, Vypočtěte relativní četnosti znaku prospěch. Co je součtem těchto relativních četností? Sestrojte sloupkový diagram. Jaké ještě znáte diagramy? nv = 0, 8; np = 0,56; nn = 0,1; n; = 0, 04;0, 8 + 0,56 + 0,1 + 0, 04 = 1 ješě t eistuje kruhov ý nebo spojnicov ý diagram 3. Určete aritmetický průměr a směrodatnou odchylku délky, jsou-li naměřené délkové hodnoty i a jejich četnosti n i dány tabulkou: i 4,7 4,8 4,9 5,0 5,01 5, 5,3 ni [ = 4,98; s = 0,158] -51-

52 POLOHOVÉ VZTAHY ÚTVARŮ VE STEREOMETRII 1. Je dána krychle ABCDEFGH o hraně délky a. a) vypočítejte vzdálenost bodu A od přímky FG. [ a ] b) načrtněte řez rovinou KLB, kde K AE; L EH. Je dána krychle o hraně a = 6cm. Body MNPQ, jsou po řadě středy hran EF, FG, EH, GH. a) určete vzdálenost přímek MN, PQ [ 3 ] b) načrtněte řez rovinou MNC 3. V pravidelném čtyřstěnu o hraně 10 cm určete: a) odchylku stěn b) vzdálenost bodu D od roviny ABC [ a) ; b)8, 17cm] -5-

53 POVRCHY A OBJEMY VÁLCŮ A KUŽELŮ 1. Vypočítejte poměr objemů tři rotačních válců opsaných kvádru o rozměrech 6, 9,1 d.j. [6:30:5 ]. Vypočítejte objem kosého kužele, jehož kruhová podstava má poloměr = 7,5, nejdelší strana určuje s rovinou podstavy odchylku α = a nejkratší strana odchylku β = [V1=78,38 j 3 ; V = 338,9 j 3 ] 3. Rotační komolý kužel má povrch S = 7500 cm a poloměry podstav r1 = 0 cm a r = 8 cm. Určete tělesovou výšku. [3,76cm] -53-

54 POVRCHY A OBJEMY HRANATÝCH TĚLES 1. Určete rozměry a objem kvádru, jehož rozměry jsou v poměru 3 : 4 : 6 a jehož povrch je S= 43 cm. [6; 8; 1]. V pravidelném šestibokém jehlanu je podstavná hrana a = 4 dm a pobočná hrana b = 48,4 dm. Vypočítejte objem. [36740dm 3 ] 3. Vypočítejte objem pravidelného komolého šestibokého jehlanu s podstavnými hranami a1 = 65, a = 5 a pobočnou branou b = 85. [481,49 j 3 ] -54-

55 POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ 1. Vypočítejte objem a povrch koule, jsou-li dány poloměry dvou rovnoběžných řezů r1 = 0, r = 10 a jejich vzdálenost v = 4.[ r = 40,75 ; S = 0 863,317 j ; V = ,63 j 3 ]. Jak daleko od středu koule je svítící bod, je-li osvětlena čtvrtina povrchu koule? [r] 3. Rovina protne kouli o poloměru r = 9,8 dm v kruhu o poloměru ρ = 7,9 dm. Vypočítejte objem a povrch příslušné kulové úseče. [úloha má řešení S = 46,3 dm ; V = 45,644 dm 3 ; S = 960,57 dm ; V = 3 517,1198 dm 3 ] -55-

56 OBVODY A OBSAHY ROVINNÝCH OBRAZCŮ 1. Vypočítejte obsah lichoběžníku o stranách a = 108, b = 3, c = 30, d = 60. [S = 1 571,13 j ]. Vypočítejte strany trojúhelníku o obsahu S = 1,6 cm jsou-li v poměru a : b : c = 8: 15: 17. [a = 4,8; b=9;c = 10,] 3. O kolik % se změní obsah průřezu potrubí, jehož kruhový tvar byl při stejném obvodu změněn na pravidelný šestiúhelník? [zmenší se o 10%] -56-

57 PODOBNOST, EUKLIDOVY VĚTY A PYTHAGOROVA VĚTA 1. Pravidelný čtyřboký jehlan má podstavu s úhlopříčkou u = 0 cm a výšku v = 8 cm. Vypočítejte povrch jehlanu. [ 50]. Sestrojte úsečku délky = 7 a 3 y = V pravoúhlém trojúhelníku ABC je přepona c = 10, výška na přeponu v = 4. Vypočítejte velikosti odvěsen. [ 5;4 5 ] -57-

58 OBVODOVÝ A STŘEDOVÝ ÚHEL 1. Je dán pravidelný dvanáctiúhelník A1..A1. Určete vnitřní úhly čtyřúhelníka A1AA6A11. [45 ; 75 ; 105 ; 135 ]. Sestrojte trojúhelník ABC, Je-li dáno: a = 10; va = 7; α = Je dán pravidelný desetiúhelník A1..A10. Určete jaký úhel svírají úhlopříčky AA8 a A5A10. [90 ] -58-

59 STEJNOLEHLOST V KONSTRUKČNÍCH ÚLOHÁCH 1. Jsou dány dvě různoběžky a, s a bod M, který leží uvnitř ostrého úhlu těchto různoběžek. Sestrojte kružnici, která se dotýká přímky a, má střed na přímce s a prochází bodem M.. Sestrojte společné tečny kružnic k = ( O; r = ), k = ( O ; r = 3,5), OO = 7 3. Do daného ostroúhlého trojúhelníku ABC vepište obdélník MNPQ, jehož strany jsou v poměru 3 : a delší strana MN leží na AB. -59-

60 SHODNÁ ZOBRAZENÍ 1. Je dána přímka a, kružnice k a bod S, který neleží na žádné z nich. Sestrojte úsečku AB se středem v bodě S tak, aby A a, B k.. Jsou dány různoběžky a, b a úsečka XY. Sestrojte úsečku rovnoběžnou s XY a stejně dlouhou, aby její krajní body ležely na přímkách a, b. 3. Je dána přímka a, kružnice k a bod C. Sestrojte rovnostranný trojúhelník ABC tak, aby A a, B k. -60-

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 0 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 2 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 006 MAACZMZ06DT MATEMATIKA didaktický test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 10 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l)

1. VÝROKOVÁ LOGIKA. a) b) c) d) e) f) g) h) i) j) k) l) 1. VÝROKOVÁ LOGIKA 1. Negujte výroky s kvantifikátory, výroky g j a jejich negace zapište i symbolicky a) Alespoň 5 dnů bude pršet. b) Úloha má právě 2 řešení. c) Žádný z předmětů mě nebaví. d) Nejvýše

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: Obor Obchodní akademie 63-41-M/004 1. Praktická maturitní zkouška Praktická maturitní zkouška z odborných předmětů ekonomických se skládá z obsahu

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA

Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Obor vzdělání: 23 45 L/01 Platnost: 1.9.2010 Název ŠVP: Mechanik seřizovač Forma vzdělání: denní MATEMATIKA Ročník: 1 Počet hodin celkem: 3 hod/týden = 99 Rozpis výsledků vzdělávání a učiva Výsledky vzdělávání

Více

Maturitní okruhy z matematiky pro školní rok 2005-2006

Maturitní okruhy z matematiky pro školní rok 2005-2006 MATURITA 005-006 Gymnázium V.Hlavatého, Louny, Poděbradova 66 0.9.005 Maturitní okruhy z matematiky pro školní rok 005-006 Třída 8.A/8,.A/ V.Zlatohlávek, B. Naer. Úpravy výrazů v matematice.... Rovnice

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

x = a a 2. Shodná zobrazení v rovině otočení Definujte shodné zobrazení, orientovaný úhel, otočení. Popište otočení bodu, přímky a kružnice.

x = a a 2. Shodná zobrazení v rovině otočení Definujte shodné zobrazení, orientovaný úhel, otočení. Popište otočení bodu, přímky a kružnice. 1. Lineární rovnice, lineární rovnice s parametrem, soustavy lineárních rovnic Základní typy algebraických rovnic. Vysvětlete význam zkoušky. Princip řešení rovnic s parametrem, diskuse řešení, přípustnost

Více

Informace k jednotlivým zkouškám na jednotlivých oborech:

Informace k jednotlivým zkouškám na jednotlivých oborech: Informace k jednotlivým zkouškám na jednotlivých oborech: I. Obor Ekonomické lyceum 78-42-M/002 1. Práce s obhajobou z ekonomiky nebo společenských věd: Témata pro práci s obhajobou budou žáci zpracovávat

Více

1. ABSOLUTNÍ HODNOTA. : y= 4. Je dán trojúhelník ABC, A[-3; 4], B[-1; -2], C[3; 6]. Vypočítejte velikosti všech výšek.

1. ABSOLUTNÍ HODNOTA. : y= 4. Je dán trojúhelník ABC, A[-3; 4], B[-1; -2], C[3; 6]. Vypočítejte velikosti všech výšek. . ABSOLUTNÍ HODNOTA definice absolutní hodnoty reálného čísla a geometrická interpretace, definice absolutní hodnoty komplexního čísla a geometrická interpretace, vzdálenost bodu od přímky (v rovině i

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+

Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ Příloha č. 1 KATALOG POŽADAVKŮ PRO NEPOVINNOU ZKOUŠKU PROFILOVÉ ČÁSTI MATURITNÍ ZKOUŠKY ZE STŘEDOŠKOLSKÉ MATEMATIKY MATEMATIKA+ 2 Úvod Účel a obsah katalogu Katalog požadavků výběrové nepovinné zkoušky

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA VYŠŠÍ ÚROVEŇ OBTÍŽNOSTI

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA VYŠŠÍ ÚROVEŇ OBTÍŽNOSTI Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA VYŠŠÍ ÚROVEŇ OBTÍŽNOSTI Aktualizace katalogu schváleného Ministerstvem školství, mládeže a tělovýchovy ČR dne

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

1. 1 P Ř I R O Z E N Á Č Í S L A 1. 2 D Ě L I T E L N O S T 1. 3 P R V O Č Í S L O A Č Í S L O S L O Ž E N É

1. 1 P Ř I R O Z E N Á Č Í S L A 1. 2 D Ě L I T E L N O S T 1. 3 P R V O Č Í S L O A Č Í S L O S L O Ž E N É 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy

Vzdělávací oblast: Matematika a její aplikace. Vyučovací předmět: Matematika Ročník: 6. Mezipředmětové vztahy, průřezová témata, projekty, kurzy Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. Žák: čte, zapisuje a porovnává přirozená čísla provádí početní operace s přirozenými čísly zpaměti a písemně provádí

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY. Centrum pro zjišťování výsledků vzdělávání

KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY. Centrum pro zjišťování výsledků vzdělávání KATALOG POŽADAVKŮ ZKOUŠEK SPOLEČNÉ ČÁSTI MATURITNÍ ZKOUŠKY platný od školního roku 009/00 MATEMATIKA VYŠŠÍ ÚROVEŇ OBTÍŽNOSTI Zpracoval: Schválil: Centrum pro zjišťování výsledků vzdělávání Ministerstvo

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1. Obsahové vymezení předmětu Matematika prolíná celým základním vzděláváním a její výuka vede žáky především předmět Matematika zahrnuje vzdělávací Matematika

Více

Reálné gymnázium a základní škola města Prostějova 5.5 Učební osnovy: Matematika

Reálné gymnázium a základní škola města Prostějova 5.5 Učební osnovy: Matematika Podle těchto učebních osnov se vyučuje ve třídách 1.N a 2.N šestiletého gymnázia od školního roku 2013/2014. Zpracování osnov předmětu Matematika koordinoval Mgr. Petr Spisar Časová dotace : Nižší gymnázium:

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu

6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu 6.7 Matematika 6.7.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět Matematika je zařazen jako povinný ve všech ročnících čtyřletého studia. Patří do vzdělávací oblasti

Více

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE, TĚLESA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení

MATEMATIKA. 6. 9. ročník Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení MATEMATIKA 6. 9. ročník Charakteristika vyučovacího předmětu Obsahové, časové a organizační vymezení Obsah vyučovacího předmětu Matematika je totožný s obsahem vyučovacího oboru Matematika a její aplikace.

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika 9. Matematika 104 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu Obsahové, časové a organizační

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích

Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Pravidla pro hodnocení a klasifikaci v jednotlivých předmětech a seminářích Povinností žáka je napsat seminární práci nejpozději ve 3.ročníku (septima) v semináři (dle zájmu žáka). Práce bude ohodnocena

Více

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1

Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA 1 Ministerstvo školství, mládeže a tělovýchovy KATALOG POŽADAVKŮ K MATURITNÍ ZKOUŠCE MATEMATIKA ZKOUŠKA ZADÁVANÁ MINISTERSTVEM ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Zpracoval: ÚIV CENTRUM PRO ZJIŠŤOVÁNÍ VÝSLEDKŮ

Více

Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM...

Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM... Obsah ZÁKLADNÍ INFORMACE...4 OČEKÁVANÉ VĚDOMOSTI A DOVEDNOSTI...5 TÉMATICKÉ OKRUHY...6 TEST 1 ZADÁNÍ...10 TEST 1 TABULKA S BODOVÝM HODNOCENÍM... TEST 1 ŘEŠENÍ...5 TEST ZADÁNÍ...40 TEST TABULKA S BODOVÝM

Více

6.6 Matematika. 6.6.1 Charakteristika vyučovacího předmětu

6.6 Matematika. 6.6.1 Charakteristika vyučovacího předmětu 6.6 Matematika 6.6.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět se jmenuje Matematika. Patří do vzdělávací oblasti Matematika a její aplikace z RVP ZV. Vzdělávací

Více

Matematika Ekonomické lyceum. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem

Matematika Ekonomické lyceum. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem 7.15 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání: Ekonomické lyceum Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od

Více

MATEMATIKA. Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA. Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6. 9. ročníku 5 hodin týdně ve třídách s rozšířenou

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy

Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRIMA Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy Žák: rozlišuje pojmy násobek, dělitel definuje prvočíslo, číslo složené, sudé a liché číslo, čísla soudělná

Více

Předmět: Matematika. 5.2 Oblast: Matematika a její aplikace. 5.2.1 Obor: Matematika a její aplikace. Charakteristika předmětu matematika 2.

Předmět: Matematika. 5.2 Oblast: Matematika a její aplikace. 5.2.1 Obor: Matematika a její aplikace. Charakteristika předmětu matematika 2. 5.2 Oblast: Matematika a její aplikace 5.2.1 Obor: Matematika a její aplikace Předmět: Matematika Charakteristika předmětu matematika 2. stupeň Obsah vyučovacího předmětu matematika vychází ze vzdělávacího

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Matematika. Výchovné a vzdělávací strategie předmětu v 6. 9. ročníku

Matematika. Výchovné a vzdělávací strategie předmětu v 6. 9. ročníku Matematika Vyučovací předmět navazuje na učivo matematiky I. stupně. Časová dotace předmětu je v 6., 7.,8. ročníku 4 hodiny, v 9. ročníku 5 hodin. Třída se na matematiku nedělí. Vyučovací předmět poskytuje

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

UČEBNÍ OSNOVY ZŠ M. Alše Mirotice

UČEBNÍ OSNOVY ZŠ M. Alše Mirotice UČEBNÍ OSNOVY ZŠ M. Alše Mirotice Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Období: 3. období Počet hodin ročník: 165 132 132 132 Učební texty: 1 3. období A) Cíle vzdělávací

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Ministerstvo školství, mládeže a tělovýchovy Č. j. MSMT-42192/2013-1 V Praze dne 12. prosince 2013

Ministerstvo školství, mládeže a tělovýchovy Č. j. MSMT-42192/2013-1 V Praze dne 12. prosince 2013 Ministerstvo školství, mládeže a tělovýchovy Č. j. MSMT-42192/2013-1 V Praze dne 12. prosince 2013 Vyhlášení pokusného ověřování obsahu, formy, organizace a hodnocení výběrové zkoušky ze středoškolské

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

5.2.1. Matematika pro 2. stupeň

5.2.1. Matematika pro 2. stupeň 5.2.1. Matematika pro 2. stupeň Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6., 8. a 9. ročníku 4 hodiny

Více

Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015. Ekonomika

Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015. Ekonomika Okruhy profilových předmětů maturitní zkoušky třída 4. A, školní rok 2014/2015 Ekonomika 1. Management 2. Oběžný majetek 3. Finanční trh 4. Bankovní soustava ČR 5. Marketing 6. Podnikání základ tržní ekonomiky

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Matematika. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem

Matematika. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem 6.15 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání Gymnázium Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od 1.9.2009

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více