2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

Rozměr: px
Začít zobrazení ze stránky:

Download "2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10."

Transkript

1 MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci vše, co můžeme. A to konkrétně:. definiční obor (. cvičení) 2. spojitost (7. cvičení). sudost/lichost, periodicita (. cvičení) 4. první derivace, stacionární body, intervaly monotonie (0. cvičení) 5. druhá derivace, intervaly konvexity/konkávnosti (. cvičení) 6. lokální extrémy (0. cvičení) 7. ity v bodech nespojitosti, v krajních bodech definičního oboru (7. cvičení) 8. asymptoty (. cvičení) 9. průsečíky a jiné významné body, funkční hodnoty ve významných bodech (. cvičení) 0. graf (. cvičení) Nejdříve tedy dobereme to, co nám chybí a pak se poustíme do toho. 2 Konvexní a konkávní funkce Definice 2.0. Necht f je spojitá v intervalu I a necht v kaˇzdém vnitřním bodě intervalu I existuje f (x). Pak platí je-li f (x) > 0 v kaˇzdém vnitřním bodě x intervalu I, je f ryze konvexní v I je-li f (x) < 0 v kaˇzdém vnitřním bodě x intervalu I, je f ryze konkávní v I Poznámka: Hodně to zavání intervaly monotonie, no zde pracujeme s druhou derivací. Definice Řekneme, ˇze funkce f má v bodě x 0 inflexi, existuje-li (konečná) derivace f (x 0 ) a ()

2 bud f je ryze konvexní v P (x 0 ) a ryze konkávní v P + (x 0 ) bud f je ryze konkávní v P (x 0 ) a ryze konvexní v P + (x 0 ) kde P (x 0 ) = P + (x 0 ) P (x 0 ) Poznámka: Takže v inflexních bodech se mění konvexní funkce na konkávní, nebo konkávní na konvexní. Příklad 2.0. Takový typický příklad pro inflexní bod: Funkce f(x) = x má v bodě x 0 = 0 inflexi. Skutečně druhá derivace f (x) = 6x je záporná pro x < 0, tedy funkce f je na intervalu (, 0 ryze konkávní a je kladná pro x > 0, tedy funkce f je na intervalu (, 0 ryze konvexní Příklad Necht je dána funkce f(x) def = x 4 2x 2x 2 + 7x Najděte maximální intervaly, na nichž je funkce f ryze kovexní, resp. ryze konkávní, a inflexní body. Takˇze by to chtělo druhou derivaci. Nejdříve určíme první a pak tedy druhou Poloˇzíme rovno nule a nalezneme kořeny f (x) = 4x 6x 2 24x + 7 f (x) = 2x 2 2x 24 2x 2 2x 24 = 0 2(x 2 x 2) = 0 2(x + )(x 2) = 0 (kouzlo) Tedy jediné body, ve kterých se můˇze něco dít (změnit se druhá derivace kladná/záporná = zmenit se konvexnost/konkávnost) jsou kořeny druhé derivace a 2. Změna by mohla nastat i v bodech nespojitosti definičního oboru druhé derivace, ale jelikoˇz je funkce polynom, tak i druhá derivace je spojitá a očividně D f = R. Tedy definiční obor druhé derivace je rozdělen na tři disjunktní intervaly: (, ), (, 2), (2, ). A jak určit, zda je druhá derivace na těchto intervalech kladná nebo záporná? Vezměme jeden bod ze zkoumaného intervalu a dosadíme do předpisu druhé derivace. Pokud je druhá (2)

3 derivace v tomto bodě kladná, pak je kladná v celém intervalu. (stejné pozorování jako u intervalů monotonie, viz minulé cvičení). I f f (, + konvexní, 2 konkávní 0, ) + konvexní Krajní body byli včleněny do intervalů díky spojitosti definičního oboru původní funkce. Tedy funkce má dva inflexní body - a 2. Poznámka: Pokud Vám tento postup něco připomíná (konkrétně hledání intervalů monotonie), tak ano. Je to to samé, akorát jiné - pracujeme s druhou derivací. Příklad 2.0. Tak ještě jeden - určete maximální intervaly, na nichˇz je funkce f(x) def = x 2 ryze kovexní, resp. ryze konkávní, a inflexní body. První derivace druhá derivace a poloˇzíme rovno nule f (x) = 2x + x 2 = (2x + x 2 ) f (x) = (2 + 2x) + (2x + x 2 ) = (x 2 + 4x + 2) (x 2 + 4x + 2) = 0 Součin je nulový pokud alespoň jeden z činitelů je nulový. Funkce je nenulová, tedy jediná moˇznost je ten polynom - kvadratická rovnice - diskriminant, získáme x,2 = 4 ± = 2 ± 2 Jelikoˇz definičním oborem funkce a druhé derivace je R, získáváme tři intervaly I f f (, 2 2} + konvexní 2 2, konkávní 2 + 2, ) + konvexní Volil jsem tyto body: f ( 4) = e 4 (( 4) ( 4) + 2) = e 4 2 > 0 f ( 2) = e 2 (( 2) ( 2) + 2) = e 4 ( 2) < 0 f ( 4) = e 0 ( ) = e 4 2 > 0 Tedy funkce má dva inflexní body a to 2 2 a ()

4 Asymptoty Asymptoty - přímky ke kterým se funkce blýží, ale nikdy je nedosáhne. Asymptoty rozlišujeme svislé a šikmé.. Svislé asymptoty Definice.. Přímka x = x 0, x 0 R se nazývá svislá asymptota grafu funkce f, jestliˇze je alespoň jedna jednostranná ita funkce f v bodě x 0 nevlastní, tj. f(x) = ± nebo f(x) = ± x x 0 + x x 0 Poznámka: Pozorování: Funkce nemůže mít šikmou asymptotu v bodě, ve kterém je spojitá (ita by se přímo rovnala funkční hodnotě - a ta nemůže být ± ). Tedy až budeme pátrat po šikmých asymptotách, rozhodně sáhneme po bodech nespojisti funkce. Příklad.. Například funkce je nespojitá v bodě 0, kuk na ty ity x 0+ x 0 f(x) = x tedy funkce f má v bodě 0 svislou asymptotu. x = x =.2 Šikmé asymptoty Ono se občas může stát, že jak se blýžíme k nekonečnu, tak se funkce blýží k nějaké přímce. Nevěříte? Definice.2. Přímka y = ax + b, a, b R se nazývá asymptota grafu funkce f v plus nekonečnu, jestliˇze Pro konstanty a, b platí (f(x) (ax + b)) = 0 f(x) a = x b = f(x) ax Obdobně pro asymptotu grafu f v minus nekonečnu (nahrad te v itách). Poznámka: Všimněte si, že a, b R. Tedy žádné nekonečno. Pokud je to nekonečno, žádná šikmá asymptota není. (4)

5 Příklad.2. Nalezněte šikmé asymptoty funkce f(x) def = x2 x Takˇze nalezneme konstanty a, b at to můˇzeme do předpisu y = ax + b dosadit. Nejdříve plus nekonečno x 2 x x = x 2 H 6x l x 2 x =l = H 6 = 2x 2 = Supr, takˇze je to reálné číslo, tedy a =. Pokračujeme x 2 x = x x x = Tedy funkce má šikmou asymptotu v plus nekonečnu s předpisem y = x +. Ted tedy mínus nekonečno: x 2 x x = x 2 x 2 x =l H = x 2 x x = 6x l H = 2x x x = 6 2 = Tedy funkce f má šimkou asymptotu v minus nekonečnu s předpisem y = x +. Příklad.2.2 Určete asymptoty funkce f(x) def = ex x + Svislé Definičním oborem funkce je D f = R \ { }, takˇze jediná svislá asymptota můˇze být akorát v bodě. x + x x + = e x + = e Šikmá asymptota v plus nekonečnu a = x+ x = x + x l H = x 2 + x Tedy šikmá asymptota v plus nekonečnu není. x + = e x + = e y 0+ y 0 l H = 2x + y = y = 2 = (5)

6 Šikmá asymptota v minus nekonečnu a = x+ x = Pokračujme ve výpočtu b b = l H = x 2 + x 0.x == x + 2x + = ex x + = 0 Tedy přímka y = 0x + 0 = 0 je šikmou asymptotou v minus nekonečnu. 2x + = 0 4 Průběh funkce Tedy všechny body ohledně průběhu funkce máme v malíčku a ted hurá na to. Příklad 4.0. Vyšetřete průběh funkce f(x) def = x x 2 + x + 9. definiční obor D f = R 2. spojitost polynomy jsou spojité na celém D f, funkce je tedy spojitá v kaˇzdém bodě D f. sudost/lichost, periodicita Funkce není periodická (nemá být proč :) Co takhle sudá/lichá? f( x) = ( x).( x) 2 +.( x) + 9 = x x 2 x + 9 f(x) f(x) Funkce není sudá a není lichá. 4. první derivace, stacionární body, intervaly monotonie f (x) = x 2 26x + Poloˇzíme rovno nule a nalezneme stacionární body x,2 = 26 ± Dostaneme dva stacionární body = 26 ± = ± 4. 0 x = , x 2 = 4. 0, komu vadí tak šílená čísla a nedokáˇze si pod nima představit konkrétní hodnotu, tak uˇzije kalkulačku x 8.55, x tyto hodnoty vyuˇzijeme pouze pro uspořádání důleˇzitých bodů (6)

7 které dělí definiční obor první derivace na tři intervaly kde jsem volil tyto body I f f (, rostoucí 4. 0, klesající +4. 0, ) + rostoucí f (0) =, f (6) = 45, f (0) = 4 5. druhá derivace, intervaly konvexity/konkávnosti f (x) = 6x 26 poloˇzíme rovno nule, existuje jediné řešení a to x =. Tedy definiční obor druhé derivace je rozdělen na dva intervaly: I f f (, konkávní, ) + konvexní kde jsem volil f (0) = 26, f (0) = 4 6. lokální extrémy Jediné lokální extrémy mohou být v stacionárních bodech, rozhodne hodnota druhé derivace v tomto bodě - dosazovat však nemusíme, víme do kterého intervalu konvexnosti a konkávnosti patří daný stacionární bod - víme tedy, jestli tato hodnota je kladná či záporná. V bodě 4. 0 je lokální maximum, v bodě je lokální minimum. 7. ity v bodech nespojitosti, v krajních bodech definičního oboru Funkce je spojitá na celém D f. Zbývá se juknout na ±. x x 2 + x + 9 = x ( x + x x ) = x x 2 + x + 9 = x ( x + x x ) = 8. asymptoty Svislé asyptoty uˇz máme za sebou - funkce je spojitá na celém D f, ˇzádné svislé asymptoty se nekonají. Zkusíme ty šikmé: x x 2 + x + 9 a = = x x2 x x = x2 ( x + x x ) = V plus nekonečnu nic (koeficient b ani nebudeme počítat), co takhle minus nekonečno? a = x x 2 + x + 9 = x x2 x++ 9 x = x2 ( x + x x ) = Funkce nemá ˇzádné šikmé asymptoty. (7)

8 9. významné body, funkční hodnoty ve významných bodech Významnými body jsou jistě průsečíky s osami, konkrétně plůsečíky s x-ovou osou získáme jako řešení rovnice (hledáme body, které mají y-ovou sloˇzku nulovou) x x 2 + x + 9 = 0 Jedním řešením j 4 =. Další řešení získáme dělením polynomů (x x 2 + x + 9) : (x ) = x 2 2x 9 A získáme další kořeny (diskriminant) x 5 = 6 + 5, x 6 = 6 5. Průsečík s y-ovou osou je mnohem snaˇzší - je to bod, který má x-ovou souřadnici nulovou. Jelikoˇz 0 D f lze snadno dosadit f(0) = 9 Dopočítáme funkční hodnoty ve všech významných bodech x f(x) :) 4. 0 :) :) graf Nyní přichází velké finále našeho snaˇzení. Graf není nutno kreslit přesně a trápit se s pravítkem - jde hlavně o kvalitativní vlastnosti funkce (8)

9 Nezapomeňte do grafu zaznačit všechny důležité hodnoty Příklad Vyšetřete průběh funkce. definiční obor D f = R \ {, } (nulou se nedělí) 2. spojitost funkce je spojitá v kaˇzdém bodě D f f(x) def = x x 2. sudost/lichost, periodicita Funkce není periodická (nemá být proč :) Co takhle sudá/lichá? f( x) = ( x) ( x) 2 = x x 2 = f(x) Funkce je lichá. Tak stačí vyšetřit průběh funkce na intervalu 0, a pak vyuˇzijeme symetrie. Pro jednoduchost označme definiční obor na této polovině D f = 0, ) (, ) 4. první derivace, stacionární body, intervaly monotonie f (x) = x2 (x 2 ) x 2x (x 2 ) 2 = x4 x 2 (x 2 ) 2, D f = D f Poloˇzíme rovno nule a nalezneme stacionární body Dostaneme tři stacionární body x 4 x 2 (x 2 ) 2 = 0 x4 x 2 = 0 x 2 (x 2 ) = 0 x 0 =, x = 0, x 2 = Jelikoˇz uvaˇzujeme pouz 0 a definiční obor Df, budeme uvaˇzovat tři intervaly: I f f (0, ) klesající (, klesající, ) + rostoucí kde jsem volil tyto body f ( 2 ) = 9, f ( 2 ) = 27 25, f (2) = 4 9 (9)

10 5. druhá derivace, intervaly konvexity/konkávnosti f (x) = (4x 6x)(x 2 ) 2 (x 4 x 2 )2(x 2 )2x (x 2 ) 4 =... = 2x + 6x (x 2 ), D f = D f poloˇzíme rovno nule 2x + 6x (x 2 ) = 0, 2x(x2 + ) = 0 Existuje jediné řešení a to 0. Tedy definiční obor druhé derivace je rozdělen na dva intervaly: I f f 0, ) konkávní (, ) + konvexní kde jsem volil f ( 2 ) = , f (2) = lokální extrémy Jediné lokální extrémy mohou být v stacionárních bodech. Co se týče - zde je lokální minimum, druhá derivace v tomto bodě je kladná. V nule lokální extrém není - jak se ukáˇze později, je zde inflexní bod (dle symetrie se zde mění funkce z konvexní na konkávní) 7. ity v bodech nespojitosti, v krajních bodech definičního oboru Funkce není spojitá v bodě, tak se podíváme na ty jednostranné ity x + x x x 2 = x + x x 2 = x x (x )(x + ) = x + x (x )(x + ) = x x (x + ) x + x (x + ) x x (x ) = 2 = x (x ) = ( ) = 2 8. asymptoty Svislé asyptoty už máme za sebou - funkce f má na x > 0 jedinou šikmou asyptotu x =. Zkusíme ty šikmé (a jelikoˇz uvaˇzujeme pouz > 0 budeme počítat jen v plus nekonečnu): b = a = x x 2 x = x 2 x 2 = x x 2 x = x x + x x 2 = Funkce má tedy šikmou asymptotu v plus nekonečnu y = x. x 2 x 2 ( x 2 ) = x 2 x x 2 ( x 2 ) = 0 9. významné body, funkční hodnoty ve významných bodech Významnými body jsou jistě průsečíky s osami, ale funkce f má jediný průsečík a tím je [x, f(x)] = [0, 0]. Dále je důleˇzitý bod - zde se mění funkce z klesající na rostoucí, proto určíme funkční hodnotu f( ) = 2 (0)

11 0. graf Nyní přichází velké finále našeho snaˇzení. Graf není nutno kreslit přesně a trápit se s pravítkem - jde hlavně o kvalitativní vlastnosti funkce Nezapomeňte do grafu zaznačit všechny důleˇzité hodnoty 5 Reference [] Matematická analýza ve Vesmíru - soubor přednáškových slidů Bouchala J., 2000 a něco [2] Diferenciální počet jedné proměnné Kuben J., Šarmanová P., ESF, 2007 ()

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body:

Výsledky Př.1. Určete intervaly monotónnosti a lokální extrémy funkce a) ( ) ( ) ( ) Stacionární body: Výsledky Př.. Určete intervaly monotónnosti a lokální extrémy funkce a) y < y > y < y > -2 0 3 Funkce je rostoucí v intervalech. Funkce je klesající v intervalech b) y < y > y < - Funkce je rostoucí v

Více

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, )

Příklady na konvexnost a inflexní body. Funkce f (x) = x 3 9x. Derivace jsou f (x) = 3x 2 9 a f (x) = 6x. Funkce f je konvexní na intervalu (0, ) Příklady na konvexnost a inflexní body. Funkce = x 3 9x. Derivace jsou f (x) = 3x 9 a f (x) = 6x. Funkce f je konvexní na intervalu (, ) a konkávní na intervalu (, ). Inflexní bod c =. 3 1 1 y = x 3 9x

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Kapitola 4: Průběh funkce 1/11

Kapitola 4: Průběh funkce 1/11 Kapitola 4: Průběh funkce 1/11 Funkce monotonní 2/11 Věta: Necht je f spojitá a má derivaci na intervalu I. Potom platí (i) Je-li f (x) > 0 na I, je f rostoucí na I. (ii) Je-li f (x) 0 na I, je f neklesající

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

, f g jsou elementární funkce.

, f g jsou elementární funkce. Průběh funkce použité definice a věty Definice. Řekneme, že funkce je spojitá na otevřeném intervalu (a, b), jestliže je spojitá v každém vnitřním bodě tohoto intervalu. Řekneme, že funkce je spojitá na

Více

Stručný přehled učiva

Stručný přehled učiva Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0217.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0217. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

1.1 Příklad z ekonomického prostředí 1

1.1 Příklad z ekonomického prostředí 1 1.1 Příklad z ekonomického prostředí 1 Smysl solidního zvládnutí matematiky v bakalářských oborech na Fakultě podnikatelské VUT v Brně je především v aplikační síle matematiky v odborných předmětech a

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff

Derivace funkce. existuje limita lim 0 ) xx xx0. Jestliže tato limita neexistuje nebo pokud funkce ff Derivace funkce Derivace je základním pojmem v diferenciálním počtu. Má uplatnění tam, kde se zkoumá povaha funkčních závislostí určitých proměnných (veličin). V matematice, ekonomii, fyzice ale i v jiných

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Průběh funkce pomocí systému MAPLE.

Průběh funkce pomocí systému MAPLE. Průběh funkce pomocí systému MAPLE. Vyšetřování průběhu funkce je komplení a někdy velmi obtížná úloha. V konkrétních aplikacích nás většinou zajímají jen některé otázky týkající se průběhu dané funkce.

Více

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. @121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může

Více

Vyšetřování průběhu funkcí v programu GeoGebra

Vyšetřování průběhu funkcí v programu GeoGebra Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra matematiky Bakalářská práce Vyšetřování průběhu funkcí v programu GeoGebra Autor práce: Markéta Medviďová Vedoucí práce: RNDr. Vladimíra

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

MATEMATIKA A Metodický list č. 1

MATEMATIKA A Metodický list č. 1 Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači

Více

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3,

= 2x + y, = 2y + x 3. 2x + y = 0, x + 2y = 3, V. Lokální extrémy. Příklad 1: Určete lokální extrémy zadané funkce. 1. f(x, y) = x 2 + y 2 + xy 3y 2. Definičním oborem funkce je množina Df = R 2 a funkce f má spojité parciální = 2x + y, = 2y + x 3.

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a

MATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový

verze 1.4 Ekvivalentní podmínkou pro stacionární bod je, že totální diferenciál je nulový 1 Úvod Lokální extrémy funkcí více proměnných verze 14 Následující text popisuje výpočet lokálních extrémů funkcí více proměnných Měl by sloužit především studentům předmětu MATEMAT1 na Univerzitě Hradec

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

10. Derivace, průběh funkce

10. Derivace, průběh funkce Moderní technologie ve studiu aplikované yziky CZ..07/..00/07.008 0. Derivace, průběh unkce Před mnoha lety se matematici snažili o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Příklad - V následujících příkladech v případě a) pro funkce dané rovnicí zjistěte zda jsou rostoucí klesající nebo konstantní vypočítejte průsečíky grafu s osami souřadnic a graf

Více

Derivace a průběh funkce příklady z písemných prací

Derivace a průběh funkce příklady z písemných prací Derivace a průběh funkce příklady z písemných prací Vyšetřete průběh následuících funkcí. Příklad. = x +arctg( x ). D(f) =R.. Funkce e spoitá na R. 3. Funkce není lichá, sudá, ani periodická.. lim x ±

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Matematika I: Pracovní listy do cvičení

Matematika I: Pracovní listy do cvičení Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie

MATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,

Více

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b

Rolleova věta. Mějme funkci f, která má tyto vlastnosti : má derivaci c) f (a) = f (b). a) je spojitá v a, b b) v každém bodě a,b Průběh unkce Rolleova věta Mějme unkci, která má tto vlastnosti : a) je spojitá v a, b b) v každém bodě a,b má derivaci c) (a) = (b). b Potom eistuje v a, alespoň jeden bod c, v němž ( c) : 1, 3 0 1 1

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

Zápočtová písemka Řešení

Zápočtová písemka Řešení Zápočtová písemka Řešení 0. května 0. Spočítejte derivaci následujicí funkce podle x a podle ln x: y ln ln ln x )) + ln ln ln 598 )).. Řešení: Tento člen ln ln ln 598 )) sloužil samozřejmě jen k zmatení

Více

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu

[ 5;4 ]. V intervalu 1;5 je funkce rostoucí (její první derivace je v tomto intervalu 1..1 Průběh funkce III (prohnutí Předpoklad: 111 Pedagogická poznámka: Při poctivém probírání b tato látka zabrala dvě celé vučovací hodin. Studenti z toho nebudou příliš nadšení, je zde příliš mnoho definic

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25

6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25 6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N

Více

Je-li A L(U, V), pak v 1,..., v n U a α 1,..., α n R platí. A(α 1 v α n v n ) = α 1 A(v 1 ) α n A(v n )

Je-li A L(U, V), pak v 1,..., v n U a α 1,..., α n R platí. A(α 1 v α n v n ) = α 1 A(v 1 ) α n A(v n ) LA. cvičení lineární zobrazení, bilineární formy Lukáš Pospíšil, Lineární zobrazení a báze Připomeňme si z předešlého cvičení poslední větu: Věta.. Je-li A L(U, V), pak v,..., v n U a α,..., α n R platí

Více

Matematická analýza pro informatiky I. Extrémy funkcí více proměnných

Matematická analýza pro informatiky I. Extrémy funkcí více proměnných Matematická analýza pro informatiky I. 12. přednáška Extrémy funkcí více proměnných Jan Tomeček jan.tomecek@upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 12. dubna 2011

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Kapitola 10 Pouˇzit ı derivac ı (optimalizaˇcn ı ulohy) Motivace Pˇr ıklad 10.0.5. Pozn amky k postupu

Kapitola 10 Pouˇzit ı derivac ı (optimalizaˇcn ı ulohy) Motivace Pˇr ıklad 10.0.5. Pozn amky k postupu Kapitola 10 Pouˇzití derivací (optimalizační úlohy) Motivace Uˇzití diferenciálního počtu je velmi široké a zasahuje nejen do oblasti matematiky, ale také fyziky, chemie a dalších disciplín, kde je nutné

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

ŘEŠENÍ NELINEÁRNÍCH ROVNIC

ŘEŠENÍ NELINEÁRNÍCH ROVNIC MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

MATEMATIKA I. Marcela Rabasová

MATEMATIKA I. Marcela Rabasová MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.

Více

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY

Diferenciální počet funkcí jedné reálné proměnné LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Diferenciální počet funkcí jedné reálné proměnné - 4.1 - LOKÁLNÍ A GLOBÁLNÍ EXTRÉMY FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ LOKÁLNÍ EXTRÉMY Při hledání lokálních etrémů postupujeme podle následujícího programu Nalezneme

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH DEFINICE. Funkce f více proměnných. má v bodě C D(f) lokální maximum, resp. lokální minimum, jestliže existuje okolí U bodu C takové, že f(c) je maximální (resp. minimální

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné

MATEMATIKA I. Diferenciální počet funkcí jedné proměnné Evropský polytechnický institut, s.r.o.. soukromá vysoká škola na Moravě Kunovice MATEMATIKA I. Dierenciální počet unkcí jedné proměnné RNDr. Jitka Jablonická Doc. RNDr. Daniela Hricišáková, CSc. Evropský

Více

Průběh funkce. Robert Mařík. 27. června 2006

Průběh funkce. Robert Mařík. 27. června 2006 Průběh funkce Robert Mařík 27. června 26 c Robert Mařík, 26 Obsah y = x 1 x 2.... 3 y = 3x 1 x 3.... 49 y = 2(x2 x 1) (x 1) 2.... 11 y = x3 3 x 2.... 149 y = x2 1 x 2 1.... 191 c Robert Mařík, 26 y = x

Více