MYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta.

Rozměr: px
Začít zobrazení ze stránky:

Download "MYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta."

Transkript

1 Expertní systémy MYCIN, Prospector Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] Expertní systémy jsou počítačové programy, simulující rozhodovací činnosti experta při řešení složitých úloh a využívající vhodně zakódovaných, explicitně vyjádřených speciálních znalostí, převzatých od experta, s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta.

2 Hlavní rysy expertních systémů Explicitně reprezentované znalosti, striktně oddělené od řídícího mechanizmu nakládání s nimi. Znalosti obsahují celou škálu od nejobecnějších až k úzce speciálním, od exaktních až po osobní heuristiky experta. Znalosti nemají statický charakter, nýbrž se vyvíjejí a rozrůstají. Báze znalosti reprezentuje soubor pravidel, obecnou znalost. Řešit konkrétní příklad znamená dosadit data o daném případu do obecně formulovaných znalostí z báze znalostí. Musí umět pracovat s nejistými znalostmi (od experta) i nejistotě o bázi dat (konkrétním případu). Měly by být schopny vysvětlit a zdůvodnit své doporučení (i otázky). Reprezentace znalostí: modularita (logiky, pravidel) se hodí pro snadnou údržbu, ale těžko se v ní vyhledávají všechny informace relevantní k jednomu pojmu. Z tohoto pohledu jsou lepší

3 Sémantika pravidel Definition (pravidlo E H s vahou W ) Znalost je reprezentována pomocí pravidel E H s vahou W, kde E a H reprezentují elementární tvrzení. Každé pravidlo má přiřazenou svou váhu W - míru, nakolik (jistá, tj. 100%-ní) znalost E podporuje či popírá platnost tvrzení H. Potřebujeme zodpovědět následující tři otázky. 1 Jak vyjádřit neurčitost elementárního tvrzení? 2 Jak se využívá pravidla, pokud není splnění předpokladu jisté? 3 Jak se určuje míra důvery závěru H v případě, že existuje více pravidel se stejným závěrem? Různé typy reprezentace nejistoty se v odpovědi na tyto otázky liší.

4 MYCIN, EMYCIN Přírůstek důvěry (measure of belief) je definován jako MB(H, E) = P(H E) P(H) 1 P(H) přírůstek nedůvěry (measure of disbelief) je definován jako MD(H, E) = P(H) P(H E) P(H) Pokud znalost E podporuje hypotézu H, tak se pravděpodobnost P(H) musí touto znalostí zvýšit, tj. P(H E) > P(H), tedy MB(H, E) > 0, pokud E snižuje důvěru v H, je P(H E) < P(H), a tedy MD(H, E) > 0. Pro každé pravidlo vyžadujeme, aby nebyly obě míry různé od nuly zároveň, tj. jednotlivé pravidlo buď podporuje důvěru v hypotézu či nedůvěru v ní, ale ne obojí zároveň.

5 Činitel jistoty (CF) Na základě MB a MD je definován činitel jistoty (certainty factor) CF (H, E) = MB(H, E) MD(H, E) který nabývá hodnotu od -1 do +1, je-li větší než 0 je roven MB, jinak je v absolutní hodnotě roven MD. V EMYCIN je činitel jistoty definován trochu jinak: CF = což umožní snažší skládání pravidel. MB MD 1 min(mb, MD)

6 Nejistý předpoklad pravidla Ani předpoklad pravidla E 1 nemusíme znát s jistotou. Zavádíme míru jistoty evidence E 1 po pozorování E : CF (E 1, E ). Pravidlo E 1 H pak kombinujeme s touto mírou jistoty následovně: MB(H, E ) = MB(H, E 1 ) max{0, CF (E 1, E )} MD(H, E ) = MD(H, E 1 ) max{0, CF (E 1, E )}

7 Skládání pravidel Skládání pravidel se stejnou hypotézou E 1 H, E 2 H je v MYCIN definováno následovně: MB(H, E 1 &E 2 ) = MB(H, E 1 ) + MB(H, E 2 ) MB(H, E 1 ) MB(H, E 2 ) MD(H, E 1 &E 2 ) = MD(H, E 1 ) + MD(H, E 2 ) MD(H, E 1 ) MD(H, E 2 ) a dopočítat CF V EMYCIN přímo: CF (H, E 1 &E 2 ) = f (CF ((H, E 1 ), CF (H, E 2 )) { x + y xy pro xy 0 kde f (x, y) = jinak x+y 1 min{abs(x),abs(y)}

8 Skládání hypotéz Pro konjunkci či disjunkci hypotéz H 1 &H 2 MB(H 1 &H 2, E) = min{mb(h 1, E), MB(H 2, E)} MD(H 1 &H 2, E) = max{md(h 1, E), MD(H 2, E)} MB(H 1 H 2, E) = max{mb(h 1, E), MB(H 2, E)} MD(H 1 H 2, E) = min{md(h 1, E), MD(H 2, E)} Příklad.

9 PROSPECTOR Pseudobayesovský model P(H E) = P(E H) P(H) P(E) P( H E) = P(E H) P( H) P(E) Odtud P(H E) P(E H) = P( H E) P(E H) P(H) P( H) O(H E) = L O(H) O() odds - naděje, pravděpodobnostní šance, O(H) apriorní, O(H E) aposteriorní L míra postačitelnosti

10 obdobně míra nutnosti L = P(E H) P(E H) L = P( E H) P( E H) Míra nutnosti nelze dopočítat z míry postačitelnosti. Expert zadává buď L a L, nebo pravděpodobnosti P(H E), P(H E). Skládání pravidel pak je triviální: O(H E 1, E 2, E 3, E 4 ) = L 1 L 2 L 3 L 4 O(H) Nejisté pozorování není tak triviální, protože dojde k přeurčení a je třeba aproximovat (my se tím zabývat nebudeme).

11 Hájek Abelovské grupy Pokud jsou k řešení úlohy k dispozici identické znalosti, pak je bez ohledu na použitý inferenční mechanismus a na použitou kombinační funkci, která je operací na uspořádané Abelově grupě výsledné uspořádání cílových hypotéz identické. Uspořádaná Abelovská grupa Komutativnost Asociativnost Existence neutrálního prvku Existence inverzního prvku Uspořádání Minimální a max. prvek + vlastnosti, jejich kombinace není def.

12 Success story: Pathfinder Pathfinder je medicínský diagnostický systém (lymph-node diseases). Měl čtyři verze: 1 pravidlový systém založený na logice, bez nejistoty. 2 zjednodušená Bayesovská síť ( naive bayes ) pro klasifikaci: jeden uzel pro klasifikovanou veličinu, z ní vede hrana do každé pozorovatelné veličiny, tj. předpokládáme, že pozorování jsou nezávislá. Častou příčinou nesprávné klasifikace bylo, že expert přiřadil pravděpodobnost nula nepravděpodobnému, ale možnému výsledku. 3 zas naive bayes, ale dali si pozor na jevy s nízkou pravděpodobností (úspěšnost 7.9 z 10) 4 modelovali i závislosti mezi pozorováními. (úspěšnost 8.9 z 10) - srovnatelná s dobrým expertem.

13 Pravděpodobnostní modely budou příští semestr nyní (na tabuli) naive bayes klasifikátor

14 Dempster Shapfer Dempster-Shafer teorie Mám-li čtyři možné hodnoty veličiny, pak mi pravděpodobnost neumožňuje reprezentovat znalost: na 50% to udělal A nebo B, ale nevím který z nich, na 50% to udělal C. Pokud bychom to reprezentovali pravděpodobností a dostali informaci, že to A neudělal, tak se zvýší pravděpodobnost viny C. V Dempster-Shapfer teorii vyloučíme A, tedy celých 50% přejde na B, a 50% zůstane na C. Definition (základní přiřazení) Mějme množinu možných hodnot X. Definujeme základní přiřazení m: P(X ) [0, 1], kde m( ) = 0 a A X m(a) = 1. Všiměte si, že m definujeme na potenci X, nikoli na X samotné.

15 Tímto základním přiřazením je jednoznačně určena míra domění (belief) a plauzibilita (připustitelnost), definované: Bel(A) = m(b) B A Pl(A) = m(b) B A = tj. součet přes všechny B mající s A neprázdný průnik. Bel sumarizuje, nakolik evidence ukazuje na A. Pl říká, jak bychom věřili A, kdyby vše neznámé ukazovalo na A. pravdivá hodnota je někde mezi.

16 Příklad Uvažujme univerzum U = {H, C, P} a základní přiřazení m({h}) = 0.3 m({h,c}) = 0.2 m({h,c,p}) = 0.5 Pak Bel({H}) = 0.3 Pl({H}) = 1.0 Bel({H,C}) = 0.5 Pl({H,C}) = 1.0 Bel({P}) = 0 Pl({P}) = 0.5 Bel({C}) = 0 Pl({C}) = 0.7

17 Dempstrovo kombinační pravidlo Pro dvě daná základní přiřazení m 1 a m 2 definujeme jejich kombinaci m 1 + m 2 (která je také základní přiřazení) následovně: (m 1 + m 2 )(A) = X,Y ;X Y =A m 1 (X ) m 2 (Y ) 1 X,Y ;X Y = m 1 (X ) m 2 (Y )

18 Příklad Pro univerzum U = {D, D } a m 1 ({D}) = 0.8; m 1 ({D }) = 0; m 1 ({D,D }) = 0.2; m 2 ({D}) = 0.9; m 2 ({D }) = 0; m 2 ({D,D }) = 0.1; vytvoříme tabulku: m 2 m {D} 0 {D } 0.1 {D,D } 0.8 {D} 0.72 {D} 0 {} 0.08 {D} 0 {D } 0 {} 0 {} 0 {D } 0.2 {D,D } 0.18 {D} 0 {} 0.02 {D,D } m 1 + m 2 ({D}) = = 0.98 m 1 + m 2 ({D }) = 0 m 1 + m 2 ({D, D }) = 0.02

19 Problém s normalizací Counter Intuitive Behavior of Dempster Rule V následujícím příkladu vede Dempstrovo pravidlo k neočekávanému výsledku. Řekněme, že dva doktoři vyšetřili stejného pacienta, který má buď meningitidu (M), concussion (C) nebo nádor na mozku (tumor) (T). Tedy U = {M,C,T}. Doktoři se liší v diagnoze: m 1 ({M}) = 0.99; m 1 ({T }) = 0.01; m 2 ({C }) = 0.99; m 2 ({T }) = 0.01; Shodnou se na malé pravděpodobnosti nádoru T, ale neshodnou se v pravděpodobné příčině. Kombinací nám vyjde, že... Jedna možnost, jak potlačit takovéto výsledky, je přiřadit i prázdné množině nenulovou míru, která bude určovat míru neshody mezi

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav

Více

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

Spojení OntoUML a GLIKREM ve znalostním rozhodování

Spojení OntoUML a GLIKREM ve znalostním rozhodování 1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních

Více

Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz. 16. srpna 2006

Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz. 16. srpna 2006 Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz 16. srpna 2006 Rozpoznávání a vnímání. Statistický (příznakový) a strukturní přístup. Klasifikátory a jejich učení. Cíle umělé inteligence. Reprezentace

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Rozhodovací procesy 11

Rozhodovací procesy 11 Rozhodovací procesy 11 Management rizik Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 XI rozhodování 1 Management rizik Cíl přednášky 11: a přístup k řízení rizik : Ohrožení,

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

EXPERTNÍ SYSTÉMY V CHOVU VČEL A MOŽNOSTI JEJICH VYUŽITÍ V. Vostrovský Katedra informatiky, Vysoká škola zemědělská, 165 21 Praha 6 Suchdol, tel.

EXPERTNÍ SYSTÉMY V CHOVU VČEL A MOŽNOSTI JEJICH VYUŽITÍ V. Vostrovský Katedra informatiky, Vysoká škola zemědělská, 165 21 Praha 6 Suchdol, tel. EXPERTNÍ SYSTÉMY V CHOVU VČEL A MOŽNOSTI JEJICH VYUŽITÍ V. Vostrovský Katedra informatiky, Vysoká škola zemědělská, 165 21 Praha 6 Suchdol, tel. (02)3382274, fax. (02)393708 Anotace: Příspěvek popisuje

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

6 Reprezentace a zpracování neurčitosti

6 Reprezentace a zpracování neurčitosti 6 Reprezentace a zpracování neurčitosti Většina našich znalostí o reálném světě je zatížena ve větší či menší míře neurčitostí. Na druhou stranu, schopnost rozhodovat se i v situacích, kdy nejsou všechny

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Jak je důležité být fuzzy

Jak je důležité být fuzzy 100 vědců do SŠ 1. intenzivní škola Olomouc, 21. 22. 6. 2012 Jak je důležité být fuzzy Libor Běhounek Ústav informatiky AV ČR 1. Úvod Klasická logika Logika se zabývá pravdivostí výroků a jejím přenášením

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 12. Virtuální sítě (VLAN) Studijní cíl Základní seznámení se sítěmi VLAN. Doba nutná k nastudování 1 hodina VLAN Virtuální síť bývá definována jako logický segment LAN, který spojuje koncové uzly, které

Více

12 HRY S NEÚPLNOU INFORMACÍ

12 HRY S NEÚPLNOU INFORMACÍ 12 HRY S NEÚPLNOU INFORMACÍ 543 Ne v každé hře mají všichni hráči úplné informace o výplatních funkcích ostatních. Ve skutečnosti je většina situací s informací neúplnou. Například: V aukcích zpravidla

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky. Expertní systémy. Jiří Dvořák

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky. Expertní systémy. Jiří Dvořák VYSOKÉ UČNÍ TCNICKÉ V BRNĚ FAKULTA STROJNÍO INŽNÝRSTVÍ Ústav automatizace a informatiky Jiří Dvořák 2004 Obsah ředmluva...... 5 1. Úvod do expertních systémů...... 6 1.1 Charakteristika expertních systémů......

Více

Úloha ve stavovém prostoru SP je , kde s 0 je počáteční stav C je množina požadovaných cílových stavů

Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému

Více

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.

Motivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND. Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Jak kriticky myslet? Kamil Gregor @kamilgregor

Jak kriticky myslet? Kamil Gregor @kamilgregor Jak kriticky myslet? Kamil Gregor @kamilgregor Inspirace Petr Ludwig Zlin.barcamp.cz Dva díly Jak se to nemá dělat (tinyurl.com/gregor-plzen) Jak se to má dělat 2 min Jak na to? Tvrzení Základem je správná

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Matematika kr sy. 5. kapitola. V hoda pr ce s grupami

Matematika kr sy. 5. kapitola. V hoda pr ce s grupami 5. kapitola Matematika kr sy V hoda pr ce s grupami Původním úkolem geometrie byl popis různých objektů a vztahů, pozorovaných v okolním světě. Zrakem vnímáme nejen struktury tvaru objektů, všímáme si

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

ZÁKLADNÍ TYPY ROZHODOVACÍH PROBLÉMŮ

ZÁKLADNÍ TYPY ROZHODOVACÍH PROBLÉMŮ ZÁKLADNÍ TYPY ROZHODOVACÍH PROBLÉMŮ ZPRACOVALA ING. RENATA SKÝPALOVÁ CZ.1.07/1.1.00/14.0143 OSNOVA HODINY Dobře a špatně strukturované problémy Rozhodovací procesy za jistoty, rizika a nejistoty Přehled

Více

Pravděpodobnostní (Markovské) metody plánování, MDP - obsah

Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní (Markovské) metody plánování, MDP - obsah Pravděpodobnostní plánování - motivace. Nejistota ve výběr akce Markovské rozhodovací procesy Strategie plán (control policy) Částečně pozorovatelné

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Přejímka jedním výběrem

Přejímka jedním výběrem Přejímka jedním výběrem Menu: QCExpert Přejímka Jedním výběrem Statistická přejímka jedním výběrem slouží k rozhodnutí, zda dané množství nějakých výrobků vyhovuje našim požadavkům na kvalitu, která je

Více

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV Filozofické problémy přírodních věd Teorie a zákon Lukáš Richterek Katedra experimentální fyziky PF UP, 17 listopadu 1192/12, 771 46 Olomouc lukasrichterek@upolcz Podklad k předmětu KEF/FPPV 2 / 10 Logické

Více

UČENÍ BEZ UČITELE. Václav Hlaváč

UČENÍ BEZ UČITELE. Václav Hlaváč UČENÍ BEZ UČITELE Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac 1/22 OBSAH PŘEDNÁŠKY ÚVOD Učení

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Informační systémy pro podporu rozhodování

Informační systémy pro podporu rozhodování Informační systémy pro podporu rozhodování 3 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Nejbližší sousedi k NN Algoritmus k-nejbližších sousedů (k-nearest neighbors)

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

MNOŽINY. x A. Jeho varianty paradox mostu se šibenicí, paradox holiče.

MNOŽINY. x A. Jeho varianty paradox mostu se šibenicí, paradox holiče. MNOŽINY Naivní definice (pojetí): Množina [set] je přesně definovaný soubor prvků, které mají nějakou vlastnost. O čemkoliv je třeba umět jednoznačně rozhodnout, zda do dané množiny patří či nikoliv. Vztah

Více

MATEMATIKA ZÁKLADNÍ ÚROVEŇ

MATEMATIKA ZÁKLADNÍ ÚROVEŇ NOVÁ MTURITNÍ ZKOUŠK Ilustrační test 2008 Základní úroveň obtížnosti MVCZMZ08DT MTEMTIK ZÁKLDNÍ ÚROVEŇ DIDKTICKÝ TEST Testový sešit obsahuje 8 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

Jan Pavĺık. FSI VUT v Brně 14.5.2010

Jan Pavĺık. FSI VUT v Brně 14.5.2010 Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je:

9. Soustavy rovnic DEFINICE SOUSTAVY LINEÁRNÍCH ROVNIC O DVOU NEZNÁMÝCH. Soustava lineárních rovnic o dvou neznámých je: 9. Soustavy rovnic Správný nadpis této kapitoly by měl znít soustavy lineárních rovnic o dvou neznámých, z důvodu přehlednosti jsem jej zkrátil. Hned v úvodu čtenáře potěším teorie bude tentokrát krátká.

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Vysoká škola ekonomická v Praze

Vysoká škola ekonomická v Praze Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačního a znalostního inženýrství Obor: Aplikovaná informatika Student : Filip Hrbek Vedoucí bakalářské práce : prof. Ing.

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

Informační systémy pro podporu rozhodování

Informační systémy pro podporu rozhodování Informační systémy pro rozhodování Informační systémy pro podporu rozhodování 5 Jan Žižka, Naděžda Chalupová Ústav informatiky PEF Mendelova universita v Brně Asociační pravidla Asociační pravidla (sdružovací

Více

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Projekt výzkumu v graduační práci

Projekt výzkumu v graduační práci Projekt výzkumu v graduační práci Základní manuál Prof. PhDr. Beáta Krahulcová, CSc. Fáze výzkumu Přípravná, teoretická fáze (výsledek kumulovaného poznání,precizace výzkumného úkolu, formulace vědecké

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Projekt. Kultivace Seznamu zdravotních výkonů a vytvoření nezávislého SW pro jeho další údržbu a modelace

Projekt. Kultivace Seznamu zdravotních výkonů a vytvoření nezávislého SW pro jeho další údržbu a modelace Projekt Kultivace Seznamu zdravotních výkonů a vytvoření nezávislého SW pro jeho další údržbu a modelace spolufinancovaný Evropskou unií z Evropského fondu pro regionální rozvoj Projekt probíhal od července

Více

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012

Lenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012 Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z

Více

APLIKOVANÁ UMĚLÁ INTELIGENCE

APLIKOVANÁ UMĚLÁ INTELIGENCE Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra měřicí a řídicí techniky APLIKOVANÁ UMĚLÁ INTELIGENCE Miroslav Pokorný Ostrava 2005 OBSAH 1 ÚVOD - MODELOVÁNÍ

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť

Více

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací

Teorie her a ekonomické rozhodování. 7. Hry s neúplnou informací Teorie her a ekonomické rozhodování 7. Hry s neúplnou informací 7.1 Informace Dosud hráči měli úplnou informaci o hře, např. znali svou výplatní funkci, ale i výplatní funkce ostatních hráčů často to tak

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.

{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2. 9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Numerické metody a programování

Numerické metody a programování Projekt: Inovace výuky optiky se zaměřením na získání experimentálních dovedností Registrační číslo: CZ.1.7/2.2./28.157 Numerické metody a programování Lekce 4 Tento projekt je spolufinancován Evropským

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

Kategorizace prací z hlediska prachu

Kategorizace prací z hlediska prachu Kategorizace prací z hlediska prachu Ing. Jitka Hollerová Státní zdravotní ústav Praha Centrum laboratorních činností Laboratoř pro fyzikální faktory 26. konzultační den 19. února 2009 Kategorizace prací

Více