MYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "MYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta."

Transkript

1 Expertní systémy MYCIN, Prospector Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] Expertní systémy jsou počítačové programy, simulující rozhodovací činnosti experta při řešení složitých úloh a využívající vhodně zakódovaných, explicitně vyjádřených speciálních znalostí, převzatých od experta, s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta.

2 Hlavní rysy expertních systémů Explicitně reprezentované znalosti, striktně oddělené od řídícího mechanizmu nakládání s nimi. Znalosti obsahují celou škálu od nejobecnějších až k úzce speciálním, od exaktních až po osobní heuristiky experta. Znalosti nemají statický charakter, nýbrž se vyvíjejí a rozrůstají. Báze znalosti reprezentuje soubor pravidel, obecnou znalost. Řešit konkrétní příklad znamená dosadit data o daném případu do obecně formulovaných znalostí z báze znalostí. Musí umět pracovat s nejistými znalostmi (od experta) i nejistotě o bázi dat (konkrétním případu). Měly by být schopny vysvětlit a zdůvodnit své doporučení (i otázky). Reprezentace znalostí: modularita (logiky, pravidel) se hodí pro snadnou údržbu, ale těžko se v ní vyhledávají všechny informace relevantní k jednomu pojmu. Z tohoto pohledu jsou lepší

3 Sémantika pravidel Definition (pravidlo E H s vahou W ) Znalost je reprezentována pomocí pravidel E H s vahou W, kde E a H reprezentují elementární tvrzení. Každé pravidlo má přiřazenou svou váhu W - míru, nakolik (jistá, tj. 100%-ní) znalost E podporuje či popírá platnost tvrzení H. Potřebujeme zodpovědět následující tři otázky. 1 Jak vyjádřit neurčitost elementárního tvrzení? 2 Jak se využívá pravidla, pokud není splnění předpokladu jisté? 3 Jak se určuje míra důvery závěru H v případě, že existuje více pravidel se stejným závěrem? Různé typy reprezentace nejistoty se v odpovědi na tyto otázky liší.

4 MYCIN, EMYCIN Přírůstek důvěry (measure of belief) je definován jako MB(H, E) = P(H E) P(H) 1 P(H) přírůstek nedůvěry (measure of disbelief) je definován jako MD(H, E) = P(H) P(H E) P(H) Pokud znalost E podporuje hypotézu H, tak se pravděpodobnost P(H) musí touto znalostí zvýšit, tj. P(H E) > P(H), tedy MB(H, E) > 0, pokud E snižuje důvěru v H, je P(H E) < P(H), a tedy MD(H, E) > 0. Pro každé pravidlo vyžadujeme, aby nebyly obě míry různé od nuly zároveň, tj. jednotlivé pravidlo buď podporuje důvěru v hypotézu či nedůvěru v ní, ale ne obojí zároveň.

5 Činitel jistoty (CF) Na základě MB a MD je definován činitel jistoty (certainty factor) CF (H, E) = MB(H, E) MD(H, E) který nabývá hodnotu od -1 do +1, je-li větší než 0 je roven MB, jinak je v absolutní hodnotě roven MD. V EMYCIN je činitel jistoty definován trochu jinak: CF = což umožní snažší skládání pravidel. MB MD 1 min(mb, MD)

6 Nejistý předpoklad pravidla Ani předpoklad pravidla E 1 nemusíme znát s jistotou. Zavádíme míru jistoty evidence E 1 po pozorování E : CF (E 1, E ). Pravidlo E 1 H pak kombinujeme s touto mírou jistoty následovně: MB(H, E ) = MB(H, E 1 ) max{0, CF (E 1, E )} MD(H, E ) = MD(H, E 1 ) max{0, CF (E 1, E )}

7 Skládání pravidel Skládání pravidel se stejnou hypotézou E 1 H, E 2 H je v MYCIN definováno následovně: MB(H, E 1 &E 2 ) = MB(H, E 1 ) + MB(H, E 2 ) MB(H, E 1 ) MB(H, E 2 ) MD(H, E 1 &E 2 ) = MD(H, E 1 ) + MD(H, E 2 ) MD(H, E 1 ) MD(H, E 2 ) a dopočítat CF V EMYCIN přímo: CF (H, E 1 &E 2 ) = f (CF ((H, E 1 ), CF (H, E 2 )) { x + y xy pro xy 0 kde f (x, y) = jinak x+y 1 min{abs(x),abs(y)}

8 Skládání hypotéz Pro konjunkci či disjunkci hypotéz H 1 &H 2 MB(H 1 &H 2, E) = min{mb(h 1, E), MB(H 2, E)} MD(H 1 &H 2, E) = max{md(h 1, E), MD(H 2, E)} MB(H 1 H 2, E) = max{mb(h 1, E), MB(H 2, E)} MD(H 1 H 2, E) = min{md(h 1, E), MD(H 2, E)} Příklad.

9 PROSPECTOR Pseudobayesovský model P(H E) = P(E H) P(H) P(E) P( H E) = P(E H) P( H) P(E) Odtud P(H E) P(E H) = P( H E) P(E H) P(H) P( H) O(H E) = L O(H) O() odds - naděje, pravděpodobnostní šance, O(H) apriorní, O(H E) aposteriorní L míra postačitelnosti

10 obdobně míra nutnosti L = P(E H) P(E H) L = P( E H) P( E H) Míra nutnosti nelze dopočítat z míry postačitelnosti. Expert zadává buď L a L, nebo pravděpodobnosti P(H E), P(H E). Skládání pravidel pak je triviální: O(H E 1, E 2, E 3, E 4 ) = L 1 L 2 L 3 L 4 O(H) Nejisté pozorování není tak triviální, protože dojde k přeurčení a je třeba aproximovat (my se tím zabývat nebudeme).

11 Hájek Abelovské grupy Pokud jsou k řešení úlohy k dispozici identické znalosti, pak je bez ohledu na použitý inferenční mechanismus a na použitou kombinační funkci, která je operací na uspořádané Abelově grupě výsledné uspořádání cílových hypotéz identické. Uspořádaná Abelovská grupa Komutativnost Asociativnost Existence neutrálního prvku Existence inverzního prvku Uspořádání Minimální a max. prvek + vlastnosti, jejich kombinace není def.

12 Success story: Pathfinder Pathfinder je medicínský diagnostický systém (lymph-node diseases). Měl čtyři verze: 1 pravidlový systém založený na logice, bez nejistoty. 2 zjednodušená Bayesovská síť ( naive bayes ) pro klasifikaci: jeden uzel pro klasifikovanou veličinu, z ní vede hrana do každé pozorovatelné veličiny, tj. předpokládáme, že pozorování jsou nezávislá. Častou příčinou nesprávné klasifikace bylo, že expert přiřadil pravděpodobnost nula nepravděpodobnému, ale možnému výsledku. 3 zas naive bayes, ale dali si pozor na jevy s nízkou pravděpodobností (úspěšnost 7.9 z 10) 4 modelovali i závislosti mezi pozorováními. (úspěšnost 8.9 z 10) - srovnatelná s dobrým expertem.

13 Pravděpodobnostní modely budou příští semestr nyní (na tabuli) naive bayes klasifikátor

14 Dempster Shapfer Dempster-Shafer teorie Mám-li čtyři možné hodnoty veličiny, pak mi pravděpodobnost neumožňuje reprezentovat znalost: na 50% to udělal A nebo B, ale nevím který z nich, na 50% to udělal C. Pokud bychom to reprezentovali pravděpodobností a dostali informaci, že to A neudělal, tak se zvýší pravděpodobnost viny C. V Dempster-Shapfer teorii vyloučíme A, tedy celých 50% přejde na B, a 50% zůstane na C. Definition (základní přiřazení) Mějme množinu možných hodnot X. Definujeme základní přiřazení m: P(X ) [0, 1], kde m( ) = 0 a A X m(a) = 1. Všiměte si, že m definujeme na potenci X, nikoli na X samotné.

15 Tímto základním přiřazením je jednoznačně určena míra domění (belief) a plauzibilita (připustitelnost), definované: Bel(A) = m(b) B A Pl(A) = m(b) B A = tj. součet přes všechny B mající s A neprázdný průnik. Bel sumarizuje, nakolik evidence ukazuje na A. Pl říká, jak bychom věřili A, kdyby vše neznámé ukazovalo na A. pravdivá hodnota je někde mezi.

16 Příklad Uvažujme univerzum U = {H, C, P} a základní přiřazení m({h}) = 0.3 m({h,c}) = 0.2 m({h,c,p}) = 0.5 Pak Bel({H}) = 0.3 Pl({H}) = 1.0 Bel({H,C}) = 0.5 Pl({H,C}) = 1.0 Bel({P}) = 0 Pl({P}) = 0.5 Bel({C}) = 0 Pl({C}) = 0.7

17 Dempstrovo kombinační pravidlo Pro dvě daná základní přiřazení m 1 a m 2 definujeme jejich kombinaci m 1 + m 2 (která je také základní přiřazení) následovně: (m 1 + m 2 )(A) = X,Y ;X Y =A m 1 (X ) m 2 (Y ) 1 X,Y ;X Y = m 1 (X ) m 2 (Y )

18 Příklad Pro univerzum U = {D, D } a m 1 ({D}) = 0.8; m 1 ({D }) = 0; m 1 ({D,D }) = 0.2; m 2 ({D}) = 0.9; m 2 ({D }) = 0; m 2 ({D,D }) = 0.1; vytvoříme tabulku: m 2 m {D} 0 {D } 0.1 {D,D } 0.8 {D} 0.72 {D} 0 {} 0.08 {D} 0 {D } 0 {} 0 {} 0 {D } 0.2 {D,D } 0.18 {D} 0 {} 0.02 {D,D } m 1 + m 2 ({D}) = = 0.98 m 1 + m 2 ({D }) = 0 m 1 + m 2 ({D, D }) = 0.02

19 Problém s normalizací Counter Intuitive Behavior of Dempster Rule V následujícím příkladu vede Dempstrovo pravidlo k neočekávanému výsledku. Řekněme, že dva doktoři vyšetřili stejného pacienta, který má buď meningitidu (M), concussion (C) nebo nádor na mozku (tumor) (T). Tedy U = {M,C,T}. Doktoři se liší v diagnoze: m 1 ({M}) = 0.99; m 1 ({T }) = 0.01; m 2 ({C }) = 0.99; m 2 ({T }) = 0.01; Shodnou se na malé pravděpodobnosti nádoru T, ale neshodnou se v pravděpodobné příčině. Kombinací nám vyjde, že... Jedna možnost, jak potlačit takovéto výsledky, je přiřadit i prázdné množině nenulovou míru, která bude určovat míru neshody mezi

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky. Expertní systémy. Jiří Dvořák

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky. Expertní systémy. Jiří Dvořák VYSOKÉ UČNÍ TCNICKÉ V BRNĚ FAKULTA STROJNÍO INŽNÝRSTVÍ Ústav automatizace a informatiky Jiří Dvořák 2004 Obsah ředmluva...... 5 1. Úvod do expertních systémů...... 6 1.1 Charakteristika expertních systémů......

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

ň ť Č Á ť ň ň Ú Ú Á Ň ď Ú Ů Ý É Ů Ď Č ň ď ň ň ň ň Č ň ň Ď Č ň Š ň Š Š Č ň Ú Š Š Š Ě Ú ť ď ď Á Ď ť É Č ť Ó ň ť Ď Ď Ď Ý Ď Ž Ď Ď Ý Ď Ú ň ň Ď Ď Ý Ď Ď Ď ň ť Ť Ů Ú ň ď ň Ř Ů ň Á Š ť Č ň Š Š ň ň ň ť ť ť ť ť ť

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá.

Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. Výroková logika I Výroková logika se zabývá výroky. (Kdo by to byl řekl. :-)) Výrok je každá oznamovací věta (sdělení), u níž dává smysl, když uvažujeme, zda je buď pravdivá, nebo nepravdivá. U výroku

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Jak kriticky myslet? Kamil Gregor @kamilgregor

Jak kriticky myslet? Kamil Gregor @kamilgregor Jak kriticky myslet? Kamil Gregor @kamilgregor Inspirace Petr Ludwig Zlin.barcamp.cz Dva díly Jak se to nemá dělat (tinyurl.com/gregor-plzen) Jak se to má dělat 2 min Jak na to? Tvrzení Základem je správná

Více

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV

. Filozofické problémy přírodních věd Teorie a zákon. Lukáš Richterek. lukas.richterek@upol.cz. Podklad k předmětu KEF/FPPV Filozofické problémy přírodních věd Teorie a zákon Lukáš Richterek Katedra experimentální fyziky PF UP, 17 listopadu 1192/12, 771 46 Olomouc lukasrichterek@upolcz Podklad k předmětu KEF/FPPV 2 / 10 Logické

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Pravděpodobnostní plánování zbynek.winkler at mff.cuni.cz, md at robotika.cz http://robotika.cz/guide/umor05/cs 12. prosince 2005 1 Co už umíme a co ne? Jak řešit složitější případy? Definice konfiguračního

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11

PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PŘEPOČET VÝSLEDKŮ ZÁKLADNÍ A VYŠŠÍ ÚROVNĚ OBTÍŽNOSTI DIDAKTICKÝCH TESTŮ DLE PRAVDĚPODOBNOSTNÍHO MODELU INDEX 11 PRO PŘEDMĚTY: ČESKÝ JAZYK A LITERATURA MATEMATIKA ANGLICKÝ JAZYK Jak bych dopadl, kdybych

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

Základy pravděpodobnosti poznámky. Jana Klicnarová

Základy pravděpodobnosti poznámky. Jana Klicnarová Základy pravděpodobnosti poznámky Jana Klicnarová 1 V této části připomeneme základní pojmy a vztahy pro práci s náhodou. 0.1 Náhodné jevy Uvažujme situace, které mohou a nemusí nastat a o kterých v nějakém

Více

2. přednáška z předmětu GIS1 Data a datové modely

2. přednáška z předmětu GIS1 Data a datové modely 2. přednáška z předmětu GIS1 Data a datové modely Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky z www.gis.zcu.cz Předmět KMA/UGI, autor Ing. K.

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

Klauzulární logika. Znalostní báze. Šárka Vavrečková

Klauzulární logika. Znalostní báze. Šárka Vavrečková Klauzulární logika Znalostní báze Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 26. listopadu 2007 (Znalostní báze) Klauzulární

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Systémy pro podporu rozhodování. Modelování a analýza

Systémy pro podporu rozhodování. Modelování a analýza Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Hodnocení efektivnosti programů podpory malého a středního podnikání na základě realizace projektů podpořených

Hodnocení efektivnosti programů podpory malého a středního podnikání na základě realizace projektů podpořených Příloha č. 2 Hodnocení efektivnosti programů podpory malého a středního podnikání na základě realizace projektů podpořených Českomoravskou záruční a rozvojovou bankou Skutečné efekty podpor z roku 2003

Více

Analytické myšlení TSP MU výroková logika II.

Analytické myšlení TSP MU výroková logika II. Analytické myšlení TSP MU výroková logika II. Lehký úvod do výrokové logiky pro všechny, kdo se hlásí na Masarykovu univerzitu Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro

Více

Účetní systémy 1 3. přednáška Osnova: Vznik podvojného účetního systému Jednobilanční účetní systém Rozšiřování jednobilančního účetního systému (kalkulace) Dvoubilanční účetní systém (jednookruhový, dvouokruhový)

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Geometrie a zlatý řez

Geometrie a zlatý řez Geometrie a zlatý řez Pythagorova věta Podívejme se na několik geometrických důkazů Pythagorovy věty využívajících různých druhů myšlení. Úvaha o začátku vyučování, je nutná a prospěšná rytmická část na

Více

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:

Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě: Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav:

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu

Inteligentní modely, algoritmy, metody a nástroje pro vytváření sémantického webu Inteligentní modely, algoritmy, metody g y g y y a nástroje pro vytváření sémantického webu Zahájenie seminára Predseda Programu "Informační společnost (prof. Ing. Miroslav Tůma, CSc.) Pohľad koordinátora

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Prim.MUDr.Petr Možný Psychiatrická léčebna Kroměříž

Prim.MUDr.Petr Možný Psychiatrická léčebna Kroměříž ZÁKLADNÍ RYSY KOGNITIVNĚ-BEHAVIORÁLNÍ TERAPIE Prim.MUDr.Petr Možný Psychiatrická léčebna Kroměříž 1) KBT je relativně krátká,časově omezená - kolem 20 sezení - 1-2x týdně; 45 60 minut - celková délka terapie

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám

MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Virtuální metody - polymorfizmus

Virtuální metody - polymorfizmus - polymorfizmus - potomka lze použít v místě, kde je možné použít předka - v dosud probraných situacích byly vždy volány funkce, které jsou známy již v době překladu. V situaci, kdy v době překladu není

Více

Krizový management lidský aspekt

Krizový management lidský aspekt 3MA427 Krizový management lidský aspekt Česky Anglicky Německy Forma výuky Úroveň studia Rok studia (dopor.) Semestr ECTS kredity 6 Garant Nezbytné předpoklady (vstupní předměty, další znalosti) Zákazy

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

Seminář IVT. MS Excel, opakování funkcí

Seminář IVT. MS Excel, opakování funkcí Seminář IVT MS Excel, opakování funkcí Výuka Opakování z minulé hodiny. Založeno na výsledcích Vašich domácích úkolů, podrobné zopakování věcí, ve kterých děláte nejčastěji chyby. Nejčastější jsou následující

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Úvod. www.csob.cz. Nástroje sloužící k zajištění rizika pohybu úrokových měr. Finanční trhy. Identifikace rizika. Definice a rozsah rizika

Úvod. www.csob.cz. Nástroje sloužící k zajištění rizika pohybu úrokových měr. Finanční trhy. Identifikace rizika. Definice a rozsah rizika Nástroje sloužící k zajištění rizika pohybu úrokových měr Úvod Každý podnikatelský subjekt čelí nejistotě. Budoucnost je doposud nenapsaná kapitola a můžeme jen s menšími či většími úspěchy odhadovat,

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA DIDAKTICKÝ TEST MAIZD15C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Znalostní evaluace společenské odpovědnosti firem

Znalostní evaluace společenské odpovědnosti firem Znalostní evaluace společenské odpovědnosti firem Miroslav POKORNÝ, Dana POKORNÁ Moravská vysoká škola Olomouc, o.p.s., Jeremenkova 42, 772 00 Olomouc Abstrakt Nedílnou součástí moderního podnikání je

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více