MYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta.

Rozměr: px
Začít zobrazení ze stránky:

Download "MYCIN, Prospector. Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] oblasti kvality rozhodování na úrovni experta."

Transkript

1 Expertní systémy MYCIN, Prospector Pseudodefinice [Expertní systémy, Feigenbaum a kol. 1988] Expertní systémy jsou počítačové programy, simulující rozhodovací činnosti experta při řešení složitých úloh a využívající vhodně zakódovaných, explicitně vyjádřených speciálních znalostí, převzatých od experta, s cílem dosáhnout ve zvolené problémové oblasti kvality rozhodování na úrovni experta.

2 Hlavní rysy expertních systémů Explicitně reprezentované znalosti, striktně oddělené od řídícího mechanizmu nakládání s nimi. Znalosti obsahují celou škálu od nejobecnějších až k úzce speciálním, od exaktních až po osobní heuristiky experta. Znalosti nemají statický charakter, nýbrž se vyvíjejí a rozrůstají. Báze znalosti reprezentuje soubor pravidel, obecnou znalost. Řešit konkrétní příklad znamená dosadit data o daném případu do obecně formulovaných znalostí z báze znalostí. Musí umět pracovat s nejistými znalostmi (od experta) i nejistotě o bázi dat (konkrétním případu). Měly by být schopny vysvětlit a zdůvodnit své doporučení (i otázky). Reprezentace znalostí: modularita (logiky, pravidel) se hodí pro snadnou údržbu, ale těžko se v ní vyhledávají všechny informace relevantní k jednomu pojmu. Z tohoto pohledu jsou lepší

3 Sémantika pravidel Definition (pravidlo E H s vahou W ) Znalost je reprezentována pomocí pravidel E H s vahou W, kde E a H reprezentují elementární tvrzení. Každé pravidlo má přiřazenou svou váhu W - míru, nakolik (jistá, tj. 100%-ní) znalost E podporuje či popírá platnost tvrzení H. Potřebujeme zodpovědět následující tři otázky. 1 Jak vyjádřit neurčitost elementárního tvrzení? 2 Jak se využívá pravidla, pokud není splnění předpokladu jisté? 3 Jak se určuje míra důvery závěru H v případě, že existuje více pravidel se stejným závěrem? Různé typy reprezentace nejistoty se v odpovědi na tyto otázky liší.

4 MYCIN, EMYCIN Přírůstek důvěry (measure of belief) je definován jako MB(H, E) = P(H E) P(H) 1 P(H) přírůstek nedůvěry (measure of disbelief) je definován jako MD(H, E) = P(H) P(H E) P(H) Pokud znalost E podporuje hypotézu H, tak se pravděpodobnost P(H) musí touto znalostí zvýšit, tj. P(H E) > P(H), tedy MB(H, E) > 0, pokud E snižuje důvěru v H, je P(H E) < P(H), a tedy MD(H, E) > 0. Pro každé pravidlo vyžadujeme, aby nebyly obě míry různé od nuly zároveň, tj. jednotlivé pravidlo buď podporuje důvěru v hypotézu či nedůvěru v ní, ale ne obojí zároveň.

5 Činitel jistoty (CF) Na základě MB a MD je definován činitel jistoty (certainty factor) CF (H, E) = MB(H, E) MD(H, E) který nabývá hodnotu od -1 do +1, je-li větší než 0 je roven MB, jinak je v absolutní hodnotě roven MD. V EMYCIN je činitel jistoty definován trochu jinak: CF = což umožní snažší skládání pravidel. MB MD 1 min(mb, MD)

6 Nejistý předpoklad pravidla Ani předpoklad pravidla E 1 nemusíme znát s jistotou. Zavádíme míru jistoty evidence E 1 po pozorování E : CF (E 1, E ). Pravidlo E 1 H pak kombinujeme s touto mírou jistoty následovně: MB(H, E ) = MB(H, E 1 ) max{0, CF (E 1, E )} MD(H, E ) = MD(H, E 1 ) max{0, CF (E 1, E )}

7 Skládání pravidel Skládání pravidel se stejnou hypotézou E 1 H, E 2 H je v MYCIN definováno následovně: MB(H, E 1 &E 2 ) = MB(H, E 1 ) + MB(H, E 2 ) MB(H, E 1 ) MB(H, E 2 ) MD(H, E 1 &E 2 ) = MD(H, E 1 ) + MD(H, E 2 ) MD(H, E 1 ) MD(H, E 2 ) a dopočítat CF V EMYCIN přímo: CF (H, E 1 &E 2 ) = f (CF ((H, E 1 ), CF (H, E 2 )) { x + y xy pro xy 0 kde f (x, y) = jinak x+y 1 min{abs(x),abs(y)}

8 Skládání hypotéz Pro konjunkci či disjunkci hypotéz H 1 &H 2 MB(H 1 &H 2, E) = min{mb(h 1, E), MB(H 2, E)} MD(H 1 &H 2, E) = max{md(h 1, E), MD(H 2, E)} MB(H 1 H 2, E) = max{mb(h 1, E), MB(H 2, E)} MD(H 1 H 2, E) = min{md(h 1, E), MD(H 2, E)} Příklad.

9 PROSPECTOR Pseudobayesovský model P(H E) = P(E H) P(H) P(E) P( H E) = P(E H) P( H) P(E) Odtud P(H E) P(E H) = P( H E) P(E H) P(H) P( H) O(H E) = L O(H) O() odds - naděje, pravděpodobnostní šance, O(H) apriorní, O(H E) aposteriorní L míra postačitelnosti

10 obdobně míra nutnosti L = P(E H) P(E H) L = P( E H) P( E H) Míra nutnosti nelze dopočítat z míry postačitelnosti. Expert zadává buď L a L, nebo pravděpodobnosti P(H E), P(H E). Skládání pravidel pak je triviální: O(H E 1, E 2, E 3, E 4 ) = L 1 L 2 L 3 L 4 O(H) Nejisté pozorování není tak triviální, protože dojde k přeurčení a je třeba aproximovat (my se tím zabývat nebudeme).

11 Hájek Abelovské grupy Pokud jsou k řešení úlohy k dispozici identické znalosti, pak je bez ohledu na použitý inferenční mechanismus a na použitou kombinační funkci, která je operací na uspořádané Abelově grupě výsledné uspořádání cílových hypotéz identické. Uspořádaná Abelovská grupa Komutativnost Asociativnost Existence neutrálního prvku Existence inverzního prvku Uspořádání Minimální a max. prvek + vlastnosti, jejich kombinace není def.

12 Success story: Pathfinder Pathfinder je medicínský diagnostický systém (lymph-node diseases). Měl čtyři verze: 1 pravidlový systém založený na logice, bez nejistoty. 2 zjednodušená Bayesovská síť ( naive bayes ) pro klasifikaci: jeden uzel pro klasifikovanou veličinu, z ní vede hrana do každé pozorovatelné veličiny, tj. předpokládáme, že pozorování jsou nezávislá. Častou příčinou nesprávné klasifikace bylo, že expert přiřadil pravděpodobnost nula nepravděpodobnému, ale možnému výsledku. 3 zas naive bayes, ale dali si pozor na jevy s nízkou pravděpodobností (úspěšnost 7.9 z 10) 4 modelovali i závislosti mezi pozorováními. (úspěšnost 8.9 z 10) - srovnatelná s dobrým expertem.

13 Pravděpodobnostní modely budou příští semestr nyní (na tabuli) naive bayes klasifikátor

14 Dempster Shapfer Dempster-Shafer teorie Mám-li čtyři možné hodnoty veličiny, pak mi pravděpodobnost neumožňuje reprezentovat znalost: na 50% to udělal A nebo B, ale nevím který z nich, na 50% to udělal C. Pokud bychom to reprezentovali pravděpodobností a dostali informaci, že to A neudělal, tak se zvýší pravděpodobnost viny C. V Dempster-Shapfer teorii vyloučíme A, tedy celých 50% přejde na B, a 50% zůstane na C. Definition (základní přiřazení) Mějme množinu možných hodnot X. Definujeme základní přiřazení m: P(X ) [0, 1], kde m( ) = 0 a A X m(a) = 1. Všiměte si, že m definujeme na potenci X, nikoli na X samotné.

15 Tímto základním přiřazením je jednoznačně určena míra domění (belief) a plauzibilita (připustitelnost), definované: Bel(A) = m(b) B A Pl(A) = m(b) B A = tj. součet přes všechny B mající s A neprázdný průnik. Bel sumarizuje, nakolik evidence ukazuje na A. Pl říká, jak bychom věřili A, kdyby vše neznámé ukazovalo na A. pravdivá hodnota je někde mezi.

16 Příklad Uvažujme univerzum U = {H, C, P} a základní přiřazení m({h}) = 0.3 m({h,c}) = 0.2 m({h,c,p}) = 0.5 Pak Bel({H}) = 0.3 Pl({H}) = 1.0 Bel({H,C}) = 0.5 Pl({H,C}) = 1.0 Bel({P}) = 0 Pl({P}) = 0.5 Bel({C}) = 0 Pl({C}) = 0.7

17 Dempstrovo kombinační pravidlo Pro dvě daná základní přiřazení m 1 a m 2 definujeme jejich kombinaci m 1 + m 2 (která je také základní přiřazení) následovně: (m 1 + m 2 )(A) = X,Y ;X Y =A m 1 (X ) m 2 (Y ) 1 X,Y ;X Y = m 1 (X ) m 2 (Y )

18 Příklad Pro univerzum U = {D, D } a m 1 ({D}) = 0.8; m 1 ({D }) = 0; m 1 ({D,D }) = 0.2; m 2 ({D}) = 0.9; m 2 ({D }) = 0; m 2 ({D,D }) = 0.1; vytvoříme tabulku: m 2 m {D} 0 {D } 0.1 {D,D } 0.8 {D} 0.72 {D} 0 {} 0.08 {D} 0 {D } 0 {} 0 {} 0 {D } 0.2 {D,D } 0.18 {D} 0 {} 0.02 {D,D } m 1 + m 2 ({D}) = = 0.98 m 1 + m 2 ({D }) = 0 m 1 + m 2 ({D, D }) = 0.02

19 Problém s normalizací Counter Intuitive Behavior of Dempster Rule V následujícím příkladu vede Dempstrovo pravidlo k neočekávanému výsledku. Řekněme, že dva doktoři vyšetřili stejného pacienta, který má buď meningitidu (M), concussion (C) nebo nádor na mozku (tumor) (T). Tedy U = {M,C,T}. Doktoři se liší v diagnoze: m 1 ({M}) = 0.99; m 1 ({T }) = 0.01; m 2 ({C }) = 0.99; m 2 ({T }) = 0.01; Shodnou se na malé pravděpodobnosti nádoru T, ale neshodnou se v pravděpodobné příčině. Kombinací nám vyjde, že... Jedna možnost, jak potlačit takovéto výsledky, je přiřadit i prázdné množině nenulovou míru, která bude určovat míru neshody mezi

pseudopravděpodobnostní Prospector, Fel-Expert

pseudopravděpodobnostní Prospector, Fel-Expert Práce s neurčitostí trojhodnotová logika Nexpert Object, KappaPC pseudopravděpodobnostní Prospector, Fel-Expert (pravděpodobnostní) bayesovské sítě míry důvěry Mycin algebraická teorie Equant fuzzy logika

Více

Zpracování neurčitosti

Zpracování neurčitosti Zpracování neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 7-1 Usuzování za neurčitosti Neurčitost: Při vytváření ZS obvykle nejsou všechny informace naprosto korektní mohou být víceznačné, vágní,

Více

Usuzování za neurčitosti

Usuzování za neurčitosti Usuzování za neurčitosti 25.11.2014 8-1 Usuzování za neurčitosti Hypotetické usuzování a zpětná indukce Míry postačitelnosti a nezbytnosti Kombinace důkazů Šíření pravděpodobnosti v inferenčních sítích

Více

Expertní systémy. Typy úloh: Klasifikační Diagnostické Plánovací Hybridní Prázdné. Feingenbaum a kol., 1988

Expertní systémy. Typy úloh: Klasifikační Diagnostické Plánovací Hybridní Prázdné. Feingenbaum a kol., 1988 Expertní systémy Počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně kvality rozhodování na úrovni experta. Typy úloh: Klasifikační Diagnostické Plánovací

Více

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav

Více

Vybrané přístupy řešení neurčitosti

Vybrané přístupy řešení neurčitosti Vybrané přístupy řešení neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 8-1 Faktory jistoty Jedná se o přístup založený na ad hoc modelech Hlavním důvodem vzniku tohoto přístupu je omezení slabin

Více

1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017

1. Znalostní systémy a znalostní inženýrství - úvod. Znalostní systémy. úvodní úvahy a předpoklady. 26. září 2017 Znalostní systémy úvodní úvahy a předpoklady 26. září 2017 1-1 Znalostní systém Definice ZS (Feigenbaum): Znalostní (původně expertní) systémy jsou počítačové programy simulující rozhodovací činnost experta

Více

Úvod do expertních systémů

Úvod do expertních systémů Úvod do expertních systémů Expertní systém Definice ES (Feigenbaum): expertní systémy jsou počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně zakódovaných,

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Expertní systémy T3: principy expertních systémů P. Berka, /19

Expertní systémy T3: principy expertních systémů P. Berka, /19 P. Berka, 2012 1/19 Expertní systém počítačový program simulující rozhodovací činnost lidského experta při řešení složitých úloh a využívající vhodně zakódovaných speciálních znalostí převzatých od experta

Více

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky)

Dnešní program odvozování v Bayesovských sítích exaktní metody (enumerace, eliminace proměnných) aproximační metody y( (vzorkovací techniky) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Bayesovská síť zachycuje závislosti mezi náhodnými proměnnými Pro zopakování orientovaný acyklický graf

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Spojení OntoUML a GLIKREM ve znalostním rozhodování

Spojení OntoUML a GLIKREM ve znalostním rozhodování 1 Formalizace biomedicínských znalostí Spojení OntoUML a GLIKREM ve znalostním rozhodování Ing. David Buchtela, Ph.D. 16. června 2014, Faustův dům, Praha Skupina mezioborových dovedností Fakulta informačních

Více

Pravděpodobně skoro správné. PAC učení 1

Pravděpodobně skoro správné. PAC učení 1 Pravděpodobně skoro správné (PAC) učení PAC učení 1 Výpočetní teorie strojového učení Věta o ošklivém kačátku. Nechť E je klasifikovaná trénovací množina pro koncept K, který tvoří podmnožinu konečného

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Ústav teorie informace a automatizace. J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/ / 28

Ústav teorie informace a automatizace.   J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/ / 28 Úvod do bayesovských sítí Jiří Vomlel Ústav teorie informace a automatizace Akademie věd České republiky http://www.utia.cz/vomlel 30. října 2008 J. Vomlel (ÚTIA AV ČR) Úvod do bayesovských sítí 30/10/2008

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz. 16. srpna 2006

Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz. 16. srpna 2006 Téma 48 (dříve 47) Martin Staviař, staviarm@centrum.cz 16. srpna 2006 Rozpoznávání a vnímání. Statistický (příznakový) a strukturní přístup. Klasifikátory a jejich učení. Cíle umělé inteligence. Reprezentace

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou

Více

Fuzzy logika. Informační a znalostní systémy

Fuzzy logika. Informační a znalostní systémy Fuzzy logika Informační a znalostní systémy Fuzzy logika a odvozování Lotfi A. Zadeh (*1921) Lidé nepotřebují přesnou číslem vyjádřenou informaci a přesto jsou schopni rozhodovat na vysoké úrovni, odpovídající

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí

Cíle lokalizace. Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí Cíle lokalizace Zjištění: 1. polohy a postavení robota (robot pose) 2. vzhledem k mapě 3. v daném prostředí 2 Jiný pohled Je to problém transformace souřadnic Mapa je globální souřadnicový systém nezávislý

Více

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu.

Obr. 1: Vizualizace dat pacientů, kontrolních subjektů a testovacího subjektu. Řešení příkladu - klasifikace testovacího subjektu pomocí Bayesova klasifikátoru: ata si vizualizujeme (Obr. ). Objem mozkových komor 9 8 7 6 5 pacienti kontroly testovací subjekt 5 6 Objem hipokampu Obr.

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

Bayesovská klasifikace

Bayesovská klasifikace Bayesovská klasifikace založeno na Bayesově větě P(H E) = P(E H) P(H) P(E) použití pro klasifikaci: hypotéza s maximální aposteriorní pravděpodobností H MAP = H J právě když P(H J E) = max i P(E H i) P(H

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

Ing. Alena Šafrová Drášilová, Ph.D.

Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

Rozhodování. Ing. Alena Šafrová Drášilová, Ph.D.

Rozhodování. Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

RELACE, OPERACE. Relace

RELACE, OPERACE. Relace RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez Síť Síť je čtveřice N = ( G, s, t, c) kde G ( V, A) = je prostý orientovaný graf a každé orientované hraně ( u, v) je přiřazeno nezáporné číslo, které se nazývá kapacita hrany ( u, v), formálně c ( u,

Více

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1

Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2013/2014 1 / 20 Základní syntax Jazyk Výroková logika je logikou

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec

Motivace. Náhodný pokus, náhodný n jev. Pravděpodobnostn. podobnostní charakteristiky diagnostických testů, Bayesův vzorec Pravděpodobnostn podobnostní charakteristiky diagnostických testů, Bayesův vzorec Prof.RND.Jana Zvárov rová,, DrSc. Motivace V medicíně má mnoho problémů pravěpodobnostní charakter prognóza diagnoza účinnost

Více

OVLÁDÁNÍ RIZIKA ANALÝZA A MANAGEMENT

OVLÁDÁNÍ RIZIKA ANALÝZA A MANAGEMENT TICHÝ Milík OVLÁDÁNÍ RIZIKA ANALÝZA A MANAGEMENT Obsah Předmluva... V Značky a symboly... VII Přehled nejpoužívanějších zkratek... IX Názvosloví... XI Rizikologie... XV Základní pojmy... 1 1. Rizikologické

Více

Reprezentace znalostí - úvod

Reprezentace znalostí - úvod Reprezentace znalostí - úvod Úvod do znalostního inženýrství, ZS 2015/16 6-1 Co je to znalost? Pojem znalost zahrnuje nejen teoretické vědomosti člověka z dané domény, ale také jeho dlouhodobé zkušenosti

Více

Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Pro zopakování Pravděpodobnost je formální mechanismus pro zachycení neurčitosti. Pravděpodobnost každé

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

ZÁKLADNÍ METODOLOGICKÁ PRAVIDLA PŘI ZPRACOVÁNÍ ODBORNÉHO TEXTU. Martina Cirbusová (z prezentace doc. Škopa)

ZÁKLADNÍ METODOLOGICKÁ PRAVIDLA PŘI ZPRACOVÁNÍ ODBORNÉHO TEXTU. Martina Cirbusová (z prezentace doc. Škopa) ZÁKLADNÍ METODOLOGICKÁ PRAVIDLA PŘI ZPRACOVÁNÍ ODBORNÉHO TEXTU Martina Cirbusová (z prezentace doc. Škopa) OSNOVA Metodologie vs. Metoda vs. Metodika Základní postup práce Základní vědecké metody METODOLOGIE

Více

Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na:

Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: Úvod do bayesovských sítí Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Obor hodnot Necht X je kartézský součin

Více

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

1 Expertní systémy. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Expertní systém (ES) 1.4 Komponenty expertních systémů

1 Expertní systémy. 1.1 Základní informace. 1.2 Výstupy z učení. 1.3 Expertní systém (ES) 1.4 Komponenty expertních systémů Obsah 1 Expertní systémy... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Expertní systém (ES)... 2 1.4 Části ES... 2 1.5 Pravidlové ES... 3 1.5.1 Reprezentace znalostí... 3 1.5.2... 3 1.5.3

Více

Matematika I 2a Konečná pravděpodobnost

Matematika I 2a Konečná pravděpodobnost Matematika I 2a Konečná pravděpodobnost Jan Slovák Masarykova univerzita Fakulta informatiky 24. 9. 2012 Obsah přednášky 1 Pravděpodobnost 2 Nezávislé jevy 3 Geometrická pravděpodobnost Viděli jsme už

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů

Strukturální regresní modely. určitý nadhled nad rozličnými typy modelů Strukturální regresní modely určitý nadhled nad rozličnými typy modelů Jde zlepšit odhad k-nn? Odhad k-nn konverguje pro slušné k očekávané hodnotě. ALE POMALU! Jiné přístupy přidají předpoklad o funkci

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

Expertní systémy. 1. Úvod k expertním systémům. Cíl kapitoly:

Expertní systémy. 1. Úvod k expertním systémům. Cíl kapitoly: Expertní systémy Cíl kapitoly: Úkolem této kapitoly je pochopení významu expertních systémů, umět rozpoznat expertní systémy od klasicky naprogramovaných systémů a naučit se jejich tvorbu a základní vlastnosti.

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Výroková a predikátová logika - VI

Výroková a predikátová logika - VI Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Základy fuzzy řízení a regulace

Základy fuzzy řízení a regulace Ing. Ondřej Andrš Obsah Úvod do problematiky měkkého programování Základy fuzzy množin a lingvistické proměnné Fuzzyfikace Základní operace s fuzzy množinami Vyhodnocování rozhodovacích pravidel inferenční

Více

Teorie rozhodování (decision theory)

Teorie rozhodování (decision theory) Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Teorie pravděpodobnosti (probability theory) popisuje v co má agent věřit na základě pozorování. Teorie

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Pravidlové znalostní systémy

Pravidlové znalostní systémy Pravidlové znalostní systémy 31. října 2017 2-1 Tvary pravidel Pravidla (rules) mohou mít například takovéto tvary: IF předpoklad THEN závěr IF situace THEN akce IF podmínka THEN závěr AND akce IF podmínka

Více

Informační a znalostní systémy jako podpora rozhodování

Informační a znalostní systémy jako podpora rozhodování Informační systémy a technologie Informační a znalostní systémy jako podpora rozhodování Petr Moos - ČVUT VŠL Přerov listopad 2015 Analýza a syntéza systému Definici systému můžeme zapsat ve tvaru: S =

Více

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra. nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co

Více

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například:

Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například: ARNP 1 2015 Př. 5 Základní operace s přirozenými čísly Přesná definice přirozeného čísla je složitá spokojíme se s tím, že o libovolném čísle dokážeme rozhodnout, zda je, či není přirozeným číslem (5,

Více

Zabýváme se konstrukcí racionálních agentů.

Zabýváme se konstrukcí racionálních agentů. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Zabýváme se konstrukcí racionálních agentů. Agent je entita, co vnímá okolní prostředí prostřednictvím

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

10. Vektorové podprostory

10. Vektorové podprostory Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,

Více

Diskrétní matematika. DiM /01, zimní semestr 2017/2018

Diskrétní matematika. DiM /01, zimní semestr 2017/2018 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2017/2018 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Matematika II. dvouletý volitelný předmět

Matematika II. dvouletý volitelný předmět Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné

Více

Teorie užitku. Marta Vomlelová 14. prosince / 23

Teorie užitku. Marta Vomlelová 14. prosince / 23 Teorie užitku Většinou měříme výplatu, hodnotu atd. penězi. MEU (maximalizace očekávaného zisku) je většinou rozumná věc k volbě. Ale občas je lidská intuice jiná a je na nás, jestli věříme víc intuici

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet.

Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu odhaduje, jak se svět může vyvíjet. Umělá inteligence II Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Dnešní program Agent pracující v částečně pozorovatelném prostředí udržuje na základě senzorického modelu

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Petr Křemen. Katedra kybernetiky, FEL ČVUT. Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112

Petr Křemen. Katedra kybernetiky, FEL ČVUT. Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112 Sémantické sítě a rámce Petr Křemen Katedra kybernetiky, FEL ČVUT Petr Křemen (Katedra kybernetiky, FEL ČVUT) Sémantické sítě a rámce 1 / 112 Co nás čeká 1 Úvod do reprezentace znalostí 2 Sémantické sítě

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více