10. N á h o d n ý v e k t o r

Rozměr: px
Začít zobrazení ze stránky:

Download "10. N á h o d n ý v e k t o r"

Transkript

1 10. N á h o d n ý v e k t o r Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět pojmy pro vektor o dvou souřadnicích, který budeme značit (X, Y ). Zobecnění pro více proměnných snadno provedeme. Příklad: Házíme dvěma mincemi a označíme 0, jestliže padne rub a 1 jestliže padne líc. Náhodná veličina X je výsledek z první mince a náhodná veličina Y je výsledek hodu na druhé minci. Náhodný pokus je popsán stavem náhodného vektoru (X, Y ) Definice: Sdružená distribuční funkce. Je-li (X, Y ) náhodný vektor, pak funkci F = F (x, y), která je definovaná předpisem ( ) F (x, y) = P (X x, Y y), (x, y) R 2, nazýváme sdruženou distribuční funkcí náhodného vektoru (X, Y ). y (X, Y ) Obr (x, y) x Hodnota sdružené distribuční funkce F (x, y) je rovna pravděpodobnosti s jakou se hodnota náhodného vektoru (X, Y ) vyskytne ve vyšrafované části roviny z obrázku Obr Věta: Vlastnosti sdružené distribuční funkce. Pro sdruženou distribuční funkci F (x, y) náhodného vektoru platí: a) Pro všechny hodnoty (x, y) R 2 je 0 F (x, y) 1. b) Funkce F (x, y) je neklesající jako funkce proměnné x a proměnné y. c) Je d) Je e) Je lim F (x, y) = lim x F (x, y) = 0. y lim F (x, y) = 1. (x,y) (, ) lim F (x, y) = P (X x), x R a lim F (x, y) = P (Y y), y R. y x Důkaz: a) Vlastnost vyplývá z definice sdružené distribuční funkce jako pravděpodobnosti. b) Tato vlastnost plyne z vlastnosti distribuční funkce náhodné veličiny, jestliže považujeme jednu proměnnou za pevnou. c) Pokud uvažujeme jev (X x Y y) a alespoň jedna z proměnných x či y se blíží k, pak popsaný náhodný jev přechází v jev nemožný V. Je ale P (V ) = 0. d) Jestliže v náhodném jevu (X x Y y) se obě proměnné bliží k, pak tento jev přejde v jev jistý U a je P (U) = 1. 55

2 e) Znázorníme si obě situace pomocí obrázku. Uvědomíme si jak se změní obrázek Obr pokud y (obr.10.2a) nebo x (Obr. 10.2b.). Náhodný jev (X x Y y) pro y přejde v náhodný jev (X x) a pro x přejde v náhodný jev (Y y). (X x) (Y y) y X = x (X, Y ) x y Y = y (X, Y ) x Obr. 10.2a. Obr. 10.2b. Poznámka: Marginální rozdělení. Je-li (X, Y ) náhodný vektor, pak jsou jeho souřadnice X a Y náhodné veličiny. Jejich rozdělení je popsáno příslušnými distribučními funkcemi. Ty se dají snadno určit ze sdružené distribuční funkce pomocí vztahů z tvrzení e) věty Definice: Je-li (X, Y ) náhodný vektor, pak rozdělení náhodných veličin X a Y se nazývá marginální rozdělení Věta: Je-li F (x, y) sdružená distribuční funkce náhodného vektoru (X, Y ), pak jsou marginální distribuční funkce F 1 (x), resp. F 2 (y) náhodné veličiny X, resp Y určeny vztahy a F 1 (x) = P (X x) = lim F (x, y), x R y F 2 (y) = P (Y y) = lim F (x, y), y R. x Důkaz: Tvrzení vyplývá z definice distribuční funkce náhodné veličiny a ze vztahů e) věty Příklad: 1. Náhodný vektor (X, Y ) má rozdělení určené sdruženou distribuční funkcí F (x, y), kde 0, x 0 nebo y 0, F (x, y) = 1 e 2x e 3y + e 2x 3y, x 0 a y 0. Určete marginální distribuční funkce náhodných veličin X a Y. Řešení: Marginální distribuční funkce F 1 (x) a F 2 (y) náhodných veličin X a Y určíme z jejich vyjádření odvozených ve větě Je a F 1 (x) = P (X x) = lim F (x, y), x R y F 2 (y) = P (Y y) = lim F (x, y), y R. x Protože je lim x e 2x = 0 a lim y e 3y = 0 dostaneme: F 1 (x) = 0, x 0, 1 e 2x, x 0; a F 2 (y) = 0, y 0, 1 e 3y, y 0; 56

3 Typy rozdělení náhodného vektoru I. Diskrétní rozdělení. Poznámka: V souladu s pojmem diskrétního rozdělení u náhodné veličiny zavádíme stejným způsobem diskrétní rozdělení náhodného vektoru Definice: Diskrétní rozdělení. Říkáme, že náhodný vektor (X, Y ) má diskrétní rozdělení, jestliže nabývá konečně nebo spočetně mnoha diskrétních hodnot Definice: Sdružená pravděpodobnostní funkce. Jestliže má náhodný vektor (X, Y ) diskrétní rozdělení, pak funkci p = p(x, y), která je definována předpisem ( ) p(x, y) = P (X = x Y = y), (x, y) R 2 nazýváme sdruženou pravděpodobnostní funkcí náhodného vektoru (X, Y ) Věta: Vlastnosti sdružené pravděpodobnostní funkce. Funkce p = p(x, y) je sdruženou pravděpodobnostní funkcí náhodného vektoru (X, Y ) právě když platí: a) Je 0 p(x, y) 1 pro všechny hodnoty (x, y) R 2. b) Je p(x, y) = 1. (x,y) R 2 c) Existuje pouze konečná nebo spočetná množina (posloupnost) hodnot (x i, y k ), pro které je P (x i, y k ) > 0. Poznámka: Má-li náhodný vektor diskrétní rozdělení, pak jeho rozdělení snadno popíšeme dvourozměrnou tabulkou, kde do řádků vyneseme hodnoty x i, kterých nabývá souřadnice X a do sloupců hodnoty y k druhé souřadnice. V tabulce na odpovídajícím místě uvedeme hodnotu pravděpodobnosti p(x i, y k ). Jeho marginální rozdělení jsou pak také diskrétní. Pravděpodobnostní funkce náhodných veličin X a Y se nazývají marginální a pro jejich vyjádření platí Věta: Marginální pravděpodobnostní funkce. Je-li p(x, y) sdružená pravděpodobnostní funkce náhodného vektoru (X, Y ), pak jsou marginální pravděpodobnostní funkce p 1 (x), resp. p 2 (y) náhodné veličiny X, resp Y dány vztahy: p 1 (x) = p(x, y), x R a p 2 (y) = p(x, y), y R. x R Důkaz: Tvrzení bezprostředně vyplývá z definice pravděpodobnostní funkce náhodné veličiny. Je p 1 (x) = P (X = x) = P (X = x Y = y) = p(x, y), neboť se jednotlivé náhodné jevy pro různé hodnoty souřadnice Y vylučují, jsou to tudíž jevy disjunktní. Obdobně získáme vyjádření marginální pravděpodobnostní funkce p 2, která odpovídá náhodné veličině Y. Poznámka: Všimneme, že pokud zadáme sdruženou pravděpodobnostní funkci tabulkou, pak tabulky marginálních pravděpodobnostních funkcí dostaneme jako řádek, který získáme sečtením tabulky po sloupcích a druhou jako sloupec, jestliže sečteme tabulku po řádcích. Tabulka pro sdruženou pravděpodobnostní funkci a marginální pravděpodobnostní funkce. 57

4 p(x, y) x 1 x 2... x i... p 2 (y) y 1 p(x 1, y 1 ) p(x 2, y 1 )... p(x i, y 1 )... p 2 (y 1 ) y 2 p(x 1, y 2 ) p(x 2, y 2 )... p(x i, y 2 )... p 2 (y 2 ) y k p(x 1, y k ) p(x 2, y k )... p(x i, y k )... p 2 (y k ) p 1 (x) p 1 (x 1 ) p 1 (x 2 )... p 1 (x i )... 1 Tab Poslední políčko je kontrolní, součet posledního řadku a posledního sloupce musí být jedna, stejně jako součet všech hodnot v původní tabulce Definice: Nezávislost náhodných veličin. Jestliže má náhodný vektor (X, Y ) diskrétní rozdělení, pak říkáme, že jsou jeho souřadnice X a Y nezávislé náhodné veličiny, jestliže jsou náhodné jevy (X = x) a (Y = y) nezávislé pro všechny hodnoty (x, y) R 2. V opačném případě mluvíme o závislých náhodných veličinách Věta: Podmínka nezávislosti. Je-li p(x, y) sdružená pravděpodobnostní funkce náhodného vektoru (X, Y ), pak jsou náhodné veličiny X a Y nezávislé právě když pro sdruženou a marginální pravděpodobnostní funkce platí: ( ) p(x, y) = p 1 (x) p 2 (y), (x, y) R 2. Důkaz: Náhodné jevy (X = x) a (Y = y) jsou nezávislé, právě když platí P (X = x Y = y) = P (X = x) P (Y = y) p(x, y) = p 1 (x) p 2 (y), (x, y) R 2. Poznámka: Pro tabulku Tab to znamené, že políčko (x i, y k ) dostaneme jako součin políčka x i a políčka y k v marginálních pravděpodobnostních funkcích. Dá se tedy sdružená pravděpodobnostní funkce zpětně vytvořit ze svých marginálních pravděpodobnostních funkcí. Příklad: 1. Náhodný vektor (X, Y ) má diskrétní rozdělení určené sdruženou pravděpodobnostní funkcí p, která je zadána tabulkou Tab Určete marginální pravděpodobnostní funkce a rozhodněte, zda jsou náhodné veličiny X a Y závislé či nezávislé. y\x ,1 0,2 0,1 1 0,3 0,2 0,1 y\x p 2 (y) -1 0,1 0,2 0,1 0,4 1 0,3 0,2 0,1 0,6 p 1 (x) 0,4 0,4 0,2 Tab Tab Řešení: Marginální pravděpodobnostní funkce určíme pomocí vzorců z věty Je pak X : p 1 (x) = p(x, y) a Y : p 2 (y) = p(x, y). x R Postupujeme podle poznámky k větě 10.9 a znázorníme výsledek do tabulky Přidáme k tabulce řádek a sloupec a hodnoty vytvoříme tak, že sečteme tabulku jednak po řádcích a jednak po sloupcích. V přidaném sloupci jsou hodnoty marginální pravděpodobnostní funkce 58

5 p 2 (y) náhodné veličiny Y a v přidaném řádku pak hodnoty marginální pravděpodobnostní funkce p 1 (x) náhodné veličiny X. Závislost či nezávislost otestujeme z podmínky p(x, y) = p 1 (x)p 2 (y), kterou jsme pro nezávislost náhodných veličin odvodili ve větě Je například p(0, 1) = 0, 1 a p 1 (0)p 2 ( 1) = 0, 4.0, 4 = 0, 16. Protože jsou výsledky různé nemusíme rovnost pro další políčka z tabulky ověřovat. Náhodné veličiny X a Y jsou závislé. Příklad: 2. Náhodný vektor (X, Y ) má diskrétní rozdělení určené sdruženou pravděpodobnostní funkcí p, která je zadána tabulkou Tab Určete marginální pravděpodobnostní funkce a rozhodněte, zda jsou náhodné veličiny X a Y závislé či nezávislé. y\x ,06 0,3 0,24 3 0,04 0,2 0,16 y\x p 2 (y) 0 0,06 0,3 0,24 0,6 3 0,04 0,2 0,16 0,4 p 1 (x) 0,1 0,5 0,4 Tab Tab Řešení: Marginální pravděpodobnostní funkce určíme pomocí vzorců z věty Je pak X : p 1 (x) = p(x, y) a Y : p 2 (y) = p(x, y). x R Postupujeme podle poznámky k větě 10.9 a znázorníme výsledek do tabulky Přidáme k tabulce řádek a sloupec a hodnoty vytvoříme tak, že sečteme tabulku jednak po řádcích a jednak po sloupcích. V přidaném sloupci jsou hodnoty marginální pravděpodobnostní funkce p 2 (y) náhodné veličiny Y a v přidaném řádku pak hodnoty marginální pravděpodobnostní funkce p 1 (x) náhodné veličiny X. Závislost či nezávislost otestujeme z podmínky p(x, y) = p 1 (x)p 2 (y), kterou jsme pro nezávislost náhodných veličin odvodili ve větě Ověříme postupně zda platí rovnost pro jednotlivá políčka. Pro hodnoty v prvním řádku dostaneme: v druhém řádku dostaneme 0, 06 = 0, 6.0, 1; 0, 3 = 0, 6.0, 5; 0, 24 = 0, 6.0, 4; 0, 04 = 0, 4.0, 1; 0, 2 = 0, 4.0, 5; 0, 16 = 0, 4.0, 4. Protože podmínka pro nezávislost je splněna pro všechny dvojice hodnot náhodného vektoru (X, Y ) z tabulky, jsou náhodné veličiny X a Y nezávislé. II. Spojité rozdělení. Poznámka: V souladu s pojmem spojitého rozdělení u náhodné veličiny zavádíme stejným způsobem spojité rozdělení náhodného vektoru Definice: Spojité rozdělení. Říkáme že náhodný vektor (X, Y ) má spojité rozdělení jestliže pro jeho sdruženou distribuční funkci F (x, y) platí: F (x, y) = x y f(u, v)dudv, (x, y) R 2. Funkci f(x, y) nazýváme sdruženou hustotou náhodného vektoru (X, Y ) Věta: Vlastnosti sdružené hustoty. Funkce f(x, y) je sdruženou hustotu náhodného vektoru (X, Y ) právě když platí: 59

6 1. Je f(x, y) 0 pro (x, y) R Je f(x, y)dxdy = 1. Pro sdruženou hustotu f(x, y) dále platí: 3. f(x, y) = 2 F x y (x, y) pro skoro všechna (x, y) R2. 4. Pro A R 2 je P ((X, Y ) A) = f(x, y) dxdy. A Věta: Marginální rozdělení. Jestliže má náhodný vektor (X, Y ) spojité rozdělení určené sdruženou hustotu f(x, y), pak pro jeho marginální distribuční funkce platí: X; F 1 (x) = x ( f(u, y) du)dy, x R; Y ; F 2 (y) = y ( f(x, v) dv)dx, y R. Marginální náhodné veličiny X a Y mají spojité rozdělení a pro jejich hustoty platí: X : f 1 (x) = Y : f 2 (y) = f(x, y) dy, x R; f(x, y) dx, y R. Důkaz: Tvrzení vyplývá z definice pojmů a z věty Je x y x F 1 (x) = lim F (x, y) = lim f(u, v)dudv = ( f(u, y) dy)du, x R. y y Ze vztahu f 1 (x) = F 1 (x) a ze vzorce pro derivaci funkce horní meze plyne vzorec pro funkci f 1 (x) Definice: Marginální hustoty. Hustoty f 1 (x) a f 2 (y) z věty se nazývají marginální Definice: Nezávislost náhodných veličin. Říkáme, že jsou náhodné veličiny X a Y nezávislé, jestliže jsou náhodné jevy (X x) a (Y y) nezávislé pro všechny hodnoty x a y z R. V opačném případě nazýváme náhodné veličiny závislými Věta: Podmínka pro nezávislost. Náhodné veličiny X a Y jsou nezávislé právě když platí: F (x, y) = F 1 (x) F 2 (y) pro (x, y) R 2, kde F (x, y) je sdružená distribuční funkce náhodného vektoru (X, Y ) a F 1 (x), resp. F 2 (y), jsou marginální distribuční funkce náhodné veličiny X, resp. Y. 60

7 Důkaz: Tvrzení vyplývá z definice nezávislosti náhodných jevů a z významů uvedených pojmů. Platí totiž pro nezávislost jevů (X x) a (Y ) následující ekvivalence: P ((X x) (Y y)) = P (X x) P (Y y) F (x, y) = F 1 (x) F 2 (y), (x, y) R 2. Poznámka: Pro náhodný vektor (X, Y ), který má spojité rozdělení plyne z podmínky z věty tato podmínka nezávislosti pro hustoty: f(x, y) = 2 F x y = ( x y (F 1(x) F 2 (y))) = F 1(x) F 2(y) = f 1 (x) f 2 (y), (x, y) R 2. Odtud tedy plyne tvrzení Věta: Spojitě rozdělené náhodné veličiny X a Y jsou nezávislé právě když pro jejich marginální a sdruženou hustotu platí: f(x, y) = f 1 (x)f 2 (y), (x, y) R Věta: Pro náhodné veličiny X a Y platí: 1. E(X + Y ) = E(X) + E(Y ). 2. Jsou-li náhodné veličiny X a Y nezávislé, pak platí: E(XY ) = E(X)E(Y ). Důkaz: Odvození provedeme například pro spojité rozdělení. Označíme-li po řadě f(x, y), f 1 (x) a f 2 (y) sdruženou hustotu náhodného vektoru (X, Y ), marginální hustotu náhodné veličiny X a marginální hustotu náhodné veličiny Y, pak je E(X + Y ) = (x + y)f(x, y) dxdy = xf(x, y) dxdy + yf(x, y) dxdy = R 2 R 2 R 2 = = ( x ) f(x, y) dy dx + x f 1 (x)dx + ( ) y f(x, y) dx dy = yf 2 (y) dy = E(X) + E(Y ). Jsou-li náhodné veličiny X a Y nezávislé je podle věty f(x, y) = f 1 (x)f 2 (y) a tedy E(XY ) = xyf(x, y) dxdy = (xf 1 (x))(yf 2 (y)) dxdy = R 2 R 2 = x f 1 (x)dx yf 2 (y) dy = E(X)E(Y ). Poznámka: Pro náhodné veličiny X a Y sledujeme často jejich závislost a podobně jako u vlastností jedné náhodné veličiny se ji snažíme popsat číselnou hodnotou. Činíme tak pomocí koeficientů kovariance a korelace Definice: Koeficient kovariance. Je-li (X, Y ) náhodný vektor, pak koeficientem kovariance náhodných veličin X a Y nazýváme číslo C(X, Y ) = E((X E(X))(Y E(Y ))). 61

8 Věta: Vlastnosti kovariance. Pro koeficient kovariance náhodných veličin X a Y platí: a) C(X, X) = D(X). b) C(X, Y ) = C(Y, X). c) C(X, Y ) = E(XY ) E(X)E(Y ). d) Jsou-li náhodné veličiny X a Y nezávislé, pak C(X, Y ) = 0. e) Je-li C(X, Y ) 0, pak jsou náhodné veličiny X a Y jsou závislé. f) C(X, ax + b) = ad(x). Důkaz: Tvrzení a) b) jsou zřejmá. c) Je C(X, Y ) = E(XY XE(Y ) Y E(X) + E(X)E(Y )) = = E(XY ) E(X)E(Y ) E(X)E(Y ) + E(X)E(Y ) = E(XY ) E(X)E(Y ). d) Z věty 10.9 plyne, že pro nezávislé náhodné veličiny X a Y je E(XY ) = E(X)E(Y ), tedy podle c) je C(X, Y ) = 0. e) Tvrzení je negací tvrzení d). Pokud by byly náhodné veličiny X a Y nezávislé, pak musí být C(X, Y ) = 0. f) Pro Y = ax + b z vlastností střední hodnoty vyplývá, že C(X, Y ) = E(X(aX + b)) E(X)E(aX + b) = ae(x 2 ) + be(x) a(e(x)) 2 be(x) = a(e(x 2 ) (E(X)) 2 ) = ad(x). Poznámka: K popisu závislosti náhodných veličin používáme normovaný koeficient, který je odvozen z koeficientu kovariance Definice: Koeficient korelace. Pro náhodné veličiny X a Y nazýváme koeficientem korelace číslo ρ(x, Y ) = C(X, Y ). D(X)D(Y ) Věta: Vlastnosti koeficientu korelace. Pro koeficient korelace náhodných veličin X a Y platí: a) ρ(x, X) = 1; b) ρ(x, Y ) = ρ(y, X); c) Je-li ρ(x, Y ) 0, pak jsou náhodné veličiny X a Y závislé. d) Pro nezávislé náhodné veličiny X a Y je ρ(x, Y ) = 0. e) ρ(x, ax + b) = sgn a = a a ; f) ρ(x, Y ) 1; g) ρ(x, Y ) = ±1 Y = ax + b. Důkaz: Tvzení a) - e) plynou snadno z vlastností koeficientu kovariance z věty Důkazy tvrzení e) a f) jsou pracnejší, nebudeme je zde uvádět. Poznámka: Z vlastností f) a g) plyne, že koeficient korelace je vlastně mírou lineární závislosti náhodných veličin. 62

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

NÁHODNÝ VEKTOR. 4. cvičení

NÁHODNÝ VEKTOR. 4. cvičení NÁHODNÝ VEKTOR 4. cvičení Náhodný vektor Náhodným vektorem rozumíme sloupcový vektor X=(X, X,, X n ) složený z náhodných veličin X, X,, X n, který je charakterizován sdruženým rozdělením pravděpodobnosti.

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

STATISTICKÁ VAZBA. 1.1 Statistická vazba Charakteristiky statistické vazby dvou náhodných veličin Literatura 9

STATISTICKÁ VAZBA. 1.1 Statistická vazba Charakteristiky statistické vazby dvou náhodných veličin Literatura 9 STATISTICKÁ VAZBA Obsah 1 Korelační analýza 1 1.1 Statistická vazba.................................... 1 1.2 Motivační příklady................................... 1 1.3 Sdružená distribuční funkce a nezávislost

Více

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2, 4. Parciální derivace a diferenciál. řádu 0-a3b/4dvr.tex Příklad. Určete parciální derivace druhého řádu funkce f v obecném bodě a v daných bodech. Napište obecný tvar. diferenciálu, jeho hodnotu v daných

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

1 Pravděpodobnostní prostor

1 Pravděpodobnostní prostor PaS 1.-10. přednáška 1 Pravděpodobnostní prostor Náhodný pokus je takový pokus, jehož výsledek nelze s jistotou předpovědět. Pokud jsme schopni pokus za stále stejných podmínek opakovat (například házíme

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

6. Lineární nezávislost a báze p. 1/18

6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Náhodné vektory Vilém Vychodil KMI/PRAS, Přednáška 8 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 8) Náhodné vektory Pravděpodobnost a statistika

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Matematika pro chemické inženýry

Matematika pro chemické inženýry Matematika pro chemické inženýry Drahoslava Janovská Lineární a nelineární regrese Přednášky ZS 2016-2017 Sponzorováno grantem VŠCHT Praha, PIGA 413-17-6642, 2016 Povinná látka. Bude v písemkách a bude

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopravní Pravděpodobnost a matematická statistika RNDr. Jana Novovičová, CSc. 1999 Vydavatelství ČVUT Lektor : Doc. Ing. Miloslav Vošvrda, CSc. (c) RNDr. Jana

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

7. Integrál přes n-rozměrný interval

7. Integrál přes n-rozměrný interval 7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

Statistika, stochastické procesy,

Statistika, stochastické procesy, VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MATEMATIKY Statistika, stochastické procesy, operační výzkum (Elektrotechnika a komunikační technologie Jaromír Baštinec

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více