MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel.

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATIKA ZIMNÍ SEMESTR 2008/2009 Autor: Mati neučitel."

Transkript

1 MATEMATIKA ZIMNÍ SEMESTR 008/009 Autor: Mati neučitel. Kdo se matiku pilně učil, a jen si není jistý zadanými příklady, tomu stačí ty kousky podbarvené oranžově. Kdo najde nějakou mou chybu, o které ještě nevím, má u mě pivo.(malé.) Komu se na některých místech zobrazují nesmysly typu {EQ \r( + \s())}, ten nechť na ně klikne pravým tlačítkem myši a zvolí přepnout zobrazení polí. Kdo nevidí v tomto dokumentu obrázky ani odvozování, odmocniny a zlomky, ten má smůlu a hlavně nejvyšší čas pořídit si pořádný tetový editor. Kdo chce tento výtvor distribuovat, může pod podmínkou, že zdarma. ) ZADÁNÍ: Rozhodněte, zda je funkce f() sudá nebo lichá: TEORIE: Definice: f() je funkce a D(f) její definiční obor. f je sudá funkce znamená, že pro všechna z D(f) platí f(-) = f(). f je lichá funkce znamená, že pro všechna z D(f) platí f(-) = -f(). Ilustrační příklady: f() = je sudá funkce, protože např.: f(-) =.(-) =. = f() =. =. = f(-0) =.(-0) =.00 = 00 f(0) =.0 = 00 f() = je lichá funkce, protože např.: f(-) =.(-) = -6 f() =. = 6 f(-5) =.(-5) = -5 f(5) =.5 = 5 a) f() = není ani lichá, ani sudá funkce, protože pro záporná vůbec není definována: např. f(5) = 5 = 5, kdežto f(-5) = 5 neeistuje. b) f() = - není ani lichá, ani sudá, protože např.: f(-,5) =,5 = -0,75 f(,5) =,5.(-,5) =,5 + = 5,5...výsledky vůbec nesouhlasí. Pozn.: Všimni si, že poslední příklad je součet funkcí: f ( ) = + ( -. ) g() = h() = -. f ( ) = g ( ) + h ( )

2 Ponaučení: Dá se dokázat věta: Součet sudých funkcí je opět sudá funkce. Součet lichých funkcí je zase lichá funkce. Součet sudé a liché funkce není zpravidla lichá ani sudá funkce viz př. b). Součin sudých funkcí je opět sudá funkce. Součin lichých funkcí je sudá funkce. Součin sudé a liché funkce je lichá funkce. Tuto větu se raději neuč, protože je to jinak než u čísel a tudíž by se to pletlo: čísla: liché + liché = sudé sudé + sudé = sudé liché + sudé = liché liché. liché = liché sudé. sudé = sudé sudé. liché = liché funkce: lichá + lichá = lichá sudá + sudá = sudá lichá + sudá... jak kdy, většinou nic lichá. lichá = sudá sudá. sudá = sudá sudá. lichá = lichá Projev sudosti/lichosti funkce na grafu: Lichá: např.: f() = Sudá: např. f() = cos, D(f) = od π do π včetně... její graf je symetrický podle počátku (tj. bod [0;0]).

3 ... její graf je symetrický podle osy y. Př.: Konstantní funkce je sudá. Např. f() = 4: POSTUP ŘEŠENÍ:. možnost PODLE DEFINICE Přepíšeme vzorec funkce, kdy místo píšeme -. A upravujeme, až dostaneme jednu z možností nebo až to dál upravit nejde a je vidět, že vychází něco úplně jiného než bylo zadání. Doporučuje se napřed dosadit pár čísel s plusem i mínusem a udělat si tak názor, co má vyjít, před samotným formálním upravováním. Př. )a) f() = + f(-) = = = - + ( ) + 0 f() = = = 0 Tedy aspoň pro jedničku neplatí f(-) = f() + ani f(-) = -f(). Funkce tedy není ani sudá, ani lichá. Jakmile to vyjde ani sudá, ani lichá, stačí to dosazení jednoho čísla jako řešení a dál se to nemusí rozepisovat. Kdyby to ale vypadalo na sudou nebo lichou, nestačí to, protože v definici se totiž mluví o pro všechna. Tento postup je ideální i pro zbývající dva příklady v zadání, takže: Př. )b) f() = + - f(-) = - + -(-) = + = 0,5 + =,5

4 f() = + - = + =,5 f(-) = - + -(-) = = 4,5 f() = + - = = 4,5 Asi tedy sudá, musíme ale ještě formálně odvodit vztah z definice: f(-) = - + -(-) = = + - = f() f(-) = f() sudá! Př. )c) f() = f(-) = + ( ) f(-) = + + ( ) + = - = + f() = = Takže to vypadá na lichou funkci, to musíme ale ještě formálně odvodit: = - + ( ) = možnost je POUŽITÍM VĚT, které jsem doporučil se neučit. sin Např.: f() = Nejprve přepíšeme na f() =. sin je lichá funkce... = - f() f(-) = -f() lichá! změníme pořadí sčítanců (komutativita sčítání a+b = b+a) Tohle je to hlavní dospěli jsme zpět k zadání. vytkneme mínus před zlomek 4 druhá mocnina sežere mínus, neboli (-).(-) = (mínus krát mínus rovná se plus)

5 sin je také lichá funkce... Takže součin f() je sudá funkce viz poslední tabulka. čísla: funkce: liché + liché = sudé lichá + lichá = lichá sudé + sudé = sudé sudá + sudá = sudá liché + sudé = liché lichá + sudá... jak kdy... liché. liché = liché lichá. lichá = sudá sudé. sudé = sudé sudá. sudá = sudá sudé. liché = liché sudá. lichá = lichá Graf vypadá takto: Možnost dle vět ale není vhodná ani pro jeden ze zadaných příkladů.. možnost NEMATEMATICKÁ, ZATO NÁZORNÁ a celkem spolehlivá, je jak už obrázky napovídají ta, že namalujeme graf třeba v Ecelu (. vytvořit vhodnou aritmetickou řadu,. jednotlivé členy dosadit do předpisu funkce a udělat tak jinou řadu,. z obou řad vytvořit graf typu -y). Když je pak ten graf souměrný podle bodu [0;0], je to lichá funkce; když je souměrný podle osy y, je to sudá funkce; a když je souměrný podle jiného bodu nebo jiné přímky nebo není souměrný vůbec, nejde o sudou ani lichou funkci.

6 Grafy zadaných funkcí vypadají takto: Př. )a) f() = + Př. )b) f() = + - Př. )c) f() = +

7 ) ZADÁNÍ: Nalezněte inverzní funkci k funkci f(): TEORIE: Řečeno jazykem pomocné školy: Funkce je recept, který říká, jak udělat z jednoho čísla číslo jiné. Když máme nějaký ten recept funkci, tak k ní inverzní funkce je takový recept, podle kterého se vrátíme od toho nového čísla k tomu původnímu. Přitom jsou recepty, kdy provedeme něco, co se už nedá vrátit (jako vajíčko do skořápky), a jiné, které teoreticky vrátit lze (rozehřáté sádlo naleješ zpět do obalu, necháš ztuhnout a nic se nestalo). Stejně tak inverzní funkce eistuje pouze k některým funkcím. Těm, které inverzní funkci mají, říkáme prosté funkce a poznají se podle toho, že vždy pro různá dávají různá f(). U rozumných funkcí kromě konstanty se dá vždy vybrat kousek té funkce (představ si kousek grafu), který je prostý, a dá se tedy o nějaké inverzní funkci uvažovat. Pro potřeby této látky je vhodné zapisovat funkce takto: f: y = něco s. Když je f prostá, lze ten zápis upravit jako rovnici do tvaru: f: = něcojiného s y. Protože ale chceme dostat obdobnou funkci té původní, provedeme nyní záměnu písmen: f - : y = něcojiného s. ŘEŠENÍ f(): y = + Upravujeme rovnici: y = + /- y- = /:, y = Tím máme odbytu první šipku, teď už vlastně jen prohodíme písmenka: f - : y =. ) Volně navážu na předchozí příklad. Byla to ta nejjednodušší verze, jelikož jde o tzv. lineární funkci, na které se toto probírá již na ZŠ. Lineární funkce jsou všechny stejné a mají tvar: f(): y = a. + b, kde a a b jsou čísla konstanty (narozdíl od proměnných, y). V zadání je, že máme určit funkční předpis lineární funkce g, jestliže g ( ) prochází body [;7] a [;]. Je třeba si uvědomit, že v hranatých závorkách zde jsou [ ; g() ] iové a ypsilonové souřadnice bodů, tj.: [ ; 7 ] [ ; ] Když pak rozepíšeme mustr lineární funkce a dosadíme za a y, dostaneme tedy soustavu rovnic o neznámých a a b: 7 = a. + b ~ 7 = a. + b ~ nyní sečteme rovnice a vyjde: = a. + b /.(-) ~ - = -a b 4 = a, tj.: a =.

8 dvojku za a dosadíme třeba do druhé rovnice a dostaneme: =. + b, tj.: b =. Zbývá jen napsat požadovaný předpis: g(): y =. +. 4) TEORETICKÉ MINIMUM K LOGARITMŮM: Logaritmus je funkce kterou se vypočítává NA KOLIKÁTOU se UMOCNÍ ZÁKLAD, ABY VYŠEL ARGUMENT. Vryj si do paměti toto schéma: Neboli logaritmus je inverzní funkce k eponenciele. Vysvětlivka k nejprapodivnější věci: Jednou říkáme logaritmus a píšeme log, jindy mluvíme také o logaritmu a píšeme ln, někdy dokonce máme log s malým číslem za tím, a je to zase logaritmus. Jedná se o vžitou symboliku, jednotlivé zápisy vyjadřují logaritmy s různými základy. ) dekadický logaritmus neboli logaritmus se základem 0 píšeme jenom log (i když zápis log 0 by byl vlastně také dobře);

9 př.: log 00 =, protože 0 = 00; log = 6; log 0,0 = -, protože 0 - = = 0,0 0 ) přirozený logaritmus má základ e (čti Eulerovo [ojlerovo] číslo), které dostaneme např. jako součet nekonečné řady: Nebo se dá říci, že e je taková... eponenciální funkce, která v bodě = 0 stoupá přesně s úhlem 45. e je iracionální číslo, tzn, že nelze úplně přesně zapsat desetinným rozvojem, a to ani periodickým. Přibližná hodnota:,78. př.: ln e =, ln = 0 ) obecný logaritmus př.: log 8 = 4, protože... = 9.9 = 8, log 56 = 8, protože 8 = 56 ŘEŠENÍ PŘÍKLADŮ log 8 =, protože.. = 8; log 0,000 = -4, protože 0,000 je 0-4 ; ln = 0, cokoliv na nultou (kromě nuly) je, proto je také každý logaritmus z jedničky nula; e ln =, protože eponenciela a přirozený logaritmus jsou navzájem inverzní funkce, tak se tzv. sežerou; stejně tak by ln e bylo, jenom v případě, kdy logaritmus není definován to tak nebude: e ln(-) není -, protože ln(-) je zakázáno; ln e 0 = 0, jak jsem zrovna vysvětlil. 5) ŘEŠENÍ DALŠÍHO PŘÍKLADU log( ) = log( ) = log(00 ) = log( 00 + ) = log( 00 ) = = log(( 0 ) ) =.. log 0 = = + 6) PRINCIP URČENÍ STÁŘÍ ORGANICKÉHO MATERIÁLU METODOU RADIOAKTIVNÍHO UHLÍKU Dokud organismus provádí látkovou výměnu, obměňuje se v něm stejné složení uhlíku jako v prostředí (asi v důsledku kosmického záření je přírodní uhlík směsí stabilního izotopu C 6 a radioaktivního C 6 4 (který má v jádře o neutrony víc, proto se rozpadá). Jakmile organismus odumře, v důsledku radioaktivního rozpadu v tom materiálu ubývá C 6 4 podle uvedeného vzorce. My jsme změřili, že oproti normálu je toho izotopu 5%, je třeba dopočítat čas t. ŘEŠENÍ Jde o tzv. eponenciální rovnici. Problém může být, jak dosadit těch 5%. 4 přepis něco = něco, n je totéž jako n podle vzorečku pro umocňování: a. b = a+b a b podle vzorečku pro umocňování ( ) = a.b

10 Prakticky se měří koncentrace, ale je to jako, kdybychom změřili současnou hmotnost m(t). Zjistili jsme, že to je 5% původní hmotnosti, tedy 0,5m 0. Teď teprve přichází ke slovu ta matika: m(t) = m 0. t ln T e 0,5.m 0 = m 0. 0,5 = e t ln 5570 e t T t ln(0,5) = ln ln() / m(t) je naměřené množství radioaktivního uhlíku, m 0 je odpovídající množství v čerstvém vzorku, T je poločas rozpadu radioaktivního uhlíku / :m 0, dosadit za T / zlogaritmujeme obě strany, aby logaritmus sežral eponencielu / ln vlevo je z té úpravy, vpravo se už ln a ep. sežraly a tento ln tam zbyl z toho eponentu, t -. ln = ln 0,5 / t.ln = ln(0,5).5570 / :(-ln) t = ln(0,5)/ln /kalkulačkou t = 5 45 let. 7) JEN PÁR VZOREČKŮ PRO DERIVACE funkce derivace poznámka. y = c 0 derivace konstanty je nula. y = k, k Z k. k- pokud je k 0, platí všude mimo = 0, jinak bez omezení. y = e e Eponenciela je vůči derivaci imunní (dokud se nederivuje třeba podle y) 4. y = a, a > 0, a a ln a 5. y = ln samozřejmě pouze pro kladná ; to je speciální vlastnost přirozeného logaritmu, která může také definovat Eulerovo číslo viz bod ) teorie k příkladu 4 6. y = log a, a > 0 Samozřejmě pouze pro kladná, jinde totiž. ln a neeistuje ten logaritmus. 7. y = sin cos 8. y = cos - sin Pozor na to mínus! 9. y = tg Samozřejmě pouze tam, kde cos 0. cos 0. y = cotg Samozřejmě pouze tam, kde sin 0. sin. y = arcsin - Pouze tam, kde má výsledek smysl, tj. na: (-;). y = arccos - - Pouze tam, kde má výsledek smysl, tj. na: (-;). y = arctg +

11 4. y = arccotg g() + h() g`() + h`() Derivace součtu je součet derivací. Platí též pro mínus. 6. c.g() c.g`() Konstanty vytýkáme před derivaci. 7. f().g() f.g + f.g Derivace součinu funkcí: první zderivovaná krát druhá nechaná plus první nechaná krát druhá zderivovaná. V učebnicích bývá tento vzoreček napsaný s funkcemi u a v. Pro přehlednost jsem vynechal () u každé funkce. 8. f( ) f`.g f.g` Samozřejmě pouze tam, kde g() 0. Pro g( ) g přehlednost jsem zase vynechal (). 9. f(g()) f (g()).g () Derivace složené funkce: derivace vnější funkce krát derivace vnitřní funkce. ŘEŠENÍ PŘÍKLADŮ a) y = 4 + 4, y` =. 4 = 4-4, D = R (pro žádné omezení) Pozn.: výrazu typu a n + a n a n + a n+, např. 5 + říkáme polynom neboli mnohočlen. Mnohočlen derivujeme podle pravidel,, 6; a to je to nejjednodušší. b) y = je taky polynom, jenom to chce přepsat: 5 + = = + 5 = )` =.( 5 ) + 0 = 5 D = R (pro žádné omezení) ( 5 5 c) y = 4sin ; použijeme pravidlo 9, kde vnější funkce je 4z, vnitřní funkce je sin. Derivace vnější funkce jakožto polynomu je: (4z )` =.4z = 8z, ale místo z píšeme sin, takže derivace vnější funkce je 8sin. Derivace vnitřní funkce je podle vzorečku 7 je cos. Všehovšudy tedy dostaneme: (4sin )` = 8.sin.cos... toto může být výsledek, komu se to nelíbí, přepíše si osmičku zpět na 4.: 4.sin.cos ; a nalistuje si tzv. součtové vzorce pro sin a cos, kde je vzoreček: sin α =. sin α. cos α Podle tohoto je celý výsledek: (4sin )` = 8.sin.cos = 4.sin.cos = 4.sin, což je o pár znaků kratší. D = R (pro žádné omezení). d) y = f f` g + g` + použijeme pravidlo 8, kam budeme dosazovat:

12 g + +.( + ) ( ) = = = , přičemž již definiční obor původní funkce je D = R \ {-}, protože je zakázaná nula ve jmenovateli, tj.: + 0 / - - Další omezení už nepřibude, protože + + má jeden dvojnásobný kořen, a to - (prostě jsme ten jmenovatel umocnili na druhou). e) y = ln(-) použijeme pravidlo 9, kde vnější funkce je ln z, vnitřní funkce je opět polynom. Jelikož (ln z)` =, je derivace vnější funkce:. z Derivace vnitřní funkce je: ( )` =. Výsledek bude součin obou uvedených derivací: (ln( ))` =. =. Definiční obor funkce y: v argumentu logaritmu (jakéhokoliv) je zakázaná nula a záporné hodnoty, takže máme podmínku: > 0 / + > / : > tj.: D = (0,5; ). (Výpočet derivace zase nepřinesl žádné nové omezení.) 8) ZADÁNÍ Najděte rovnici tečny ke grafu funkce f: y = v bodě se souřadnicí 0 =. TEORIE Význam pojmu derivace je ten, že potřebujeme něco, co by nám určilo, jak moc funkce stoupá nebo klesá. Logické by bylo říci třeba o kolik se funkce změní na jednom milimetru na vodorovné ose. Když vyroste o 0,05 mm, tak roste málo, když klesne o 4 mm, tak hodně klesá. Zde ilustrace:

13 Abychom dostali něco obecného, protože se funkce může různě kroutit, vezmeme pouze nekonečně malý úsek dostaneme sice také nekonečně malé převýšení, ale poměr zůstane rozumný. Takto se dojde k definici derivace funkce v bodě: Pokud pro funkci f v bodě = 0 eistuje limita lim f ( 0 + h) f ( 0 ), nazýváme ji derivace funkce v bodě 0 a značíme ji f( 0 ). h h 0 Na obrázku to vypadá takto: A zde je vidět, že geometrický význam derivace funkce v bodě je směrnice tečny k jejímu grafu v tom bodě. Dále k nějaké rozumné funkci f definujeme funkci f `, která každému z definičního oboru přiřadí derivaci funkce f v bodě. Té nově definované funkci pak říkáme derivace funkce (nikoliv v bodě) a platí pro ni vzorce uvedené v předchozím příkladu (tabulka vzorečků k příkladu 7). Hodnotu derivace v bodě pak dostaneme tak, že ji nepočítáme jako tu limitu v definici, ale k funkci spočítáme derivaci a do té dosadíme 0. My pak budeme chtít napsat rovnici tečny ke grafu funkce f v bodě 0. Rovnice přímky je sice látka z analytické geometrie, ale dokud jsme pouze u přímek a navíc jen v rovině, vystačíme si s tím, co už jsme zde probírali, a to s rovnicí lineární funkce viz příklad ). Tam se píše o mustru pro lineární funkce:

14 y = a. + b, kde a a b jsou čísla konstanty (narozdíl od proměnných, y). f() jsem takticky vynechal, aby se to nepletlo s funkcí, ke které hledáme tu tečnu. Bez dalšího odvozování prozradím, že v uvedené rovnici přímky je člen a zrovna směrnice té přímky čili tg ϕ (rozuměj tangens úhlu, který ta přímka svírá s vodorovnou osou). Čili pro tu tečnu ke grafu funkce f v bodě 0 platí y = a. + b, a = f`( 0 ). Konstantu b pak dopočítáme stejně jako v příkladu ) tím, že víme, že ta tečna musí procházet bodem [ 0 ; f( 0 )]. Ukážeme si to rovnou na tom zadaném příkladu: ŘEŠENÍ t: tečna ke grafu funkce f: y = v bodě 0 = určíme derivaci funkce podle pravidla : f ` = t: y = a. + b, a = f `() =. = ; takže t: y =. + b, kdy této rovnici má vyhovovat i bod [ 0 ; f( 0 )] = [; ] = [; ], tj.: =. + b = + b / -, b = b = - Výsledek: t: y =. A teď si ukážeme, jak se dělá ten graf v Ecelu. K otevření vloženého listu na něj můžeš dvojkliknout, v něm pak pomocí tlačítek myši zjistíš vlastnosti všech objektů včetně čáry grafu, vzorečků, atd. Ve formátu.pdf Ti to samozřejmě fungovat nebude. f() t() ,8,4-4,6 -,6,56-4, -,4,96 -,8 -,,44 -, ,8 0,64 -,6-0,6 0,6 -, -0,4 0,6 -,8-0, 0,04 -,4 -,8E-6 7,707E- - 0, 0,04-0,6 0,4 0,6-0, 0,6 0,6 0, 0,8 0,64 0,6,,44,4,4,96,8,6,56,,8,4,6 4, 4,84,4,4 5,76,8,6 6,76 4,,8 7,84 4, f() t() Není to ještě jasné? Zde je další příklad:

15 Rozšíření Najděte rovnici tečny grafu funkce f() = 4 v bodě 0 = -,6. I. Nejdříve se podíváme na definiční obor té funkce, protože je tam odmocnina, mohlo by totiž vyjít něco nepěkného a kdybychom se na definiční obor teď vykašlali, hrozí, že bychom pak za výsledek třeba považovali něco, co je zakázáno. Jak víme, co je pod odmocninou nesmí být záporné, čili: 4 0 / /.(-) 4 / ) ) - /.(-) * - & - neboli D = -;. Pozn.: Vidíš, původně jsem se překoukl a vymyslel do zadání 0 = -. Kdybych to zadání tak nechal, už teď bychom viděli, že taková úloha nemá řešení, protože funkce f v tom bodě není definovaná, čili tam nemá žádný graf, čili tam ani ten graf nemůže mít tečnu. II. Určíme derivaci té funkce, což nebude zrovna triviální: Jedná se o složenou funkci, takže budeme postupovat podle pravidla 9. Vnější funkce je g = z neboli g = z, její derivaci určíme podle pravidla, kde za k dosadíme 0,5; čili se ta jedna polovina dostane před z a eponent se sníží o jedničku, což je 0,5 = -0,5. Takhle vypadá celkový zápis: g` = z - = z- = z =. 4 Vnitřní funkce je polynom h = 4, který má derivaci: h` = 0 = -. Derivace této složené funkce je tedy součin: f `() = 4.(-) = = III. Do vztahu pro derivaci dosadíme hodnotu 0 = -,6: - -,6,6,6 f`(-,6) = = = = 4- -,6 4,56,44,6, = 4. násobíme mínus jedničkou neboli měníme znaménka; při násobení nebo dělení záporným číslem se musí otočit znaménko nerovnosti to je pravidlo řešení nerovnic Ach jo, tahle úprava se těžko vysvětluje, jde o to, že pouhou odmocninou nám uteče půlka řešení nerovnice, což je dáno tím, že je zároveň (-) Mohlo by se stát, že by ta funkce neměla v některých bodech derivaci. V tomhle příkladě jsou to například body a, kde v oranžově podbarveném vztahu pro derivaci vychází nula pod zlomkovou čárou. Kdybychom se takovým bodem trefili zrovna do toho zadaného bodu, opět by to znamenalo, že neeistuje tečna v tom bodě, případně - jako zde v té mínus dvojce a dvojce že ji nelze zapsat rovnicí v tom tvaru lineární funkce, nýbrž že to je svislá přímka, jejíž rovnici lze napsat nějak takto: = -. Taková havárie by se v tomto výpočtu ale projevila tím, že by nám vyšlo něco zakázaného nebo neřešitelného, takže nemá cenu se tím zabývat dopředu.

16 Ještě vypočítáme hodnotu funkce v zadaném bodě, neboli f(-,6) = 4 - -,6 úprava jmenovatele o dva řádky výše). =, (viz IV. Nyní víme, že ta tečna má rovnici: 4 y = + b a že prochází bodem [-,6;,]. Ten bod tedy dosadíme do té rovnice:, = 4.(-,6) + b /.,6 = - 4.,6 + b,6 = - 6,4 + b / +6,4 0 = b / :, b = 0 V. Píšeme výsledek: Rovnice hledané tečny je y = Zde ještě obrázek: Ano, ta funkce je opravdu horní půlkružnice se středem v počátku a poloměrem. 9) ZADÁNÍ Zjistěte průběh funkce y = (kde je funkce klesající, rostoucí, maima a mimina) TEORIE V teorii k příkladu 8) jsem nedotáhl do konce tu ústřední myšlenku, a to, jak tedy poznáme z derivace jestli funkce v tom bodě klesá nebo roste a jak moc. Je to tak, když je derivace kladná, znamená to, že funkce roste. Když je derivace záporná, znamená to, že funkce klesá. Čím větší je hodnota derivace v bodě, tím větší je změna funkce v okolí toho bodu.

17 Funkce může mít maimum nebo minimum pouze tam, kde ani neroste ani neklesá. (Když něco ještě pořád roste, tak to není maimální, největší to bude, až to přestane růst, než se to začne zmenšovat, to je jasné.) Takže pokud hledáme minima a maima funkce (dohromady se jim říká etrémy), víme jistě, že můžou být pouze v bodě, kde buď má funkce nulovou derivaci nebo kde funkce nemá žádnou derivaci. Nulová derivace ještě neznamená, že tam je minimum nebo maimum. Např. funkce má derivaci, což v bodě 0 dává derivaci rovnu nule, ale tato funkce roste na celém svém definičním oboru, takže nemá žádné minimum ani maimum. Ale nenulová derivace na tutti znamená, že tam etrém není! ŘEŠENÍ Průběh funkce y =. Je dobrým zvykem začínat tím, že se určí definiční obor funkce. Zde není nic zakázaného, takže D = R. Dále vyšetříme třeba obor hodnot, což by nebylo nutné, ale pro pořádek. Je tam, o kterém víme, že může být nulové, ale není nikdy záporné. Funkční hodnoty se dostanou tak, že se něco odečte od jedničky, nikdy se nebude nic přičítat, takže obor hodnot je od mínus nekonečna do jedničky H = (- ;. Nez začneme derivovat, požaduje se obvykle u průběhu funkce určit průsečíky jejího grafu s osami. Tak to uděláme: Jednodušší je průsečík s osou y, ten je tam, kde je na ose nula. Stačí tedy tu nulu za dosadit. Jsou samozřejmě funkce, které průsečík s osou y nemají, to se projeví tím, že nula je v zakázaných hodnotách viz funkce y = ln... druhý graf v příkladu 4) nebo funkce y = +... těsně před příkladem ). Proto ten vžitý postup, že definiční obor se určí ze všeho nejdřív. Tedy dosaďme: y(0) = 0 = Průsečík s osou je tam, kde y vyjde nula. Sestavíme tedy rovnici: y = 0 / za y dosadíme ze zadání funkce = 0 / - - = - /.(-) =, což platí pro dvě čísla, a to a. Samozřejmě i zde platí, že funkce nemusí mít žádný průsečík s osou. Projevilo by se to tím, že by obor hodnot neobsahoval nulu. Příklad pro toho, koho z toho ještě nebolí hlava, může si jako rozcvičku zkusit předchozí postup na funkci y = +.

18 Celkem jsme tedy dostali tři body grafu: [0;], [; 0], [-; 0]. Poznamenávám, že druhá varianta zadání tohoto příkladu zní: Načrtněte graf funkce... Myslí se tím, že se provede toto všechno jako u Vyšetřete průběh funkce... a co vyjde se od ruky nakreslí do obrázku. V tom případě se tyto body budou moc hodit, protože jsou to body u kterých se obejdeme bez pomocných čar. Podstatné je také, zda se jedná o sudou nebo lichou funkci, takže si zopakujeme příklad ). Postupuji podle definice: y(-) = (-) = = y()... sudá funkce. Teď vypočítáme derivaci (je to jenom polynom, tedy to nejlehčí): y` = 0 = -. Najdeme bod(y), kde je derivace nulová: a sice z rovnice y` = 0 - = 0 / :(-) = 0 Z předchozího již bezpečně víme, že v nule nabývá funkce své maimální hodnoty. Jinde není derivace nulová, takže jinde nemůže být minimum ani maimum. Dále určíme, znaménko derivace všude mimo její nulové body. Zde máme nulový bod derivace, takže stačí zkusmo dosadit do derivace jedno číslo menší než je výsledek té poslední rovnice a pak jedno číslo větší: např.: y`(- ) = -.(-) = > 0, tzn. pro z intervalu (- ; 0) je derivace kladná tedy funkce je rostoucí. A např. y`() = -. = - 4 < 0, tzn. pro z intervalu (0; ) je derivace záporná a funkce tudíž klesající. Zbývá připojit graf. V. století se ho nebudu pokoušet črtat od ruky, ale udělám ho jako všechny grafy dosud. protože dvojka v eponentu to mínus v závorce sežere podle pravidla mínus krát mínus rovná se plus

19 ROZŠÍŘENÍ Př.: Vyšetřete průběh funkce a načrtněte její graf: y = D = R, opět žádné omezení, je to zase prachobyčejný polynom H = R, protože nejsilnější ze členů je, která není omezená zdola ani shora. Matematicky zapsáno: lim ( ) =, lim ( ) = - (O tom, jak se počítají limity, co to vlastně je, atd., je celá kapitola matematiky. Nechtějte po mně, abych vám to vysvětloval jenom kvůli obhájení názoru, že na třetí jde z nedohledna vlevo dole do nedohledna vpravo nahoře, kdežto třeba na druhou jde z nedohledna vlevo dole do nedohledna vpravo dole, když je před ním mínus, a z nedohledna vlevo nahoře do nedohledna vpravo nahoře, když je před ním plus.) Průsečík s osou y - dosadit za nulu: = 0... [0; 0] Průsečík s osou položit předpis funkce roven nule a dopočítat : = 0 / vytknout.( ) = 0 / součin se rovná nule, když buď jeden člen se rovná nule, nebo když se druhý člen rovná nule, takže dvě možnosti: ) = 0... [0; 0] nnss (nihil novum sub solem) ) = 0 kvadrat. rce., = -b± b 4 a c a dosazujeme podle:, do vzorce včetně případných mínusů, takže:, = -6± ± 6-6 = = = - zkouška: (-) + 6.(-) + 9.(-) = = 0... [-; 0] = -6± 0 =

20 Sudá / lichá? Mám tuchy, že to nebude ani jedna z nich, tak to totiž bývá, když se míchají sudé a liché mocniny. Proto před zběsilým odvozováním zkusím dosadit stejné číslo s plusem i s mínusem, pokud se nemýlím, mohlo by to pro ověření sudosti/lichosti stačit. Vyberu si čísla, která se mi budou snadno počítat: -; : y(-) = (-) + 6.(-) + 9.(-) = = -4 Ani sudá, ani lichá! y() = = = 6 Spočítáme derivaci: y` = Kde je derivace nulová? Inu tam, kde: = 0 / : = 0/ opět kvadratická rovnice, takže, =, = -b ± b - 4a c a = - 4± = - 4± 6 - = - 4± = -; = - Tyto dva body jsou tedy adepty na lokální etrémy. Lokální znamená, že se jedná o maimum nebo minimum jen na určité oblasti. Že to nemůžou být globální, tedy naprosté etrémy, je jasné z toho, že H = R, tzn. funkce nemá žádnou minimální ani maimální hodnotu. Abychom ověřili, že se jedná o etrémy a zároveň určili, kde funkce roste a kde klesá, dosadíme za do derivace něco z oblastí před, za a mezi těmi body. Pro přehlednost si udělám tabulku: (- ; -) (-; -) (-; ) např.: -0: =89 -: = - 0: 0+0+9=9 y` f() roste klesá roste U mínus trojky vyšlo, že před ní funkce roste, za ní klesá, čili tam bude lokální maimum (Když jedeme do kopce a pak z kopce, někde jsme přejeli jakýsi vrchol, že?) y(-) = 0 výpočet viz bod [-; 0] je lokální maimum. U mínus jedničky vyšlo, že funkce nejdřív klesá a potom roste, takže tam bude lokální minimum y(-) = - 4 výpočet viz bod [-;- 4] je lokální minimum. Graf vypadá nějak takto:, tj.:

21 To byl krásný příklad, ne? Na stránky a ještě se na ně nevešel graf. Tento příklad schválilo pro přijímací zkoušky na VŠ před lety Ministerstvo školství ČSR, tak si ho važ a na matiku nezanevři. MateMati

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

2. Určete kolik z následujících čtyř bodů a 1 = -1; a 2 = 1; a 3 = 0,5; a 4 = 0 patří do definičního oboru

2. Určete kolik z následujících čtyř bodů a 1 = -1; a 2 = 1; a 3 = 0,5; a 4 = 0 patří do definičního oboru Ř E Š E N Í M I N I T E S T Ů JčU Cvičení z matematiky pro zemědělské obory (doc. RDNr. Nýdl, CSc & spol.) Minitest MT5. Jsou dány funkce f : y = 4x 9, f 2 : y = 6 x 3, f 3 : y = log(4x + 64). Potom pro

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné

Monotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné 66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Funkce pro studijní obory

Funkce pro studijní obory Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

FUNKCE, ZÁKLADNÍ POJMY

FUNKCE, ZÁKLADNÍ POJMY MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

10. cvičení - LS 2017

10. cvičení - LS 2017 10. cvičení - LS 2017 Michal Outrata Příklad 1 Spočtěte následující itu daných posloupností: (a) (b) (c) n 3 +5n 2 n 3 6n 2 +3 n ; n 4 3n 2 6 n 4 + 3n 2 + 6; n 2 15n+2(1 n). 2(n 2) 3 2n 3 Příklad 2 Pro

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. f = 3 12 2. f = 2 e 3. f = ln Příklad 1. Nakreslete graf funkce f() = 3 12 Příklad 1. f = 3 12 Nejprve je třeba určit definiční obor. Výraz je vždy definován. Příklad 1. f = 3 12 f =

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická akulta DRUHÁ SEMINÁRNÍ PRÁCE Z DIFERENCIÁLNÍHO POČTU PRŮBĚH FUNKCE 000/001 Cirik, M-ZT Zadání: Vyšetřete průběh unkce ( ) : y Vypracování: ( ) : y Předně určíme deiniční

Více

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis 1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž

Více

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R.

Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R. @034 3. Průběhy funkcí Úloha určit průběh funkce znamená nakreslit graf funkce na zadaném intervalu, nejčastěji na celé množině reálných čísel R. Abychom nakreslili dobře průběh funkce (její graf) musíme

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

f jsou osově souměrné podle přímky y = x. x R. Najdi

f jsou osově souměrné podle přímky y = x. x R. Najdi Nechť je prostá unkce v pořád klesá) a zobrazuje D na H deinovaná vztahem: D = a) b) Gra unkcí a H, H = D INVERZNÍ FUNKCE D (tj. v celém svém deiničním oboru pořád roste nebo. Pak k této unkci eistuje

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Metody výpočtu limit funkcí a posloupností

Metody výpočtu limit funkcí a posloupností Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou

Více

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ

PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Dierenciální počet unkcí jedné reálné proměnné - 5 - PRŮBĚH FUNKCE JEDNÉ REÁLNÉ PROMĚNNÉ Cílem vyšetřování průběhu unkce je umět nakreslit její gra Obvykle postupujeme tak že nalezneme její maimální deiniční

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:

Více

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).

Označení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x). 9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x

1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x .cvičení 0..009 Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje lim h 0 f(a + h) f(a), h pak tuto limitu nazýváme derivací funkce f v bodě a. Značíme f f(a + h) f(a) (a) := lim. h 0 h

Více

V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:

V exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální

Více

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH

ŘEŠENÍ KVADRATICKÝCH A ZLOMKOVÝCH NEROVNIC V ŠESTI BODECH (Tento text je součástí výkladu k definičním oborům, tam najdete další příklady a pokud chcete část tohoto textu někde použít, můžete čerpat ze stažené kompletní verze definičních oborů ve formátu.doc.)

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

Funkce. Obsah. Stránka 799

Funkce. Obsah. Stránka 799 Obsah 4. Funkce... 800 4.. Základní vlastnosti funkcí... 800 4.. Grafy funkcí... 8 4.. Eponenciální a logaritmické funkce... 8 4.4. Eponenciální a logaritmické rovnice... 8 4.5. Eponenciální a logaritmické

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

FUNKCE A JEJICH VLASTNOSTI

FUNKCE A JEJICH VLASTNOSTI PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY TU v LIBERCI FAKULTA MECHATRONIKY POŽADAVKY pro přijímací zkoušky z MATEMATIKY Tematické okruhy středoškolské látky: Číselné množiny N, Z, Q, R, C Body a intervaly na číselné ose Absolutní hodnota Úpravy

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

soubor FUNKCÍ příručka pro studenty

soubor FUNKCÍ příručka pro studenty soubor FUNKCÍ příručka pro studenty 1 Obsah Poznámky 6 lineární funkce mocninné funkce s přirozeným exponentem o sudým o lichým s celým záporným exponentem o sudým o lichým s racionálním exponentem o druhá

Více

Logaritmická rovnice

Logaritmická rovnice Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

0.1 Funkce a její vlastnosti

0.1 Funkce a její vlastnosti 0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena

Více

Aplikace derivace ( )

Aplikace derivace ( ) Aplikace derivace Mezi aplikace počítáme:. LHospitalovo pravidlo. Etrémy funkce (růst a pokles funkce) 3. Inflee (konávnost a konvenost). Asymptoty funkce (se i bez směrnice) 5. Průběh funkce 6. Ekonomické

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/4.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

PRŮBĚH FUNKCE - CVIČENÍ

PRŮBĚH FUNKCE - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu

1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu 22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte

Více

FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ

FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Kapitola 1: Reálné funkce 1/20

Kapitola 1: Reálné funkce 1/20 Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli

Více

MATEMATIKA I - vybrané úlohy ze zkoušek v letech

MATEMATIKA I - vybrané úlohy ze zkoušek v letech MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Seminární práce z matematiky

Seminární práce z matematiky Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Seminární práce z matematiky Vyšetřování průběhu funkcí Autor: Vyučující: Ondřej Vejpustek RNDr Eva Davidová Ostrava, 0 Taylorův polynom pro

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost

2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost .7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.

Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4. .. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální

Více

) je definovaná pro libovolné kladné reálné číslo x a nabývá všech hodnot ( H f

) je definovaná pro libovolné kladné reálné číslo x a nabývá všech hodnot ( H f Exponenciální funkce (daná předpisem Exponenciální a logaritmická funkce a jejich vlastnosti x y a, kde x R, a R 1 libovolné reálné číslo x a nabývá pouze kladných hodnot ( H f R ) je definovaná pro ).

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Nepřímá úměrnost I

Nepřímá úměrnost I .. Nepřímá úměrnost I Předpoklady: 000 Př. : Která z následujících slovních úloh popisuje nepřímou úměrnost? Zapiš nepřímou úměrnost jako funkci. a) 7 rohlíků stojí Kč. Kolik bude stát rohlíků? b) Pokud

Více

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g

Obecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme

= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme - FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace

22. & 23. & 24. Vlastnosti funkcí a jejich limita a derivace 22. & 23. & 24. Vlastnosti funkcí a jejich ita a derivace Základní vlastnosti Definiční obor Definiční obor je množina neznámých, pro něž je funkce definována. Obor hodnot Obor hodnot je množina všech

Více

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že

V této chvíli je obtížné exponenciální funkci přesně definovat. Můžeme však říci, že .5. Cíle Uvedeme nní několik unkcí, z nichž většinu studenti znají již ze střední škol. Nazveme je základní elementární unkce. Konečným počtem sčítání, odčítání, násobení, dělení, skládání a případně invertování

Více