Podpořeno z projektu FRVŠ 584/2011.
|
|
- Klára Novotná
- před 7 lety
- Počet zobrazení:
Transkript
1 Podpořeno z projektu FRVŠ 584/2011.
2 Obsah Křovákovo zobrazení 1 Křovákovo zobrazení
3 Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Podpořeno z projektu FRVŠ 584/2011.
4 Křovákovo zobrazení Křovákovo zobrazení je konformní kuželové zobrazení v obecné poloze (ϕ, λ) 1 (U, V ) 2 ( Š, D ) 3 (ρ, ɛ) 4 (X, Y )
5 Gaussovo konformní zobrazení Besselova elipsoidu (ϕ, λ) na kouli (U, V ) zobrazen Besselův elipsoid na kouli. Křovákovo zobrazení je proto označováno jako dvojité Podmínkou zobrazení je minimální délkové zkreslení kolem základní rovnoběžy, která byla zvolena ϕ o = 49 o 30 (Pro ϕ o je hodnota délkového zkreslení m o = 1).
6 Gaussovo konformní zobrazení Besselova elipsoidu (ϕ, λ) na kouli (U, V ) zobrazen Besselův elipsoid na kouli. Křovákovo zobrazení je proto označováno jako dvojité Podmínkou zobrazení je minimální délkové zkreslení kolem základní rovnoběžy, která byla zvolena ϕ o = 49 o 30 (Pro ϕ o je hodnota délkového zkreslení m o = 1).
7 Gaussovo konformní zobrazení Besselova elipsoidu (ϕ, λ) na kouli (U, V ) zobrazen Besselův elipsoid na kouli. Křovákovo zobrazení je proto označováno jako dvojité Podmínkou zobrazení je minimální délkové zkreslení kolem základní rovnoběžy, která byla zvolena ϕ o = 49 o 30 (Pro ϕ o je hodnota délkového zkreslení m o = 1).
8 Zobrazovací rovnice ( ) U tan o Konstanty: = 1 k [ tan ( ( ) e ] α ϕ o) 1 e sin ϕ e sin ϕ V = α λ. (1) U o = 49 o 27 35, α = 1, k = 0, R = M o N o = , 6105m.
9 Křovákovo zobrazení Transformace zeměpisných souřadnic (U, V ) na kartografické (Š, D ) Kužel v obecné poloze Zvolena jako základní rovnoběžka kartografická rovnoběžka Š o = 78 o 30 a okrajové Š1 = 77 o 13 a Š2 = 79 o 44.
10
11 Základní rovnoběžka je kolmá na zeměpisný poledník λ = 42 o 30 východně od Ferra a jejich průsečík A má šířku ϕ = 48 o 15. Tím je určen kartografický pól Q, který má na referenční kouli souřadnice: U K = 59 o 42 42, 6969, V K = 42 o 31 31, a na Besselově elipsoidu: ϕ K = 59 o 45 27, λ K = 42 o 30 v.g.
12 Polednich Ferro a Greenwich: Ferro = Greenwich + 17 o 40
13 Konformní kuželové zobrazení kartografických souřadnic ( Š, D ) na (ρ, ɛ) ( ) ρ = ρ o tan Šo o ( ) tan Š o ɛ = n D. (2) n
14 Konstanty ρ o a n byly zvoleny pro jednu nezkreslenou rovoběžku Š o = 78 o 30 a určeny ze vzorců: ρ o = k R tan Šo = , 0046m n = sin Šo = 0, , (3) kde k = 0, 9999 a R je poloměr referenční koule. Koeficient k redukuje délkové zkreslení na základní rovnoběžce, a tím snižuje jeho hodnotu na rovnoběžkách okrajových. V důsledku je to podobný obrat, jako kdyby byl zvolen sečný kužel.
15 Transformace polárních souřadnic (ρ, ɛ) na pravoúhlé (X, Y ) Křovák umístil osu X do obrazu základního poledníku λ o = 42 o 30 v.f. a počátek souřadnic do vrcholu kužele Q. Tím byla celá ČSR umístěna do jediného kvadrantu. Pro převod ρ, ɛ X, Y platí následující rovnice: X = ρ cos ɛ Y = ρ sin ɛ. (4)
16 Průběh zkreslení:
17 Výpočet zkreslení: m = v ρ R cos S ( m = 1 6 m t ab ( m = ρ ρ 3 + 0, (
18 Meridiánová konvergence
19 Výpočet meridiánové konvergence C = 0, Ẏ + 2, 7373 Y X
20 Software pro zobrazení: Proj4 -
21 Ukázka proj +proj=krovak +ellps=bessel -s -V
22 Úloha Podle vzorců vypočítejte souřadnice v Křovákovo zobrazení pro souřadnice vašeho bydliště (souřadnice odečtěte např. pomocí GoogelEarth., pro zjedodušení berme, že souřadnice jsou na Beeselově elipsodiu) Vypočtěte hodnoty zkreslení a konvergenci Ověřte výsledky pomocí programu Proj Pomocí programu proj navrhněte jiné zobrazení pro ČR a vypočtěte hodnoty zkreslení pro vaše bydliště
23 Úloha Podle vzorců vypočítejte souřadnice v Křovákovo zobrazení pro souřadnice vašeho bydliště (souřadnice odečtěte např. pomocí GoogelEarth., pro zjedodušení berme, že souřadnice jsou na Beeselově elipsodiu) Vypočtěte hodnoty zkreslení a konvergenci Ověřte výsledky pomocí programu Proj Pomocí programu proj navrhněte jiné zobrazení pro ČR a vypočtěte hodnoty zkreslení pro vaše bydliště
24 Úloha Podle vzorců vypočítejte souřadnice v Křovákovo zobrazení pro souřadnice vašeho bydliště (souřadnice odečtěte např. pomocí GoogelEarth., pro zjedodušení berme, že souřadnice jsou na Beeselově elipsodiu) Vypočtěte hodnoty zkreslení a konvergenci Ověřte výsledky pomocí programu Proj Pomocí programu proj navrhněte jiné zobrazení pro ČR a vypočtěte hodnoty zkreslení pro vaše bydliště
25 Úloha Podle vzorců vypočítejte souřadnice v Křovákovo zobrazení pro souřadnice vašeho bydliště (souřadnice odečtěte např. pomocí GoogelEarth., pro zjedodušení berme, že souřadnice jsou na Beeselově elipsodiu) Vypočtěte hodnoty zkreslení a konvergenci Ověřte výsledky pomocí programu Proj Pomocí programu proj navrhněte jiné zobrazení pro ČR a vypočtěte hodnoty zkreslení pro vaše bydliště
26 Zdroje: Grafarend E., Krumm F.: Map Projections, Springer, Germany, 2006 Buchar P.: Mtematická kartografie 10, Skriptum ČVUT, 2002
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v
Jednoduchá zobrazení. Podpořeno z projektu FRVŠ 584/2011.
Podpořeno z projektu FRVŠ 584/2011. Obsah Jednoduchá zobrazení 1 Jednoduchá zobrazení 2 Obsah Jednoduchá zobrazení 1 Jednoduchá zobrazení 2 Společné vlastnosti jednoduchých zobrazení: Zobrazovací ref.
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 3. ročník S3G ROZPIS TÉMAT PRO ŠK. ROK 2018/2019 1) Kartografické zobrazení na území ČR Cassiny-Soldnerovo zobrazení Obecné konformní kuželové zobrazení Gauss-Krügerovo
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY
APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY Radek Dušek, Jan Mach Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta, Ostravská univerzita, Ostrava Gymnázium Omská, Praha Abstrakt
Pro mapování na našem území bylo použito následujících souřadnicových systémů:
SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 7 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 válcové konformní zobrazení v transverzální poloze někdy také nazýváno transverzální Mercatorovo nebo Gauss-Krügerovo
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice
Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů
Srovnání konformních kartografických zobrazení pro zvolené
Srovnání konformních kartografických zobrazení pro zvolené území (návod na cvičení) 1 Úvod Cílem úlohy je srovnání vlastnosti jednoduchých konformních zobrazení a jejich posouzení z hlediska vhodnosti
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 9 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Polykónická zobrazení někdy také mnohokuželová zobecnění kuželových zobrazení použito je nekonečně mnoho
Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13)
Matematické metody v kartografii Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(3) Volba kartografického zobrazení Parametry ovlivňující volbu
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních
Matematická kartografie. Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT. Referenční plochy
Matematická kartografie Buchar.: Matematická kartografie 10, ČVUT; Černý J., Kočandrlová M.: Konstruktivní geometrie, ČVUT Referenční plochy referenční elipsoid (sféroid) zploštělý rotační elipsoid Besselův
Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.)
Matematické metody v kartografii Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) 1. Členění kartografických zobrazení: Existuje velkémnožstvíkarografických zobrazení. Lze je členit
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 2 2/6 Transformace souřadnic z ETRF2000 do
Geodézie Přednáška. Souřadnicové systémy Souřadnice na referenčních plochách
Geodézie Přednáška Souřadnicové systémy Souřadnice na referenčních plochách strana 2 každý stát nebo skupina států si volí pro souvislé zobrazení celého území vhodný souřadnicový systém slouží k lokalizaci
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 5 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Válcová zobrazení obrazem poledníků jsou úsečky, které mají konstantní rozestupy obrazem rovnoběžek jsou
1 Nepravá zobrazení. 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované. Obsah. 3 Nepravá azimutální zobrazení.
Obsah 1 Nepravá zobrazení 2 3 4 Zobrazení odvozené z jednoduchých azimutálních (modifikované zobrazení) 5 Zobrazení Evropy Nepravá zobrazení: jednoduché nepravé kuželové ρ = f (U), ɛ = g(v ) = nv ρ = f
Stavební geodézie. Úvod do geodézie. Ing. Tomáš Křemen, Ph.D.
Stavební geodézie Úvod do geodézie Ing. Tomáš Křemen, Ph.D. Stavební geodézie SG01 Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek,
Česká a československá kartografie
Česká a československá kartografie 1918 1938 Miroslav Mikšovský 1. Úvod Bezprostředně po vzniku Československé republiky v roce 1918 bylo v Praze zřízeno při Vrchním velitelství čs. branné moci oddělení
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné
4. Matematická kartografie
4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od
Topografické mapování KMA/TOMA
Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky
Geodézie pro architekty. Úvod do geodézie
Geodézie pro architekty Úvod do geodézie Geodézie pro architekty Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek, P. a kol.: Stavební
GIS a pozemkové úpravy. Data pro využití území (DPZ)
GIS a pozemkové úpravy Data pro využití území (DPZ) Josef Krása Katedra hydromeliorací a krajinného inženýrství, Fakulta stavební ČVUT v Praze 1 Papírová mapa Nevymizela v době GIS systémů (Stále základní
Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)
Matematické metody v kartografii Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Kruhová zobrazení Společné vlastnosti: Síť poledníků/rovnoběžek tvořena pouze kruhovými oblouky Středy rovnoběžkových
GEODETICKÉ VÝPOČTY I.
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. PRAVOÚHLÉ SOUŘADNICE V ČR ZOBRAZOVÁNÍ POLOHY BODŮ (SOUSTAVY) Soustavu souřadnic lze označit jako vzájemně jednoznačné
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Kartografické projekce
Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Kartografické projekce Vypracoval: Jiří Novotný Třída: 4.C Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem
Matematické metody v kartografii. Jednoduchá válcová zobrazení. Válcové projekce. Gaussovo zobrazení. (6.+7.)
Matematické metody v kartografii Jednoduchá válcová zobrazení. Válcové projekce. Gaussovo zobrazení. (6.+7.) 1. Jednoduchá zobrazení Společné vlastnosti: Zobrazovací plocha představována pláštěm kužele,
System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004
System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004 1 Obsah Úvod 3 1 Základní ovládání 4 1.1 Výběr zobrazení a jeho
Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy
Závazné referenční systémy dle 430/2006 Sb. Souřadnicov adnicové systémy na území Nařízen zení vlády o stanovení geodetických referenčních systémů a státn tních mapových děl d l závazných z na území státu
Celkem existuje asi 300 zobrazení, používá se jen několik desítek.
ÁKLADY KARTOGRAFIE RO SŠ KARTOGRAFICKÉ OBRAENÍ Kartografické zobrazení je způsob, který každému bodu na referenčním elipsoidu resp. referenční kouli přiřazuje body v rovině. Určení věrných obrazů bodů
154GUI1 Geodézie pro UIS 1
154GUI1 Geodézie pro UIS 1 Přednášející: Ing. Tomáš Křemen, Ph.D; Místnost: B905 Email: tomas.kremen@fsv.cvut.cz WWW: k154.fsv.cvut.cz/~kremen Literatura: [1] Ratiborský, J.: Geodézie 10. 2. vyd. Praha:
Transformace dat mezi různými datovými zdroji
Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace
Zobrazování zemského povrchu
Zobrazování zemského povrchu Země je kulatá Mapy jsou placaté Zemský povrch je zvlněný a země není kulatá Fyzický povrch potřebuji promítnout na nějaký matematicky popsatelný povrch http://photojournal.jpl.nasa.gov/jpeg/pia03399.jpg
Nová topografická mapování období 1952 až 1968
Nová topografická mapování období 1952 až 1968 Miroslav Mikšovský 1. Topografické mapování v měřítku 1:25 000 V souladu s usnesením vlády ČSR č.35/1953 Sb. bylo v roce 1952 zahájeno nové topografické mapování
K154SG01 Stavební geodézie
K154SG01 Stavební geodézie Přednášející: Doc. Ing. Martin Štroner, Ph.D; Místnost: B912 Email: martin.stroner@fsv.cvut.cz Literatura: [1] Hánek, P. a kol.: Stavební geodézie. Česká technika -nakladatelství
Geodézie a pozemková evidence
2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské
Souřadnicové systémy Souřadnice na referenčních plochách
Geodézie přednáška 2 Souřadnicové systémy Souřadnice na referenčních plochách Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Souřadnicové systémy na území
Matematické metody v kartografii. Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.)
Matematické metody v kartografii Jednoduchá azimutální zobrazení. Azimutální projekce. UPS. (10.) 1. Jednoduchá azimutální zobrazení Společné vlastnosti: Jednoduché zobrazení, zobrazuje na tečnou rovinu
2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
GIS Geografické informační systémy
GIS Geografické informační systémy Kartografie Glóbus představuje zmenšený a zjednodušený, 3rozměrný model zemského povrchu; všechny délky na glóbu jsou zmenšeny v určitém poměru; úhly a tvary a velikosti
Úvodní ustanovení. Geodetické referenční systémy
430/2006 Sb. NAŘÍZENÍ VLÁDY ze dne 16. srpna 2006 o stanovení geodetických referenčních systémů a státních mapových děl závazných na území státu a zásadách jejich používání ve znění nařízení vlády č. 81/2011
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření
Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015
Kartografie 1 - přednáška 8 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Nepravá zobrazení zachovávají některé charakteristiky jednoduchých zobrazení (tvar rovnoběžek) některé
Kartografické projekce
GYMNÁZIUM CHRISTIANA DOPPLERA Zborovská 45, Praha 5 Ročníková práce z deskriptivní geometrie Kartografické projekce Vypracoval: Nguyen, Viet Bach, 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů
Základy kartografie. RNDr. Petra Surynková, Ph.D.
Univerzita Karlova v Praze Matematicko-fyzikální fakulta RNDr., Ph.D. petra.surynkova@mff.cuni.cz www.surynkova.info Kartografie Vědní obor zabývající se znázorněním zemského povrchu a nebeských těles
Section 1. Současné možnosti převodu S-JTSK a ETRS89 Systém S-JTSK/05 S-JTSK v EPSG Úloha - transformace S-JTSK a ETRS89
Definice transformace S-JTSK - ETRS89 před 1.1.2011 Definice transformace S-JTSK - ETRS89 po 1.1.2011 Section 1 Současné možnosti převodu S-JTSK a ETRS89 Rozdíly Současné možnosti převodu S-JTSK a ETRS89
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. Fakulta stavební DIPLOMOVÁ PRÁCE 2003 JAN JEŽEK
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební DIPLOMOVÁ PRÁCE 2003 JAN JEŽEK ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra mapování a kartografie DIPLOMOVÁ PRÁCE Vývoj programového
Vzdálenosti a východ Slunce
Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM
Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace
Souřadnicové systémy v geodatech resortu ČÚZK a jejich transformace Zeměměřický úřad, Jan Řezníček Praha, 2018 Definice matematická pravidla (rovnice) jednoznačné přidružení souřadnic k prostorovým informacím
MAPOVÁNÍ. Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z
MAPOVÁNÍ Všeobecné základy map JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických základů
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
PŘEHLED JEVNOSTI ZOBRAZENÍ
Úhlojevná (konformní Plochojevná (ekvivalentní Délkojevná (ekvidistatntí Vyrovnávací (kompenzační PŘEHLED JEVNOSTI ZOBRAZENÍ (azimutální Stereografická (cylindické Mercatorovo zobrazení (loodroma jako
Metodika převodu mezi ETRF2000 a S-JTSK varianta 2
Výzkumný ústav geodetický topografický a kartografický v.v.i. Stavební fakulta ČVUT v Praze Metodika převodu mezi ETRF a S-JTSK varianta Jan Kostecký Jakub Kostecký Ivan Pešek GO Pecný červen 1 1 Úvod
MATEMATICKÁ KARTOGRAFIE
VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL KARTOGRAFICKÁ ZKRESLENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie
SOUŘADNICOVÉ SYSTÉMY. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník
SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 3.ročník SOUŘADNICOVÉ SYSTÉMY GEOID, REFERENČNÍ ELIPSOID, REFERENČNÍ KOULE S JTSK S - 42 WGS 84 TRANSFORMACE SUŘADNICOVÝCH SYSTÉMŮ REFERENČNÍ SYSTÉMY
GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI
GIS Geografické informační systémy Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI jan.gaura@vsb.cz http://mrl.cs.vsb.cz/people/gaura Kartografie Stojí na pomezí geografie a geodezie. Poskytuje vizualizaci
3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Detekce kartografického zobrazení z množiny bodů, praktické zkušenosti
Detekce kartografického zobrazení z množiny bodů, praktické zkušenosti Tomáš Bayer Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta, Univerzita Karlova v Praze, Albertov 6, 10 78,
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z
SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných
ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce
1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
Geoinformatika. IV Poloha v prostoru
Geoinformatika IV Poloha v prostoru jaro 2017 Petr Kubíček kubicek@geogr.muni.cz Laboratory on Geoinformatics and Cartography (LGC) Institute of Geography Masaryk University Czech Republic Složky geografických
Matematické metody v kartografii. Nepravá zobrazení. Polykónická zobrazení. (11.)
Matematické metody v kartografii Nepravá zobrazení. Polykónická zobrazení. (11.) 1. Společné vlastnosti nepravých zobrazení Jedna ze souřadnicových funkcí je funkcí zeměpisné šířky i délky Obrazy rovnoběţek:
Sférická trigonometrie v matematické geografii a astronomii
Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Detekce kartografického zobrazení z množiny
Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých
REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE
REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné
Matematické metody v kartografii
Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Souřadnicové systémy a stanovení magnetického severu. Luděk Krtička, Jan Langr
Souřadnicové systémy a stanovení magnetického severu Luděk Krtička, Jan Langr Workshop Příprava mapových podkladů Penzion Školka, Velké Karlovice 9.-11. 2. 2018 Upozornění Tato prezentace opomíjí některé
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených
OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21
OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
Zobrazení. Geografická kartografie Přednáška 4
Zobrazení Geografická kartografie Přednáška 4 kartografické zobrazení způsob, který každému bodu na referenční ploše přiřazuje právě jeden bod na zobrazovací ploše (výjimkou jsou ovšem singulární body)
MATEMATICKÁ KARTOGRAFIE
VYSOKÉ UENÍ TECHNICKÉ V BN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KATOGAFIE MODUL 3 KATOGAFICKÉ ZOBAZENÍ STUDIJNÍ OPOY PO STUDIJNÍ POGAMY S KOMBINOVANOU FOMOU STUDIA Matematická kartografie Modul 3
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie.
GA06 Deskriptivní geometrie pro obor Geodézie a kartografie Úvod do kartografie. Květoslava Prudilová Jan Šafařík přednášková skupina P-G1G1, učebna C311 zimní semestr 2018-2019 21. listopad 2018 Základní
A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
MAPY VELKÉHO A STŘEDNÍHO MĚŘÍTKA
MAPA A GLÓBUS Tento nadpis bude stejně velký jako nadpis Planeta Země. Můžeš ho napsat přes půl nebo klidně i přes celou stranu. GLÓBUS Glóbus - zmenšený model Země - nezkresluje tvary pevnin a oceánů
PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2
PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku
Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze
Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZEMĚDĚLSKÁ FAKULTA
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZEMĚDĚLSKÁ FAKULTA Studijní program: Studijní obor: Zadávající katedra: Vedoucí katedry: B4106 Zemědělská specializace Pozemkové úpravy a převody nemovitostí
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏
Cvičící: KOLAR KOSTKOVA KOZAK NOVAK STRACHOTA Zápočtová písemná práce č. 1 z předmětu 01MAB4 varianta A pondělí 13. dubna 2015, 11:20 13:20 ➊ (1 bod) Do tabulky výše vyplňte své příjmení a jméno a zakroužkujte
PODROBNÉ MĚŘENÍ POLOHOPISNÉ
Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství MAPOVÉ PODKLADY Ing. Bc. Pavel Voříšek (úředně oprávněný zeměměřický inženýr). Vysoké Mýto 7. 4. 2017 PODROBNÉ MĚŘENÍ POLOHOPISNÉ
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
Digitalizace starých glóbů
Milan Talich, Klára Ambrožová, Jan Havrlant, Ondřej Böhm Milan.Talich@vugtk.cz 21. kartografická konference, 3. 9. - 4. 9. 2015, Lednice Cíle Vytvoření věrného 3D modelu, umožnění studia online, možnost
GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY
GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY VOJENSKÝ GEOGRAFICKÝ A HYDROMETEOROLOGICKÝ ÚŘAD Popis a zásady používání světového geodetického referenčního systému 1984 v AČR POPIS A ZÁSADY POUŽÍVÁNÍ V AČR
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 3/7 Výpočet lokálního geoidu pro body
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ. Gauss-Krügerovo zobrazení UTM
SPŠSTAVEBNÍČeskéBudějovice MAPOVÁNÍ Gauss-Krügerovo zobrazení UTM 1 Předmluva Mapování v novém Křovákově kuželovém konformním zobrazení mělo dobrou přesnost a značné výhody, ale ty měly využití jen lokální
KONFORMITA GAUSS-KRÜGEROVA ZOBRAZENÍ Radek Hampl Stručný pohled do historie vzniku Gauss-Krügerova zobrazení
KONFORMITA GAUSS-KRÜGEROVA ZOBRAZENÍ Radek Hampl 1 Abstrakt: Příspěvek se týká problematiky konormity Gauss-Krügerova zobrazení. Ukazuje se, že toto zobrazení není ve své reálné podobě konormní a lépe
1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
Souřadnicové systémy a stanovení magnetického severu. Luděk Krtička, Jan Langr
Souřadnicové systémy a stanovení magnetického severu Luděk Krtička, Jan Langr Workshop Příprava mapových podkladů chata Junior, Kunčice u Starého Města pod Sněžníkem 24.-25. 1. 2015 Upozornění Tato prezentace
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme