Elektrotechnika 2 - laboratorní cvičení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Elektrotechnika 2 - laboratorní cvičení"

Transkript

1 Elektrotechnika 2 - laboratorní cvičení Garant předmětu: doc. Ing. Jiří Sedláček, CSc. Autoři textu: doc. Ing. Jiří Sedláček, CSc. Ing. Miloslav Steinbauer, Ph.D. Brno

2 Obsah ZAŘAZENÍ PŘEDMĚT VE STDIJNÍM PROGRAM...4 ÚVOD...4 OBECNÉ POKYNY PRO LABORATORNÍ CVIČENÍ...4 OVLÁDÁNÍ GENERÁTOR 3320A...6 OVLÁDÁNÍ MLTIMETR 3440A...7 OVLÁDÁNÍ OSCILOSKOP GDS-820C...8 PROGRAM KLINROV...9 A IMPEDANCE DVOJPÓL A ANALÝZA OBVOD V HARMONICKÉM STÁLENÉM STAV A VÝKON V JEDNOFÁZOVÉM OBVOD A FÁZOROVÉ DIAGRAMY A SÉRIOVÝ REZONANČNÍ OBVOD A PARALELNÍ REZONANČNÍ OBVOD A ZÁKLADNÍ VLASTNOSTI ČLÁNKŮ RC A CR...39 B TROJFÁZOVÁ SOSTAVA B VÝKON V TROJFÁZOVÉ SOSTAVĚ B PŘECHODNÉ DĚJE V OBVODECH RC A RLC B ANALÝZA NEHARMONICKÝCH SIGNÁLŮ B ŠÍŘENÍ VLN NA HOMOGENNÍM VEDENÍ B PŘECHODNÉ DĚJE NA HOMOGENNÍM VEDENÍ B SIMLACE ELEKTRICKÝCH OBVODŮ

3 Seznam tabulek TAB. VZTAHY MEZI NAPĚTÍM A PRODEM PRO ZÁKLADNÍ OBVODOVÉ PRVKYR, L, C... 2 TAB. 2 IMPEDANCE MĚŘENÝCH DVOJPÓLŮ SLOŽENÝCH Z PRVKŮ RLC V SÉRII... 5 TAB. 3 VZOR TABLKY PRO ZOBRAZENÍ NAPĚTÍ A PRODŮ MĚŘENÝCH DVOJPÓLŮ... 6 TAB. 4 EFEKTIVNÍ HODNOTY PRODŮ V OBVOD... 2 TAB. 5 EFEKTIVNÍ HODNOTY NAPĚTÍ V OBVOD... 2 TAB. 6 TEORETICKÉ HODNOTY VÝKON STŘÍDAVÉHO OBVOD TAB. 7 NAMĚŘENÉ HODNOTY VÝKON STŘÍDAVÉHO OBVOD TAB. 8 NAMĚŘENÉ HODNOTY NAPĚTÍ A PRODŮ PRVKŮ DVOJPÓLŮ TAB. 9 IMPEDANCE MĚŘENÝCH DVOJPÓLŮ TAB. 0 ZÁVISLOST C A IMPEDANCE SRO NA KMITOČT TAB. NAMĚŘENÉ A TEORETICKÉ HODNOTY SRO TAB. 2 NAMĚŘENÉ A TEORETICKÉ HODNOTY PRO TAB. 3 MEZNÍ KMITOČET A ČASOVÁ KONSTANTA ČLÁNKŮ RC A CR TAB. 4 NAPĚŤOVÝ PŘENOS ČLÁNK RC TAB. 5 NAPĚŤOVÝ PŘENOS ČLÁNK CR TAB. 6 FÁZOVÁ A SDRŽENÁ NAPĚTÍ (MAXIMÁLNÍ HODNOTY) SOMĚRNÉ TROJFÁZOVÉ SOSTAVY TAB. 7 VYPOČTENÉ FÁZOVÉ IMPEDANCE ZÁTĚŽE TAB. 8 NAPĚTÍ NA IMPEDANCÍCH ZÁTĚŽE (MAXIMÁLNÍ HODNOTY) PŘI ROZPOJENÍ A ZKRAT JEDNÉ FÁZE TAB. 9 FÁZOVÉ PRODY (MAXIMÁLNÍ HODNOTY) TAB. 20 SDRŽENÉ PRODY SOMĚRNÉ A NESOMĚRNÉ ZÁTĚŽE (MAXIMÁLNÍ HODNOTY) TAB. 2 VYPOČTENÉ FÁZOVÉ IMPEDANCE ZÁTĚŽE TAB. 22 VYPOČTENÉ HODNOTY PRO SOMĚRNO ZÁTĚŽ TAB. 23 NAMĚŘENÉ HODNOTY PRO SOMĚRNO ZÁTĚŽ TAB. 24 VYPOČTENÉ HODNOTY PRO NESOMĚRNO ZÁTĚŽ TAB. 25 NAMĚŘENÉ HODNOTY PRO NESOMĚRNO ZÁTĚŽ TAB. 26 PŘECHODNÝ DĚJ V SÉRIOVÉM RC OBVOD TAB. 27 PŘECHODNÝ DĚJ V SÉRIOVÉM RLC OBVOD PŘI PODKRITICKÉM TLMENÍ TAB. 28 ANALÝZA SIGNÁL OBDÉLNÍKOVÉHO PRŮBĚH TAB. 29 ČINITEL ODRAZ NA KONCI VEDENÍ A PSV PRO RŮZNÁ ZAKONČENÍ TAB. 30 ROZLOŽENÍ NAPĚTÍ NA VEDENÍ PŘI ROZDÍLNÉ ZÁTĚŽI TAB. 3 KMITOČTOVÁ ZÁVISLOST VSTPNÍHO NAPĚTÍ VEDENÍ TAB. 32 PRIMÁRNÍ A SEKNDÁRNÍ PARAMETRY MĚŘENÉHO VEDENÍ TAB. 33 ÚTLM A ZPOŽDĚNÍ VEDENÍ TAB. 34 SIMLOVANÉ HODNOTY PROD A NAPĚTÍ V OBVOD V HARMONICKÉM STÁLENÉM STAV TAB. 35 SIMLOVANÉ HODNOTY SRO TAB. 36 SIMLOVANÉ HODNOTY PŘECHODNÉHO DĚJE OBVOD RC TAB. 37 SIMLOVANÉ HODNOTY PŘECHODNÉHO DĚJE OBVOD RLC TAB. 38 SIMLOVANÉ HODNOTY PŘECHODNÉHO DĚJE OBVOD RL

4 ZAŘAZENÍ PŘEDMĚT VE STDIJNÍM PROGRAM Předmět Elektrotechnika 2 (BEL2) je zařazen do druhého semestru bakalářského studijního programu všech oborů studia na FEKT VT v Brně. Předmět sestává z přednášek, laboratorních cvičení a počítačových cvičení. ÚVOD Náplň jednotlivých úloh laboratorních cvičení je volena tak, aby si studenti prakticky ověřili poznatky získané na přednáškách, naučili se samostatné experimentální práci a získali tak průpravu pro práci jak ve vyšších ročnících studia, tak pro budoucí praxi. Koncepce jednotlivých úloh by měla vést studenty k osvojení formální stránky práce v laboratoři, získání správných návyků, stanovení cíle experimentu, vyhotovení záznamu o jeho průběhu a zhodnocení vlastních výsledků s ohledem na zadání. V úlohách je kladen důraz na porovnání teoretických hodnot s experimentem. Úlohy jsou navrženy tak, aby bylo možno zanedbat vliv měřicích přístrojů, neboť otázka technik měření bude probírána v předmětu Měření v elektrotechnice. OBECNÉ POKYNY PRO LABORATORNÍ CVIČENÍ Laboratorní úlohy jsou rozděleny do dvou skupin: A pro první polovinu a B pro druhou polovinu semestru. Úlohy jsou v laboratořích zdvojeny, takže jednu úlohu měří zároveň dvě dvojice studentů. Laboratorní cvičení sestává z těchto částí: domácí příprava, práce v laboratoři, zpracování výsledků měření. Pro laboratorní cvičení je nutné vést pracovní sešit (A4, doporučujeme čtverečkovaný), do kterého se zapisují přípravy i zpracování úloh. Každou úlohu v sešitě označte v záhlaví názvem a číslem, dále uveďte datum, kdy jste dané cvičení absolvovali. Úlohy musí být psány ručně, pouze tabulky a grafy je možné vytvořit pomocí počítače. Domácí příprava na cvičení Příprava sestává ze zpracování teoretických poznatků, týkajících se daného cvičení a je nutné její písemné vypracování do sešitu. Základem pro domácí přípravu je Teoretický úvod, který je součástí každé úlohy v tomto skriptu. Účelem domácí přípravy je pochopení podstaty dané úlohy, které je nutné ke správnému provedení vlastního měření. Teoretickou znalost příslušné problematiky je třeba prokázat během cvičení. Písemná příprava v sešitě začíná na nové straně a musí obsahovat: Číslo úlohy a nadpis, datum měření Zadání (viz Úkol u každé úlohy), Stručný výtah z teoretického úvodu (uveďte základy teorie včetně matematických vztahů, popřípadě principiálních schémat, Skutečné schéma zapojení (tužkou), Připravené tabulky (vzory tabulek jsou uvedeny v tomto skriptu v části Zpracování. Pro přehlednost jsou buňky tabulek, které se neměří, ale počítají, podbarveny šedě. V tabulkách jsou rovněž odkazy na čísla vztahů, které se mají při výpočtech použít.) Vypracovaný postup podle pokynů v odstavci Domácí příprava v návodu. Příprava má být stručná a výstižná, neopisujte celý teoretický úvod. Rovněž není účelné opisovat Postup měření. Bez znalosti teorie a bez písemné přípravy nebude posluchači umožněno cvičení absolvovat. Práce v laboratoři Pracoviště v laboratoři jsou pro přehlednost označena čísly, která se shodují s číslováním úloh ve skriptu. Na pracovišti jsou připraveny všechny potřebné přístroje a příslušenství. 4

5 Při zapojování postupujte podle schémat skutečného zapojení. Během zapojování postupujte systematicky, abyste se vyvarovali chyb a zapojení bylo přehledné. Dokončené zapojení si nechte zkontrolovat učitelem, který připojí úlohu ke zdrojům. Během práce v laboratoři dodržujte zásady bezpečnosti práce. Jakékoliv změny v zapojení provádějte pouze při odpojených zdrojích. Důležitou součástí práce v laboratoři je zřetelné a čitelné zaznamenání naměřených hodnot tak, aby bylo možné spolehlivě pokračovat ve zpracování úlohy. Ze stejného důvodu je třeba pořídit si seznam použitých přístrojů, který obsahuje kromě typů přístrojů i jejich výrobní čísla a u měřicích přístrojů také údaje o jejich přesnosti. Po skončení vlastního měření zkontrolujte vyhodnocením alespoň několika hodnot správnost měření. Teprve po této kontrole můžete úlohu případně rozpojit a pracoviště uklidit. Před rozpojením zásadně nejprve nastavte výstupní veličiny zdrojů na nulové hodnoty a odpojte od nich vodiče! Výsledky si dejte ověřit učitelem. Ve zbývajícím čase můžete začít zpracovávat naměřené hodnoty. Zpracování výsledků Při zpracování změřené úlohy nezapomeňte na následující části: Seznam použitých přístrojů slouží k tomu, aby bylo možné měření reprodukovat za stejných podmínek. Musí tedy obsahovat soupis všech použitých přístrojů a zařízení, i pomocných. většiny zařízení se uvádí pouze typ. měřicích přístrojů pak následující údaje: druh a typ přístroje, výrobce a výrobní číslo, princip - značku soustavy (u analogových měřicích přístrojů), rozsahy, údaje o přesnosti přístroje (třída přesnosti u analogových, chyba u číslicových). Tabulky naměřených a vypočtených hodnot Tabulky je třeba uspořádat čitelně a přehledně, aby z nich bylo možné vyčíst všechny požadované hodnoty. Veličiny a jednotky uvádějte podle ustálených zvyklostí v SI soustavě. Za tabulku vypočtených hodnot vždy uveďte obecný vztah a příklad výpočtu (výpočet hodnot jednoho řádku či sloupce tabulky). V některých tabulkách se provádí porovnání naměřených X měř. a teoretických X teor. hodnot podle jejich relativní odchylky X X X X měř. teor. 00. (%) () X teor. Grafické zpracování Grafy lze vypracovat buď na milimetrový papír, nebo pomocí počítače a následně vlepit do sešitu. některých úloh používajících počítače se grafy tisknou již během měření. V každém případě je třeba vhodně zvolit typ grafu, měřítka os a způsob proložení zobrazených bodů. Osy grafu musí být řádně označeny, aby bylo zřejmé, jakou veličinu vyjadřují. Součástí grafu je i jeho nadpis. Pokud je v jednom grafu zakresleno více křivek, musí být zřetelně označeny a odlišeny. Závěr má obsahovat stručný, ale výstižný rozbor naměřených a vypočtených hodnot. Musí korespondovat se zadáním úlohy. Nemá být kvalifikací podmínek měření, ale zhodnocením naměřených parametrů a jejich teoretickým zdůvodněním. Pokud je výsledkem měření jen málo hodnot, je vhodné je do závěru zopakovat. V případě, že jde o rozsáhlé výsledky (tabulky, grafy), stačí na ně uvést odkaz. Součástí závěru by měla být i úvaha o přesnosti provedeného měření s uvedením možných zdrojů chyb, tedy zhodnocení věrohodnosti získaných výsledků. 5

6 OVLÁDÁNÍ GENERÁTOR 3320A Generátor 3320A je programovatelný laboratorní generátor periodického signálu libovolného průběhu s kmitočtovým rozsahem do 5 MHz. Popis přístroje omezíme na funkce podstatné pro měřené úlohy. Vzhled čelního panelu generátoru 3320A Volba tvaru výstupního signálu se provádí stiskem tlačítek v horní řadě - Function. Důležitá jsou první tři harmonický (~), obdélníkový a trojúhelníkový signál. obdélníkového signálu je možné změnit činitel plnění pomocí volby Shift a % Duty. Frekvence generovaného signálu se nastavuje po stisku tlačítka Freq, amplituda pak po stisku tlačítka Ampl. Stejnosměrnou složku signálu lze nastavit pomocí tlačítka Offset. V zásadě je možné tyto hodnoty měnit dvěma způsoby: otočným ovladačem můžete měnit hodnotu oběma směry, změna se provádí na tom řádovém místě, které problikává. Měněné řádové místo lze změnit tlačítky <, >; pro rychlé nastavení frekvence nebo amplitudy lze přímo zadat požadovanou hodnotu takto: stiskněte Enter Number a poté zadejte číselnou hodnotu (platí zelená čísla u tlačítek); pak stiskněte jedno z tlačítek určující řád zadané hodnoty (MHz, Vpp), (khz, Vrms) či (Hz, dbm). Pokud stisknete předem ještě Shift, je vložena namísto V hodnota mv. Poznámka: Vpp je napětí špička-špička (tedy dvojnásobek amplitudy m ), Vrms je efektivní hodnota napětí (). Nastavovaná veličina je zobrazena na displeji včetně jednotky. Desetinná místa jsou oddělena tečkou, zatímco zobrazené čárky pouze oddělují trojice čísel kvůli lepší čitelnosti. Výstup generátoru je označen Output, pozor na záměnu se synchronizačním výstupem Sync. Výstupní impedance generátoru je 50. 6

7 OVLÁDÁNÍ MLTIMETR 3440A Multimetr 3440A je laboratorní číslicový 6 / 2 místný měřicí přístroj. Popis přístroje omezíme na funkce podstatné pro měřené úlohy. Vzhled čelního panelu číslicového multimetru 3440A Měření střídavého napětí zvolíte tlačítkem AC V. Měřené napětí připojte na svorky Input V Hi a Lo umístěné zcela vpravo; pozor na záměnu se svorkami Hi a Lo určenými pro čtyřvodičové měření odporu (4W Sense). Měřená veličina je zobrazena na displeji včetně jednotky. Desetinná místa jsou oddělena tečkou, zatímco zobrazené čárky pouze oddělují trojice čísel kvůli lepší čitelnosti. 7

8 OVLÁDÁNÍ OSCILOSKOP GDS-820C Jedná se o barevný LCD dvoukanálový osciloskop s číslicovou pamětí zobrazených průběhů a parametrů nastavení. Maximální vzorkovací kmitočet je 00 MS/s a šířka kmitočtového pásma je 50 MHz. Osciloskop umožňuje kurzorové měření kmitočtu, časových a napěťových hodnot zobrazených signálů. Pomocí sběrnice SB nebo RS232 lze osciloskop připojit k počítači. Vzhled čelního panelu číslicového osciloskopu GDS-820C Měřená napětí se přivádějí na vstupy CH a CH2, vstupy mají společnou zem. Zobrazené křivky jsou barevně rozlišeny CH žlutě a CH2 modře. Automatické nastavení rozsahů horizontální (časové) osy i vertikálních (napěťových) os obou kanálů se spustí tlačítkem AutoSet. Citlivost kanálů se nastavuje ovladači VOLTS/DIV a zobrazuje se na dolní liště displeje. Vertikální pozici zobrazených křivek lze měnit ovladači POSITION. Rozlišení časové osy se nastavuje ovladačem TIME/DIV. Pro měření parametrů signálů slouží blok tlačítek nahoře uprostřed panelu. Důležité je tlačítko Cursor, které zapne zobrazování kurzorových značek v displeji. Přepínání mezi kurzory vertikálními/horizontálními se děje funkčními tlačítky (F až F5) a posun zvoleného kurzoru po displeji se děje ovladačem VARIABLE. 8

9 PROGRAM KLINROV Program KLinRov je jednoduchý program (makro pro Excel) k řešení soustav komplexních lineárních rovnic. až 4. řádu Gaussovou eliminací. Požadavky MS EXCEL 2000 a vyšší Musí být instalovány doplňky Analytické nástroje a Analytické nástroje - VBA (menu Nástroje/Doplňky ) Musí se povolit spuštění makra Po spuštění programu se objeví obrazovka kalkulátoru představující maticový zápis soustavy rovnic: K X Y, kde K je matice koeficientů, X je matice hledaných neznámých a Y je matice pravých stran, tj.budicích veličin. Kalkulátor lze spustit tlačítkem Spustit makro. Vlastní výpočet soustavy lineárních rovnic zahájíme volbou řádu soustavy (, 2, 3 nebo 4). Zadávání prvků matice je možné výběrem příslušného prvku (kliknutím myší nebo sekvenčně klávesou Tab); vybraný prvek matice je označen modrým podkladem. Hodnota označeného prvku matice se objeví v poli Editace, kde je možné ji modifikovat: Lze zadávat komplexní čísla ve složkovém i polárním tvaru, vzájemný přepočet se provede automaticky; v matici je zobrazen vždy složkový tvar. polárního tvaru může být zvolen úhel ve stupních nebo v radianech. Hodnoty se zobrazují zaokrouhlené na 4 platné číslice, podle potřeby ve vědeckém tvaru s exponentem. Není ovlivněna přesnost výpočtu, protože interně se čísla nezaokrouhlují Při zadávání čísel se akceptuje desetinná čárka i tečka, je možné vkládat čísla i ve vědeckém tvaru (např..6625e-5). Čísla menší než E- se pokládají za nulu. Obvykle se zadává diagonálně symetrická matice K. Pak stačí zadat hodnoty prvků horního trojúhelníku matice K a tlačítkem Kopíruj zkopírovat hodnoty do dolního trojúhelníku. Výpočet se provede stiskem tlačítka Výpočet. Zobrazí se vektor výsledků Y a rovněž determinanty. Kliknutím na některý z výsledků se tento zobrazí v poli Editace (ve složkovém i polárním tvaru). Celou rovnici je možno smazat tlačítkem Vymaž. Program hlídá singularitu matice soustavy a případně upozorní na nutnost opravy. 9

10 A Impedance dvojpólu A Impedance dvojpólu Cíl úlohy Na praktických příkladech procvičit výpočty modulů a argumentů impedancí různých dvojpólů. Na základních typech prakticky užívaných obvodů ověřit měřením přímou souvislost mezi impedancí dvojpólu (modulem a argumentem impedance) a odpovídajícími časovými průběhy napětí a proudu. kázat souvislost mezi časovými průběhy a fázory, používanými při analýze obvodů v harmonickém ustáleném stavu symbolickou metodou. Úkol Zobrazte vzájemné poměry napětí a proudů zadaných dvojpólů a jejich kombinací. Ze zobrazených fázorů napětí a proudu spočtěte hodnoty impedancí dvojpólů. Ze zadaných parametrů prvků vypočtěte teoretické hodnoty impedancí dvojpólů. Teoretický úvod Symbolický počet, fázory V lineárních obvodech, které jsou buzeny zdroji harmonického napětí a proudu stejného kmitočtu, dochází po odeznění přechodných dějů vyvolaných připojením zdrojů k harmonickému ustálenému stavu (HS), při kterém všechny obvodové veličiny (napětí i proudy) mají harmonický časový průběh s konstantní amplitudou. Harmonicky proměnnou veličinu (napětí, proud) je možno popsat pomocí funkce sinus nebo kosinus. Okamžitou hodnotu časového průběhu harmonického napětí s periodou T (obr. ) můžeme psát sin u t t, (V) (2) m obr. Harmonické napětí kde je m... amplituda, = f.. úhlový kmitočet, t... fáze, počáteční fáze. (V) (rad/s) (rad) (rad) Stejný průběh můžeme rovnocenným způsobem popsat pomocí funkce kosinus π u t m costm cost. (V) (3) 2 Jestliže necháme v komplexní rovině rotovat vektor (představující například napětí) rovnoměrným kruhovým pohybem, jeho průmět do svislé (tj. imaginární) osy reprezentuje harmonicky proměnný průběh (obr. ), který je popsán vztahem (2). Využití těchto rotujících vektorů přináší značné zjednodušení při analýze elektrických obvodů v harmonickém ustáleném stavu. Vzájemné postavení vektorů velmi názorně ukazuje fázové poměry mezi napětími a proudy, proto se popisované rotující vektory v elektrotechnice nazývají fázory. Rotující fázor u(t), který může (svým průmětem) zastupovat okamžitou hodnotu skutečné harmonicky proměnné veličiny, se nazývá komplexní okamžitou hodnotou nebo též komplexorem. Modul této komplexní veličiny je roven amplitudě m a argument je roven fázi ( t+ ). Reálnou složku komplexoru (jeho průmět do reálné osy) u a imaginární složku komplexoru (jeho průmět do imaginární osy) u můžeme zapsat m cos u Re u t t, (V) (4) 0

11 A Impedance dvojpólu m sin u Im u t t. (V) (5) V souladu s Eulerovým vztahem můžeme proto rotující fázor (komplexor) zapsat j t j j t j m m m u t u ju e e e e t. (V) (6) Im u t u(t) m u Re 0 T/2 T T t obr. 2 Vztah mezi fázorem (komplexní rovina) a okamžitým průběhem (časová rovina) harmonického napětí Důležitější než okamžitá hodnota je pro praxi amplituda a počáteční fáze sledované veličiny, kterou vyjadřuje fázor maximální hodnoty. (V) (7) e j m m Jak je vidět z obr. 2, je tento fázor totožný s rotujícím fázorem v okamžiku t = 0. V elektrotechnických aplikacích často pracujeme s efektivními hodnotami veličin, proto zavádíme fázor i v měřítku efektivních hodnot. Pro fázor efektivní hodnoty platí j m j m e e. (V) (8) 2 2 Fázory jsou používány jako symboly, které při analýze HS zastupují skutečné fyzikální veličiny. Proto bývá tato metoda analýzy označována jako symbolická metoda. Při matematických operacích v komplexní rovině můžeme fázory vyjádřit pomocí komplexních čísel. Ze známé hodnoty fázoru můžeme zjistit okamžitou hodnotu časového průběhu j Im m e t u t. (V) (9) Poznámka: Rotující fázor (komplexor) budeme v textu označovat malým tučným písmenem u(t), i(t), fázory velkým tučným písmenem, I, m, I m, jejich absolutní velikosti (moduly) velkou kurzivou m, I m. Při manuálním zápisu se fázory označují velkými písmeny s pomocnými znaky (nejčastěji stříškou - Û ). Impedance Pro základní lineární obvodové prvky v harmonickém ustáleném stavu platí mezi amplitudami, mezi efektivními hodnotami a také mezi komplexory a fázory napětí a proudu lineární závislost obdobná Ohmovu zákonu pro okamžité hodnoty napětí a proudu u rezistoru. Zatímco u rezistoru je touto konstantou úměrnosti R, u induktoru je to jl a u kapacitoru /jc. Vztahy mezi jednotlivými veličinami pro základní obvodové prvky spolu s časovými i fázorovými diagramy ukazuje přehledně tab..

12 A Impedance dvojpólu tab. Vztahy mezi napětím a proudem pro základní obvodové prvkyr, L, C Prvek Okamžité hodnoty Časová oblast Časový diagram Oblast komplexní proměnné Fázory Fázorový diagram m R u t R i t Z I m R m Z R R =0 I m I ( ) ( ) L L m = 2 I m u t di t L dt Z I m L m Z L jl I C u t i t dt C Z I Z m C m C jc = 2 I m I m Lineární závislost mezi fázory amplitud napětí a proudu platí i pro obecný lineární pasivní dvojpól složený z libovolné kombinace základních obvodových prvků příklad obr. 3. Obecně tedy můžeme pro všechny obvodové prvky včetně jejich kombinací vyjádřit konstantu úměrnosti ve vztazích mezi fázory jako komplexní číslo Z, jehož absolutní velikost (modul) udává střídavý odpor prvku a argument udává fázový posun mezi napětím a proudem na prvku. Tato konstanta úměrnosti Z se nazývá impedance nebo obecný komplexní odpor, má rozměr odporu Ohm (). Vztah mezi fázory napětí a proudu ZI, ZI (V) (0) m m se nazývá zobecněný Ohmův zákon pro fázory. Po dosazení za fázory napětí a proudu podle (7) je j j m m I Z e Z e. () () I I m I m Modul impedance Z tedy představuje poměr amplitud (nebo efektivních hodnot) napětí a proudu a její argument pak fázový posun mezi napětím a proudem ( I) na uvedené impedanci Z. Reálná část impedance se nazývá činná složka (rezistance), imaginární část jalová složka (reaktance); udávají se v ohmech. Pojem impedance je v obvodech harmonického ustáleného stavu natolik běžný, že je jím označován také abstraktní idealizovaný obvodový prvek (ve skutečnosti dvojpól vytvořený kombinací základních obvodových prvků R, L, C), s obecnou hodnotou modulu i fáze impedance Z. Význam pojmu obecné impedance dokresluje obr. 3, představující obecnou impedanci a její fázorový a časový diagram napětí a proudu. 2

13 A Impedance dvojpólu obr. 3 a) Obecný dvojpól (impedance) b) Fázorový diagram c) Časový diagram Impedanci () můžeme vyjádřit jako komplexní číslo též ve složkovém tvaru Z R j X. () (2) Kromě impedance zavádíme také admitanci. Je to převrácená hodnota impedance a považujeme ji za zobecněnou vodivost Y = /Z; má rozměr vodivosti - Siemens (S). Impedance a admitance (souhrnně označované jako imitance impedance + admitance) jsou základními parametry dvojpólů komplexně popisující jejich chování v HS. Domácí příprava Do tab. 2. vypočítejte pro každý z dvojpólů z hodnot jeho obvodových prvků teoretickou hodnotu modulu a fáze impedance Z teor. Při výpočtu teoretické hodnoty impedance se vychází z impedancí Z základních obvodových prvků R, L, C uvedených v tab.. Impedance se při sériovém řazení dvojpólů sčítají; při paralelním řazení dvojpólů se sčítají jejich admitance Y (Y = /Z). Pro sériové spojení induktoru a rezistoru platí: Z R jl, () (3) 2, arctan L (), ( ) (4) R 2 Z R L Pro sériové spojení kapacitoru a rezistoru platí: Z R, jc () (5) 2 2 Z R C, arctan (), ( ) (6) RC Připravte si tabulku pro zakreslení časových průběhů i fázorů napětí a proudů pro všech pět měřených dvojpólů (R, C 2, L 3 +R L, L 4 +R 4, C 5 +R 5 ) podle vzoru v tab. 3. Pracovní postup Podle zapojení na obr. 4 napájí generátor napětím G sériovou kombinaci měřeného dvojpólu Z a snímacího rezistoru R S. Napětí na rezistoru je úměrné proudu měřeným dvojpólem I Z a je s ním ve fázi A = R S I Z. Ze schématu plyne vztah pro proud dvojpólem Z I Z G Z R S A. (A) (7) R S 3

14 A Impedance dvojpólu Pro hodnotu impedance měřeného dvojpólu platí B Z, (A) (8) I Z hodnotu modulu a fáze impedance můžeme vypočítat z naměřených velikostí a fázových posuvů napětí A a B, přičemž vyjdeme z toho, že napětí A má nulovou počáteční fázi: Z B B Z I Z A R, () (9) S arg arg Z. ( ) (20) B obr. 4 Princip měření impedancí obr. 5 Zapojení pracoviště RC 2000 pro měření impedancí 4

15 A Impedance dvojpólu a) Zapojte pracoviště podle schématu obr. 5. Generátor připojte na svorky přípravku Gen A a Gen B. Analogový vstup A připojte ke snímacímu rezistoru R S (svorky +IN A a IN A), k propojení použijte žlutou dvojlinku, pozor na polaritu vstupu značenou + a -. Analogový vstup B připojte modrou dvojlinkou ke svorkám měřených impedancí označeným +IN B a IN B. Zapněte napájecí zdroj pracoviště. b) Na přípravku generátoru Function generator stiskněte tlačítko Init, potom nastavte kmitočet khz (MODE Freq, pak tlačítky v bloku SHIFT) a amplitudu V (MODE Ampl, pak tlačítky v bloku SHIFT). c) Spusťte obslužný program RC2000. Z výběru programů zvolte Oscilloscope. Stiskem tlačítka Phasor zapněte zobrazování fázorů měřených napětí. Stiskem tlačítka Cursor v sekci Function zvolte zobrazování hodnot fázorů. Nastavte tyto parametry: rozsah zobrazení kanálu A: ±200 mv, rozsah zobrazení kanálu B: ± V (Gain pomocí tlačítek ), průměrování vypnuto (Average: off). Rozsah časové osy (Time pomocí tlačítek ) nastavte tak, aby byly zobrazeny časové značky 0,5 a ms. d) Propojovací svorkou zapojte na přípravku první z měřených dvojpólů Z. e) Stiskem virtuálního tlačítka Single spusťte měření. Zobrazí se fázory naměřených napětí a odpovídající harmonické časové průběhy. Žlutá křivka odpovídá proudu dvojpólem (napětí na snímací odporu R S ), modrá křivka je napětí na měřeném dvojpólu. Při uvedeném nastavení má žlutá křivka nulovou počáteční fázi. f) Do tab. 2 zapište amplitudy obou zobrazených křivek a fázový posun modré křivky - hodnoty se zobrazují v tabulce Cursor Phasors. Do připravené tabulky (vzor tab. 3) si zakreslete průběh zobrazených křivek odpovídající časovému průběhu napětí a proudu a jim odpovídající fázory. g) Propojovací svorkou zapojte na přípravku další z měřených impedancí. Postup podle bodů e) a f) opakujte i pro dvojpóly Z 2 až Z 5. Všímejte si souvislostí mezi časovými průběhy a fázory napětí a proudu. h) Měření ukončete (Exit). Zpracování tab. 2 Impedance měřených dvojpólů složených z prvků RLC v sérii R C 2 L 3 + R L L 4 + R 4 C 5 + R 5 Měřeno Vypočteno z měř. hodnot Vypočteno z prvků A B Z Z teor mv V (9) (20) (3) až (6) R S = 00 G = V f = 000 Hz Poznámky R = k C 2 = 20 nf L 3 = 75 mh R L = 50 L 4 = 55 mh R 4 = 500 C 5 = 220 nf R 5 = k i) Vypočtěte impedanci dvojpólů Z - modul (9) a fázi (20), fázi podle potřeby přepočítejte odečtením 360 tak, aby její hodnota byla v intervalu <-90, 90 >. Seznam přístrojů Přípravek s impedancemi (R, C, L, RL, RC) Měřicí systém RC 2000 (funkční generátor, A&DD jednotka, kabely, zdroj), PC 5

16 A Impedance dvojpólu Závěr Porovnejte hodnoty impedancí všech dvojpólů zjištěné měřením s hodnotami teoretickými, viz tab. 2. Porovnejte průběh zobrazených křivek odpovídající časovému průběhu napětí a proudu a odpovídající fázory z tab. 3 s teoretickými z tab.. tab. 3 Vzor tabulky pro zobrazení napětí a proudů měřených dvojpólů Dvojpól Časový průběh Fázorový diagram a I I R R Stručné shrnutí Impedance vypočtené ze zadaných parametrů obvodu umožňují efektivní analýzu střídavých obvodů v HS. Charakter impedance dvojpólu odráží bezprostředně jeho chování jak v časové oblasti (fázový posun napětí a proudu), tak i při změnách kmitočtu. Vlastní měření ukazuje i na rozdíl mezi vlastnostmi ideálních a reálných obvodových prvků, představuje způsob praktického vyšetření hodnot modulu a fázového posunu impedance libovolného neznámého dvojpólu. V úloze byla ukázána souvislost zobrazení hodnot napětí a proudů v časovém průběhu i fázorové rovině. 6

17 2A Analýza obvodu v harmonickém ustáleném stavu 2A Analýza obvodu v harmonickém ustáleném stavu Cíl úlohy Na konkrétním zapojení střídavého obvodu ověřit prakticky měřením obvodových veličin platnost Kirchhoffových zákonů v obvodu v harmonickém ustáleném stavu. Aplikovat a procvičit užití metod smyčkových proudů a uzlových napětí při symbolické analýze uvedeného obvodu. Úkol Při zadaném vstupním harmonickém napětí změřte hodnoty efektivních napětí i proudů prvky obvodu. Pomocí MSP i MN vypočtěte fázory (moduly a fáze) jednotlivých napětí a proudů. Za pomoci vypočtených hodnot ověřte pro fázory napětí a proudů platnost Kirchhoffových zákonů. Teoretický úvod Základní operace s harmonicky proměnnými veličinami v časové oblasti můžeme převést na podstatně jednodušší operace s fázory v komplexní rovině. Metoda analýzy, která využívá komplexory (rotující fázory) a fázory jako symboly zastupující skutečné fyzikální veličiny (okamžité hodnoty harmonického napětí a proudu), se nazývá symbolická analýza. Ta představuje vlastně určitý druh transformace (z kmitočtové oblasti do oblasti komplexní roviny). Symbolická analýza je použitelná pouze pro obvody v harmonickém ustáleném stavu (HS) viz úloha 0A. Protože fázory zastupují jako symboly skutečné fyzikální veličiny lineárních obvodů, musí platit při operacích s nimi stejné zákonitosti a vztahy, se kterými jsme se již dříve při popisu lineárních obvodů setkali. Mezi fázory napětí a proudu platí zobecněný Ohmův zákon ZI, nebo Ι Y (V), (A) (2) a při analýze obvodů můžeme vycházet i z obecné platnosti Kirchhoffových zákonů v symbolickém tvaru. Pro libovolný uzel obvodu můžeme psát pro fázory proudu I. K. z., pro libovolnou obvodovou smyčku pak II. K. z. v symbolickém tvaru: n I i 0, i n i 0. (A), (V) (22), (23) i Pro příklad z obr. 6a platí I + I 2 I 3 = 0. Podobně můžeme aplikovat II. K. z. pro fázory napětí v obvodové smyčce z příkladu na obr. 6b = 0. Přes to, že fázory představují amplitudy a fáze, tj. ne okamžité hodnoty harmonicky proměnných veličin, přiřazujeme jim zde směr pomocí orientačních šipek napětí a proudu v duchu již dříve uvedených zásad. obr. 6 a) K I. K. z. b) Ke II. K. z. Metoda smyčkových proudů (MSP) V případě, že řešíme lineární obvody v HS při jediném kmitočtu, mezi fázory potom platí také princip superpozice. Všechny metody řešení obvodů vycházející z jeho aplikace mohou být tedy využity i v symbolické podobě. Při analýze obvodů pomocí fázorů tak můžeme použít všech metod řešení lineárních rezistorových obvodů (metoda zjednodušování, úměrných veličin, náhradních zdrojů, Kirchhoffových rovnic, smyčkových proudů a uzlových napětí), se kterými jsme se seznámili v BEL. složitějších obvodů místo metody Kirchhoffových rovnic raději používáme metody redukující počet obvodových rovnic. Jednou z nich je metoda smyčkových proudů, kterou můžeme použít při řešení obvodů v symbolickém tvaru. Postup při jejím použití ukážeme na řešení následujícího příkladu. 7

18 2A Analýza obvodu v harmonickém ustáleném stavu Příklad k MSP rčete metodou smyčkových proudů výstupní napětí článku z obr. 7, který je napájen zdrojem harmonického napětí u(t) = m sin(t), jsou-li známé reaktance induktoru L = 0, kapacitoru /C = 0, odpory rezistorů R = R 2 = 0 a efektivní hodnota napětí budicího zdroje je = 0 V. Protože je zadána efektivní hodnota napětí, budeme používat fázory efektivních hodnot. Vstupní napětí má počáteční fázi = 0 a fázor vstupního napětí je proto R C 2 I S L I S2 obr. 7 K příkladu MSP R 2 j0 0e 0. (V) (24) Zajímá nás fázor výstupního napětí 2. Ten vypočteme jako fázor napětí na rezistoru, to znamená R I. (V) (25) 2 S 2 V obvodě si zvolíme fázory smyčkových proudů I S a I S2 (obr. 7) a napíšeme maticovou rovnici Z I = : R jc jc IS S2 0 R2 jl I jc jc. (V) (26) Po dosazení numerických hodnot má maticový zápis soustavy rovnic tvar 0 j0 j0 IS 0 j0 0 S2 0 I. (V) (27) Řešení soustavy je velmi snadné, zde například Cramerovým pravidlem. Determinant matice Z je 0 j0 j0 Δ 200 j00 j0 0 ( 2 ) (28) a determinant matice Z 2 vzniklé z matice Z náhradou 2. sloupce vektorem je 0 j0 0 Δ2 j00 ( V) (29) j0 0 Hledaný fázor proudu: I 2 j00 j,07 2 S2 0, 2 j0, 40, 4472e 200 j00 (A) (30) Hledaný fázor výstupního napětí pak: R j j,07 j,07 2 2IS2 2m e 00, 4472e 4, 472e (V) (3) 8

19 2A Analýza obvodu v harmonickém ustáleném stavu Okamžitá hodnota výstupního napětí je sin 2 4, 472 sin,07 6, 325sin t,07 u2 t 2m t t (V) (32) Amplituda napětí je 2m = 6,325 V, fáze = -,07 rad = -63,43. Metoda uzlových napětí (MN) Nejčastěji používanou metodou analýzy obvodů, kterou můžeme využít také v symbolickém tvaru, je metoda uzlových napětí. Postup při použití metody při analýze obvodů v HS ukážeme na řešení jednoduchého obvodu. obr. 8 K příkladu MN Příklad k MN V obvodu uvedeném na obr. 8a) (hodnoty jsou stejné jako v příkladu k MSP) vypočítejte metodou uzlových napětí výstupní napětí příčkového článku. Protože obvod obsahuje zdroj napětí, přepočítáme jej nejprve na ekvivalentní zdroj proudu - obr. 8b). Za předpokladu, že obvodové parametry jsou stejné jako v obvodu z předchozího příkladu k MSP, je velikost fázoru proudu a vodivosti ekvivalentního zdroje proudu 0 I R 0, (A) (33) G 0, (S) (34) R Pro zvolené uzly a 2 - obr. 8b) - označíme fázory uzlových napětí a 2. Použitím pravidel pro MN sestavíme rovnici v maticovém tvaru Y I: G jc I. (A) (35) jl jl 2 0 G 2 jl jl Po dosazení numerických hodnot dostáváme 0, j0, j0, 0, j0, 2 0. (A) (36) Rovnici (36) řešíme Cramerovým pravidlem Δ 0, j0, 0,02 j0,0, j0, 0, j0, (S 2 ) (37) 9

20 2A Analýza obvodu v harmonickém ustáleném stavu 0, Δ 2 j0,. (S A) (38) j0, 0 Hledaný fázor výstupního napětí je j0, 0,02 j0,0 2 j4 4,472 e 2 j,07 2. (V) (39) Okamžitou hodnotu výstupního napětí tedy můžeme opět vyjádřit v časové oblasti, podobně jako v (32). Domácí příprava obr. 9 Schéma měřeného obvodu Podle příkladu uvedeného v teoretickém úvodu sestavte pro obvod z obr. 9 maticovou rovnici MSP. Metodou smyčkových proudů vypočtěte fázory proudů větvemi obvodu a doplňte je do tab. 4. Následně pomocí Ohmova zákona určete i fázory napětí na jednotlivých prvcích a zapište do tab. 5. Podle příkladu uvedeného v teoretickém úvodu MN sestavte výpočtové schéma měřeného obvodu s náhradou napěťového zdroje zdrojem proudovým. Metodou uzlových napětí vypočtěte fázory uzlových napětí. Z nich následně spočtěte fázory napětí (do tab. 4) a proudů (do tab. 5) prvků obvodu. Pro výpočet komplexních maticových rovnic můžete využít program KLinRov (dostupný i na stránkách předmětu). Ve vypracování uveďte maticové rovnice MSP i MN pro měřený obvod v obecném i číselném tvaru. Z vypočtených hodnot fázorů napětí a proudů v obvodu podle obr. 9 ověřte platnost Kirchhoffových zákonů (22), (23) pro uzel a obě smyčky obvodu. Pozor proudy i napětí v obvodu při symbolické analýze je třeba chápat jako komplexní čísla. Pracovní postup Experimentální ověření platnosti obou metod provedeme na zapojení obvodu podle obr. 9. a) K měřicímu přípravku připojte tři ampérmetry. b) Na generátoru stiskněte tlačítko Init, potom nastavte kmitočet 200 Hz (MODE Freq, pak tlačítky v bloku SHIFT) a amplitudu 0 V (MODE Ampl, pak tlačítky v bloku SHIFT). Generátor dodáva nyní harmonické napětí o efektivní hodnotě 0/2 = 7,07 V (odpovídá maximální hodnotě 0 V) s kmitočtem 200 Hz. c) Zapište proudy indikované ampérmetry do tab. 4. d) Pomocí voltmetru změřte všechna napětí v obvodu a zapište je do tab. 5. Při přepojování voltmetru není třeba vypínat generátor či odpojovat od něj obvod. 20

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

6A Paralelní rezonanční obvod

6A Paralelní rezonanční obvod 6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu 1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL

DIGITÁLNÍ UČEBNÍ MATERIÁL DIGITÁLNÍ UČEBNÍ MATERIÁL škola Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 číslo projektu číslo učebního materiálu předmět, tematický celek ročník CZ.1.07/1.5.00/34.1037 VY_32_INOVACE_ZIL_VEL_123_12

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Základy elektrotechniky řešení příkladů

Základy elektrotechniky řešení příkladů Název vzdělávacího programu Základy elektrotechniky řešení příkladů rčeno pro potřeby dalšího vzdělávání pedagogických pracovníků středních odborných škol Autor ng. Petr Vavřiňák Název a sídlo školy Střední

Více

Návod k obsluze MPS-1. Monitor PLC signálu

Návod k obsluze MPS-1. Monitor PLC signálu Návod k obsluze MPS-1 Monitor PLC signálu UPOZORNĚNÍ Zařízení tvoří ucelenou sestavu. Pouze tato sestava je bezpečná z hlediska úrazu elektrickým proudem. Proto nepoužívejte jiné napájecí zdroje, ani nepřipojujte

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann.

VÝUKOVÝ MATERIÁL. Pro vzdělanější Šluknovsko. 32 Inovace a zkvalitnění výuky prostřednictvím ICT. 0210 Bc. David Pietschmann. VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor Tematická oblast Číslo a název materiálu Anotace Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková

Více

1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže

1 Měření paralelní kompenzace v zapojení do trojúhelníku a do hvězdy pro symetrické a nesymetrické zátěže 1 Měření paralelní kompenzace v zapoení do troúhelníku a do hvězdy pro symetrické a nesymetrické zátěže íle úlohy: Trofázová paralelní kompenzace e v praxi honě využívaná. Úloha studenty seznámí s vlivem

Více

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT MĚŘENÍ S LOGICKÝM ANALYZÁTOREM Jména: Jiří Paar, Zdeněk Nepraš Datum: 2. 1. 2008 Pracovní skupina: 4 Úkol: 1. Seznamte se s ovládáním logického analyzátoru M611 2. Dle postupu měření zapojte pracoviště

Více

základní vzdělávání druhý stupeň

základní vzdělávání druhý stupeň Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Pavel Broža Datum 5. ledna. 2014 Ročník 8. a 9. Vzdělávací oblast Člověk a příroda Vzdělávací obor Fyzika Tematický okruh

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

Pojetí vyučovacího předmětu

Pojetí vyučovacího předmětu Učební osnova předmětu ZÁKLADY ELEKTROTECHNIKY studijního oboru 26-41-M/01 ELEKTROTECHNIKA Pojetí vyučovacího předmětu Učivo vyučovacího předmětu základy elektrotechniky poskytuje žákům na přiměřené úrovni

Více

Logické řízení s logickým modulem LOGO!

Logické řízení s logickým modulem LOGO! Logické řízení s logickým modulem LOGO! Cíl: Seznámit se s programováním jednoduchého programovatelného automatu (logického modulu) LOGO! a vyzkoušet jeho funkčnost na konkrétních zapojeních. Úkol: 1)

Více

RLC obvody sériový a paralelní rezonanční obvod

RLC obvody sériový a paralelní rezonanční obvod Vysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZE aboratorní úloha č. 2 R obvody sériový a paralelní rezonanční obvod Datum měření: 24. 9. 2011

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

1.1 Usměrňovací dioda

1.1 Usměrňovací dioda 1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru

Více

idrn-st Převodník pro tenzometry

idrn-st Převodník pro tenzometry idrn-st Převodník pro tenzometry Základní charakteristika: Převodníky na lištu DIN série idrn se dodávají v provedení pro termočlánky, odporové teploměry, tenzometry, procesní signály, střídavé napětí,

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Elektrická energie Vojtěch Beneš žák měří vybrané fyzikální veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, aplikuje s porozuměním termodynamické

Více

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-422 se používá pro:

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-422 se používá pro: Mistrovství České republiky soutěže dětí a mládeže v radioelektronice, Vyškov 2011 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-422

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

EME 303. Oblast použití

EME 303. Oblast použití EME 303 Čtyřkvadrantní elektroměr třífázový nepřímý pro měření odběru/dodávky činné a jalové energie ve třídě přesnosti 2 s velkým dynamickým rozsahem a odděleným rychlým impulsním výstupem Oblast použití

Více

Přenosný zdroj PZ-1. zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů

Přenosný zdroj PZ-1. zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů zdroj regulovaného proudu a napětí měření časového zpoždění relé, ochran a jiných přístrojů Použití: Přenosný zdroj PZ1 se používá jako zdroj regulovaného proudu nebo napětí a měření časového zpoždění

Více

Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství

Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Ing. Petr Vlček Elektrotechnika SOUBOR PŘÍPRAV PRO 3. R. OBORU 23-41-M/01 Strojírenství Vytvořeno v

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

Protokol o měření. Jak ho správně zpracovat

Protokol o měření. Jak ho správně zpracovat Protokol o měření Jak ho správně zpracovat OBSAH Co je to protokol? Forma a struktura Jednotlivé části protokolu Příklady Další tipy pro zpracování Co je to protokol o měření? Jedná se o záznam praktického

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava atedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - T Ostrava 9. TRASFORMÁTORY. Princip činnosti ideálního transformátoru. Princip činnosti skutečného transformátoru 3. Pracovní

Více

Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel

Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030. MS Excel Masarykovo gymnázium Příbor, příspěvková organizace Jičínská 528, Příbor Projekt Využití ICT ve výuce na gymnáziích, registrační číslo projektu CZ.1.07/1.1.07/02.0030 MS Excel Metodický materiál pro základní

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače

Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače Převodníky AC / DC signálů Galvanické oddělovače Napájecí zdroje Zobrazovače 48,1,2,47,4 6,3,4,4 5,44,5,6,43,42, 7,8,41,4 0,9,10, 39,38,1 1,12,37, 36,13,1 4,35,34,15,16, 33,32,1 7,18,31, 30,19,2 0,29,28,21,22,

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Pracovní návod 1/5 www.expoz.cz

Pracovní návod 1/5 www.expoz.cz Pracovní návod 1/5 www.expoz.cz Fyzika úloha č. 14 Zatěžovací charakteristika zdroje Cíle Autor: Jan Sigl Změřit zatěžovací charakteristiku různých zdrojů stejnosměrného napětí. Porovnat je, určit elektromotorické

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

Manuál ISES pro laboratorní práce elektřina a magnetismus

Manuál ISES pro laboratorní práce elektřina a magnetismus Manuál ISES pro laboratorní práce elektřina a magnetismus Novinky ISES pro XP: Vzorkovací frekvence může být až 100 000 Hz. Krokový start se provádí klávesou MEZERNÍK a nikoli ENTER. Při každém měření

Více

NÁVOD K OBSLUZE. Zimní sada SWK-20

NÁVOD K OBSLUZE. Zimní sada SWK-20 NÁVOD K OBSLUZE Zimní sada SWK-20 - plynulá regulace otáček ventilátoru - ovládání ohřívače podle okolní teploty -alarm při vysoké kondenzační teplotě - zobrazení aktuální teploty - mikroprocesorové řízení

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. Experiment P-10 OHMŮV ZÁKON CÍL EXPERIMENTU Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 senzor napětí

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Úvod do problematiky ÚPRAVY TABULKY

Úvod do problematiky ÚPRAVY TABULKY Úvod do problematiky ÚPRAVY TABULKY Zaměříme se na úpravy, které určují finální grafickou úpravu tabulky (tzv. formátování.). Měnit můžeme celou řadu vlastností a ty nejdůležitější jsou popsány v dalším

Více

Přístroje nízkého napětí. Regulátory účiníku Typ RVT SYSTÉMOVÝ INTEGRÁTOR ABB

Přístroje nízkého napětí. Regulátory účiníku Typ RVT SYSTÉMOVÝ INTEGRÁTOR ABB Přístroje nízkého napětí Regulátory účiníku Typ RVT SYSTÉMOVÝ INTEGRÁTOR ABB Měření a monitoring: P- Činný výkon (kw) S- Zdánlivý výkon (kva) Q- Jalový výkon (kvar) Chybějící jalového výkonu pro dosažení

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

tj. veličina kurzívou a jednotka obyčejným písmem umístěná v oblých resp. hranatých závorkách *).

tj. veličina kurzívou a jednotka obyčejným písmem umístěná v oblých resp. hranatých závorkách *). MS OFFICE Může se zdát, že užití kancelářského balíku MS Office při výuce fyziky nepřesahuje běžné aplikace a standardní funkce, jak jsou popsány v mnoha příručkách ke všem jednotlivým částem tohoto balíku.

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Impedanční spektroskopie

Impedanční spektroskopie Tento dokument je na internetu na adrese: http://ufmt.vscht.cz (Elektronické pomůcky) Celý návod bude rovněž k dispozici ve vytištěné formě v laboratoři, VŠCHT Praha Impedanční spektroskopie Návod k laboratorní

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

VÁŽÍCÍ SYSTÉM T3 - ZÁKLADNÍ INFORMACE 1 POPIS 2 2 DODÁVKA A SKLADOVÁNÍ 3 3 OVLÁDACÍ PANEL (KONZOLA) - POPIS 3 4 MODULY ROZHRANÍ - POPIS 6

VÁŽÍCÍ SYSTÉM T3 - ZÁKLADNÍ INFORMACE 1 POPIS 2 2 DODÁVKA A SKLADOVÁNÍ 3 3 OVLÁDACÍ PANEL (KONZOLA) - POPIS 3 4 MODULY ROZHRANÍ - POPIS 6 VÁŽÍCÍ SYSTÉM T3 - ZÁKLADNÍ INFORMACE OBSAH 1 POPIS 2 2 DODÁVKA A SKLADOVÁNÍ 3 3 OVLÁDACÍ PANEL (KONZOLA) - POPIS 3 3.1 PRINCIP ČINNOSTI 4 3.2 VLOŽENÍ ŠTÍTKŮ S OZNAČENÍM TLAČÍTEK KLÁVESNICE 5 4 MODULY

Více

MULTIMETR NÁVOD K OBSLUZE. Model : DM-9960. CAT III 1000V, auto rozsah, bar graph displej, RS232

MULTIMETR NÁVOD K OBSLUZE. Model : DM-9960. CAT III 1000V, auto rozsah, bar graph displej, RS232 CAT III 1000V, auto rozsah, bar graph displej, RS232 MULTIMETR Model : DM-9960 Nákup tohoto multimetru pro Vás představuje krok vpřed v oblasti přesného měření. Správným používaním tohoto multimetru předejdete

Více

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D Měřič tepla a chladu, vyhodnocovací jednotka průtoku plynu INMAT 57S a INMAT 57D POPIS ARCHIVACE typ 457 OBSAH Možnosti archivace v měřiči INMAT 57 a INMAT 57D... 1 Bilance... 1 Uživatelská archivace...

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY 5. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkol měření 1. Ověření funkce dvoudrátového převodníku XTR 101 pro měření teploty termoelektrickými články (termočlánky). 2. Použití měřicího modulu Janascard AD232 s izotermální

Více

VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE

VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE VARIPULSE 04/07 1/10 NÁVOD NA INSTALACI ŘÍDÍCÍ JEDNOTKA VARIPULSE Tento návod je určen pro osoby, které budou odpovídat za instalaci, provoz a údržbu. Platí od: 04/2007 VARIPULSE 04/07 2/10 Řídící jednotka

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY 1. Definujte elektrický proud procházející průřezem vodiče a uveďte jeho jednotku. 2. Definujte elektrické napětí mezi dvěma body v elektrickém poli a uveďte jeho

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá APOSYS 10 Kompaktní mikroprocesorový regulátor APOSYS 10 Popis dvojitý čtyřmístný displej LED univerzální vstup s galvanickým oddělením regulační výstupy reléové regulace: on/off, proporcionální, PID,

Více

Laboratorní cvičení z fyziky Voltampérové charakteristiky

Laboratorní cvičení z fyziky Voltampérové charakteristiky Voltampérové charakteristiky Autor: Mgr. Ivana Stefanová Jméno souboru: VoltAmper Poslední úprava: 5. srpna 2015 Obsah Voltampérové charakteristiky Pracovní úkoly...1 Teorie...1 Protokol o měření...1 Příprava

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Digitální multimetr VICTOR 70A návod k použití

Digitální multimetr VICTOR 70A návod k použití Digitální multimetr VICTOR 70A návod k použití Všeobecné informace Jedná se o nový typ 3 ¾ číslicového multimetru. Tento přístroj je vybavený dotekovým ovládáním funkcí náhradou za tradiční mechanický

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4 MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

SPÍNANÝ LABORATORNÍ ZDROJ. Série SPS UŽIVATELSKÝ MANUÁL

SPÍNANÝ LABORATORNÍ ZDROJ. Série SPS UŽIVATELSKÝ MANUÁL SPÍNANÝ LABORATORNÍ ZDROJ s funkcemi Remote Sensing & Remote Control Série SPS UŽIVATELSKÝ MANUÁL 7673-9600-0005cz REV.1.8-10/2004 2 Obsah 1. Bezpečnostní opatření... 4 1.1 Obecná bezpečnostní opatření...

Více

LABORATORNÍ ZDROJ - NÁVOD K OBSLUZE - OBSAH SEKCE 1. ÚVOD 1 2. SPECIFIKACE 2 Obecně 2 Provozní módy 2 Mód konstantního napětí 3 Mód konstantního

LABORATORNÍ ZDROJ - NÁVOD K OBSLUZE - OBSAH SEKCE 1. ÚVOD 1 2. SPECIFIKACE 2 Obecně 2 Provozní módy 2 Mód konstantního napětí 3 Mód konstantního LABORATORNÍ ZDROJ - NÁVOD K OBSLUZE - OBSAH SEKCE 1. ÚVOD 1 2. SPECIFIKACE 2 Obecně 2 Provozní módy 2 Mód konstantního napětí 3 Mód konstantního proudu 3 Tracking Mód 3 Měření 4 Specifikace Výstupu 5V

Více

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý

Obsah OBVODY STŘÍDAVÉHO PROUDU S LINEÁRNÍMI JEDNOBRANY A DVOJBRANY. Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý OBVODY STŘÍDVÉHO POD S NEÁNÍM JEDNOBNY DVOJBNY Studijní text pro řešitele FO a ostatní zájemce o yziku Přemysl Šedivý Obsah Jednoduchý obvod střídavého proudu Řešení obvodů střídavého proudu pomocí ázorového

Více

Parametry a aplikace diod

Parametry a aplikace diod Cvičení 6 Parametry a aplikace diod Teplotní závislost propustného úbytku a závěrného proudu diody (PSpice) Reálná charakteristika diody, model diody v PSpice Extrakce parametrů diody pro PSpice Měření

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Excel 2007 praktická práce

Excel 2007 praktická práce Excel 2007 praktická práce 1 Excel OP LZZ Tento kurz je financován prostřednictvím výzvy č. 40 Operačního programu Lidské zdroje a zaměstnanost z prostředků Evropského sociálního fondu. 2 Excel Cíl kurzu

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Semestrální práce RLC obvody

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Semestrální práce RLC obvody Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Semestrální práce RLC obvody Michaela Šebestová 28.6.2009 Obsah 1 Úvod 2 Teorie elektrotechniky 2.1 Použité teorémy fyziky 2.1.1

Více

DIGITÁLNÍ MĚŘIČ OSVĚTLENÍ AX-L230. Návod k obsluze

DIGITÁLNÍ MĚŘIČ OSVĚTLENÍ AX-L230. Návod k obsluze DIGITÁLNÍ MĚŘIČ OSVĚTLENÍ AX-L230 Návod k obsluze 1.NÁVOD Digitální luxmetr slouží k přesnému měření intenzity osvětlení plochy (v luxech, stopových kandelách). Vyhovuje spektrální odezvě CIE photopic.

Více