ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY

Rozměr: px
Začít zobrazení ze stránky:

Download "ELEKTROTECHNIKA 2 TEMATICKÉ OKRUHY"

Transkript

1 EEKTOTECHNK TEMTCKÉ OKHY. Harmonický ustálený stav imitance a výkon Harmonicky proměnné veličiny. Vyjádření fázorů jednotlivými tvary komplexních čísel. Symbolický počet a jeho využití při řešení harmonicky ustáleného stavu. ákladní operace symbolického počtu (sčítání, odčítání, násobení, dělení, integrace, derivace). ezistor, induktor a kapacitor v obvodu ustáleného harmonického proudu. mpedance a admitance základních obvodových prvků. Definice obecné imitance. obecněný Ohmův zákon.výkony v obvodech ustáleného harmonického proudu. Přenos výkonu ze zdroje do zátěže, podmínka výkonového přizpůsobení.. Metody analýzy lineárních obvodů v harmonickém ustáleném stavu ákladní zákony elektrických obvodů v symbolickém tvaru. Ohmův zákon, Kirchhoffovy zákony. Sériové a paralelní řazení imitancí. Fázorové diagramy obvodů. Metoda postupného zjednodušování obvodů. Řešení lineárních obvodů pomocí metody úměrných veličin. Metoda Kirchhoffových rovnic. Řešení obvodů metodou smyčkových proudů. Řešení obvodů metodou uzlových napětí. Výpočet napěťového přenosu a vstupní impedance obvodů. Maticová forma zápisu a řešení soustavy rovnic. Řešení obvodů metodou náhradního zdroje. Využití Theveninovy a Nortonovy věty při řešení obvodů v harmonickém ustáleném stavu.. ákladní vlastnosti a použití obvodů. řádu Definice obvodů. řádu. ntegrační článek C, jeho vlastnosti a použití jako dolní propust. Modulová a argumentová kmitočtová charakteristika napěťového přenosu integračního článku, mezní kmitočet, hodograf obvodu. Derivační článek C, jeho vlastnosti a použití jako horní propust. Modulová a argumentová kmitočtová charakteristika napěťového přenosu derivačního článku, mezní kmitočet, hodograf obvodu. Všepropustný článek C a jeho použití jako fázovací obvod. ntegrační a derivační články, jejich přenos, vlastnosti a použití. 4. ákladní vlastnosti a použití obvodů. řádu Definice obvodů.řádu. Sériový rezonanční obvod C a jeho využití. Fázorový diagram, rezonanční kmitočet, činitel jakosti. Modulová a argumentová kmitočtová charakteristika, činitel jakosti, šířka propustného pásma.využití obvodu jako dolní propust, horní propust, pásmová propust, pásmová zádrž. Paralelní rezonanční obvod C a jeho využití jako pásmová propust. Fázorový diagram, rezonanční kmitočet, činitel jakosti. Modulová a argumentová kmitočtová charakteristika, činitel jakosti, šířka propustného pásma. Příklady využití sériového a paralelního obvodu C v silnoproudé a slaboproudé elektrotechnice. 5. Trojfázové obvody, jejich vlastnosti, použití, výkony v trojfázových obvodech Mnohofázové soustavy - základní pojmy a vztahy. Soustava trojfázová, šestifázová, dvojfázová a jejich použití.trojfázová soustava obvodů a její popis. Souměrná trojfázová soustava a její vlastnosti. Matematické vyjádření souměrné trojfázové soustavy, operátor natočení. Spojení zdrojů a zátěže do hvězdy. Vztah mezi fázory sdružených napětí a fázových napětí-fázorové diagramy. Spojení zdrojů a zátěže do trojúhelníka. Vztah mezi fázory

2 fázových a sdružený proudů.výkon trojfázové soustavy nesouměrného a souměrného obvodu. Příklady výpočtu výkonů pro symetrickou a nesymetrickou zátěž. Porovnání ekonomiky přenosu energie u jednofázové a trojfázové soustavy. Využití přepínání zapojení spotřebiče z hvězdy do trojúhelníka. 6. nalýza trojfázových obvodů v harmonickém ustáleném stavu ákladní požadavky analýzy trojfázových obvodů. nalýza souměrných trojfázových obvodů. nalýza obvodů metodou smyčkových proudů. nalýza obvodů metodou uzlových napětí. nalýza základních jednoduchých poruchových stavů soustavy. Příklady analýzy jednodušších trojfázových obvodů. Nesouměrná trojfázová soustava a její souměrné složky. Výkon nesouměrné trojfázové soustavy, analýza nesouměrných trojfázových obvodů metodou souměrných složek. 7. Přechodné děje v lineárních obvodech Přechodné děje a metody jejich řešení. Řešení diferenciálních rovnic obvodu. Obvody. řádu. Řešení přechodných dějů v C a obvodech. Příklady řešení přechodných dějů v obvodech. řádu. Formulace a řešení diferenciálních rovnic obvodů. řádu. periodický tlumený děj. Kritický tlumený děj. Podkritický tlumený kmitavý děj. Netlumený děj. Příklady řešení přechodných dějů v obvodech. řádu. 8. Řešení přechodných dějů pomocí aplaceovy transformace Princip řešení přechodných dějů pomocí aplaceovy transformace. ákladní vztahy aplaceovy transformace. Transformace základních matematických operací. Příklady přímé transformace. Příklady zpětné transformace. nverze aplaceových obrazů pomocí slovníku. nverze pomocí Heavisideova vzorce. Numerická inverze aplaceových obrazů. Operátorové charakteristiky obvodových prvků a jejich využití při formulaci rovnic obvodů. Náhradní schémata zdrojů pro řešení nenulových počátečních podmínek. Příklady řešení obvodů. a. řádu. Řešení periodického ustáleného stavu operátorovou metodou. 9. Přenosová vedení Obvody se soustředěnými a rozloženými parametry. ákladní rovnice vedení. Primární parametry vedení. Náhradní schéma elementárního úseku vedení. Telegrafní rovnice vedení a jejich řešení v časové oblasti. Vlny na bezeztrátovém vedení, vlnové rovnice. Sekundární parametry vedení - vlnová impedance a činitel šíření. Nekonečně dlouhé vedení. Vedení konečné délky.vlna postupná a vlna odražená. Poměry na vedení se ztrátami. Podmínky pro nezkreslující vedení. Poměry na obecném vedení se ztrátami.. Harmonicky ustálený stav na vedení Vznik harmonicky ustáleného stavu na vedení. Postupná a zpětná vlna na vedení. Charakteristická impedance, konstanta šíření, délka vlny na vedení. Vznik stojatých vln, definice činitele odrazu. Poměr stojatých vln pro přizpůsobené a nepřizpůsobené vedení. Vstupní impedance bezeztrátového vedení konečné délky. mpedančně přizpůsobené vedení.vstupní impedance vedení nakrátko a naprázdno v závislosti na délce vedení. Vedení zakončené reaktancí. Vlastnosti vedení poloviční a čtvrtinové vlnové délky - transformace zatěžovací impedance. Vstupní impedance krátkého vedení. Parametry základních druhů vedení.

3 KÁKOVÉ PŘÍKDY ) Harmonický ustálený stav imitance a výkon rčete impedanci zátěže B obecně, vypočtěte numericky impedanci zátěže B a fázor proudu a napětí (ve složkovém i exponenciálním tvaru).vypočtěte numericky celkový výkon zátěže (komplexní S,zdánlivý /S/, činný P, jalový Q). B C Řešení. jω ω ω B j j jωc jω ω ω ωc B 4,-j546,564,5 e -j75,9 Ω 4, j9,668,7 e j,48 Ω / B,8j,944,476 e j75,9. -,5j65,4568,769 e j7,87 V S.* /*,646 j9,79,75 e -j75,9 V Ω C 5 µf, H, f 5Hz e j V ) Metody analýzy lineárních obvodů v harmonickém ustáleném stavu Metodou smyčkových proudů vypočtěte fázory proudů,, a ve složkovém i exponenciálním tvaru, uveďte výrazy pro okamžité hodnoty těchto proudů i (t), i (t) a i (t). C C Ω, C 5 µf, C µf,5 H f 5Hz e j V Řešení j(ω-/ωc ) -jω S -jω j(ω-/ωc ) S -j479,54 -j57,796 S -j57,796 -j6, S

4 D - 564,67 j 47954,479,594 e j4, j 58,9 D j 78, ,59 e D j68,568,5 e j9 S D /D,9j,648,68 e j79,48 S D /D -,466 j,756,575e -j, S - S,4558j,97755,777 e j65, i (t),8666sin(4,6t 79,48 ), i (t),775 sin(4,6t -, ), i (t),54sin(4,6t 65, ) ) ákladní vlastnosti a použití obvodů. řádu Na vstup derivačního C článku ( Ω, C nf ) je přiváděno harmonické napětí o amplitudě V : u (t) m sin ( ωt) sin ( ωt) [V]. rčete oblast práce článku a výstupní napětí článku u (t) pro kmitočty a) f 6 Hz, b) f 6 Hz, c) f 6 Hz. a) f 6 Hz :, e j84, V, u (t), sin ( t 84, ) b) f 6 Hz :,79 e j44,8 V, u (t),79 sin ( t 44,8 ) a) f 6 Hz :,995 e j5,7 V, u (t),995 sin ( t 5,7 ) ω V, oblast derivace, ω V,oblast mezního kmitočtu, ω V, oblast přenosu. 4) ákladní vlastnosti a použití obvodů. řádu Na vstup sériového C obvodu ( Ω, mh, C nf ) je přiváděno harmonické napětí o amplitudě V : u (t) m sin ( ωt) sin ( ωt) [V]. rčete rezonanční kmitočet obvodu f, fázory proudu obvodem a napětí na jednotlivých prvcích obvodu pro kmitočty a) f5,955khz, b) f59 khz, c) f,59 khz. f r 5, 955 khz, ( jω) π C ( jω) ( j ω ) ωc., jω., C j. ωc ad a) f5,955khz :, e j [],, e j [ V],, e j9 [ V], C, e- j9 [ V], ad b) f59khz :, e -j89,4 [],, e -j89,4 [ V],, e j,6 [ V], C, e- j79,4 [ V], ad c) f,59khz :, e j89,4 [],, e j89,4 [ V],,e j79,4 [ V], C, e- j,6 [ V].

5 5) Trojfázové obvody, jejich vlastnosti, použití, výkony v trojfázových obvodech Spotřebič je zapojen do trojúhelníka, impedance ( 5 j 5 )Ω, ( j5 )Ω. Je napájen souměrným zdrojem o sdružených napětích S 4 V. ( V 4 e j, VW 4 e -j o, W 4 e j o ). Vypočtěte fázory proudů impedancemi, celkový komplexní, činný, jalový a zdánlivý výkon spotřebiče. V / 4/(55j), j, 8,856 e j 45 VW / (--j46,4)/(55j) -8,6 j4,88 8,856 e j 65 W / (-j46,4)/(55j) 9,865j,6746 4,856 e j5,8 S V VW W e [ S ] 87, W, Q m [ ] 68, 89 Vr P 57 87,5689 j68, ,66 e j5,5 V S, S S 679, 6 V 6) nalýza trojfázových obvodů v harmonickém ustáleném stavu Spotřebič je zapojen do hvězdy,impedance ( j 5 )Ω. Je napájen souměrným zdrojem o sdružených napětích S 8 V. ( V 8 e j, VW 8 e - j o, W 8 e j o ). Metodou smyčkových proudů vypočtěte fázory proudů impedancemi spotřebiče. Řešení metodou smyčkových proudů ( ) W W VW V V S S S S V VW > 5 j j5 j5 5 j 97, 959, j S,6 8,648 j [ ] 75 5 j 6454,5 658,8 j S 7,565,6 j [ ] 75 5 j S, S S, S,6 j8,648 [ ] 8,48 98, [ ] 6,4 j5,87 [ ] 8,48 4,8 [ ] S S 8 8

6 7,565 j,6 8,48.8 [ ] 8) Řešení přechodných dějů pomocí aplaceovy transformace Obvod na schématu se nacházel před sepnutím spínače v ustáleném stavu. Odvoďte pomocí aplaceovy transformace obecně i číselně časový průběh proudu i (t) induktoru po sepnutí spínače a naznačte jeho průběh graficky.vypočtěte velikost proudu i (t) v čase t, t, t µs. S i ( t) 4 V,5 mh kω kω 4 i 6 4 ( ) 6 m ( p) p i p ( ) pi ( ) p p i ( ) p p p. p ( p) p ( ) i S využitím známých tvarů pro.t. at at a { e }, { e }, p a p( p a) je originál k obrazu proudu induktorem (p): t t t i t e e e. ( )

7 i t 5 6,66 t ( t) e 4 (,75 e ) i ( t µ s) 4,7585, i ( t ) 4 4m 9) Přenosová vedení 4 Bezeztrátové homogenní vedení s primárními parametry C o [ pf/m], o,5 [µh /m], o délce l 5 m pracuje na kmitočtu f MHz, je zatíženo vlnovou impedancí V.. Vypočtěte : a) Sekundární parametry vedení (γ, V ) a délku vlny na vedení λ, b) Délku (kabelu) vedení l pro čtvrtvlnné vedení, c) Vstupní impedanci vst pro vedení délky m - pro přizpůsobené vedení, pro vedení naprázdno a pro vedení nakrátko, d) Činitel odrazu ρ pro,, v. V 5, Ω, γ C jω C j 6,8 /m π π λ, πroto λ,5 m, αl,5664 α 4 α VST V 5, Ω, VST j V cotgα l - j,75. 6 Ω Protože ( jω) v ( jω) ρ ( jω), ( jω) ( jω) v pro... ρ,... ρ, v... ρ. ) Harmonicky ustálený stav na vedení Homogenní vedení s primárními parametry G [S/m], 55 [mω/m], C o [ pf/m], o,5 [µh /m] o délce l 5 m pracuje na kmitočtu f MHz, je zatíženo vlnovou impedancí. V Vypočtěte : a) sekundární parametry vedení (γ, V ), délku vlny na vedení λ b) vstupní napětí a vstupní proud, je-li napětí na výstupu u (t) m sin(ωtψ u ). 5 sin (ωt) [ V] 4 a) ˆ γ ( jω )( G jωc ) (5.5 j6.8) m m

8 ˆ v G jω jωc (5 j4.768 ) Ω Ω ω π π λ v f T T. m α α m { γ } b) - fázor efektivní hodnoty ˆ 5V, z první kaskádní rovnice při ˆ ˆ v ˆ ˆ cosh ˆ γl ˆ ˆ (5.94 j6.9 v sinh ˆ γl ˆ (cosh ˆ γl sinh ˆ γl) ˆ ) V > u ( t) 7.68 sin( ω t 6.94 ) V V e ˆ γl ˆ ˆ ˆ (.79 j5.844 ) ˆ ˆ vst v > i ( t).456 sin( ω t 9.4 )

TROJFÁZOVÁ SOUSTAVA ZÁKLADNÍ POJMY

TROJFÁZOVÁ SOUSTAVA ZÁKLADNÍ POJMY TROJFÁOÁ SOSTAA základní obrat ve výrobě a užití elektrické energie nesporné výhody při výrobě, přenosu a přeměně elektrické energie na mechanickou Trojfázová symetrická soustava napětí: tři zdroje harmonického

Více

Základy elektrotechniky (ZELE)

Základy elektrotechniky (ZELE) Základy elektrotechniky (ZELE) Studijní program Technologie pro obranu a bezpečnost, 3 leté Bc. studium (civ). Výuka v 1. a 2. semestru, dotace celkem 72h (24+48). V obou semestrech zkouška, zápočet zrušen.

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

Harmonický průběh napětí a proudu v obvodu

Harmonický průběh napětí a proudu v obvodu Harmonický průběh napětí a proudu v obvodu Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Veličiny elektrických obvodů napětí u(t) okamžitá hodnota,

Více

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.

1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu. v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet

Více

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství

Cvičení 11. B1B14ZEL1 / Základy elektrotechnického inženýrství Cvičení 11 B1B14ZEL1 / Základy elektrotechnického inženýrství Obsah cvičení 1) Výpočet proudů v obvodu Metodou postupného zjednodušování Pomocí Kirchhoffových zákonů Metodou smyčkových proudů 2) Nezatížený

Více

4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní

4 DIELEKTRICKÉ OBVODY ZÁKLADNÍ POJMY DIELEKTRICKÝCH OBVODŮ Základní veličiny a zákony Sériový a paralelní Bohumil Brtník TEORETICKÁ ELEKTROTECHNIKA Praha 2017 Bohumil Brtník Teoretická elektrotechnika Recenzovali: David Matoušek, Fakulta elektrotechniky a informatiky Univerzity Pardubice Miroslav Stehlík,

Více

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?

Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3? TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název

Více

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu

U1, U2 vnější napětí dvojbranu I1, I2 vnější proudy dvojbranu DVOJBRANY Definice a rozdělení dvojbranů Dvojbran libovolný obvod, který je s jinými částmi obvodu spojen dvěma páry svorek (vstupní a výstupní svorky). K analýze chování obvodu postačí popsat daný dvojbran

Více

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika

Vítězslav Stýskala, Jan Dudek. Určeno pro studenty komb. formy FBI předmětu / 06 Elektrotechnika Stýskala, 00 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek rčeno pro studenty komb. formy FB předmětu 45081 / 06 Elektrotechnika B. Obvody střídavé (AC) (všechny základní vztahy

Více

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = =

1 Elektrotechnika 1. 14:00 hod. R 1 = R 2 = 5 Ω R 3 = 10 Ω U = 10 V I z = 1 A R R R U 1 = = B 4:00 hod. Elektrotechnika Pomocí věty o náhradním zdroji vypočtěte hodnotu rezistoru tak, aby do něho byl ze zdroje dodáván maximální výkon. Vypočítejte pro tento případ napětí, proud a výkon rezistoru.

Více

Impedanční děliče - příklady

Impedanční děliče - příklady Impedanční děliče - příklady Postup řešení: Vyznačení impedancí, tvořících dělič Z Z : podélná impedance, mezi svorkami a Z : příčná impedance, mezi svorkami a ' ' Z ' Obecné vyjádření impedancí nebo admitancí

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 6. Vedení 1 Homogenní vedení vedení se ztrátami R/2 L/2 L/2 R/2 C G bezeztrátové vedení L/2 L/2 C 2 Model

Více

Základy elektrotechniky

Základy elektrotechniky áklady elektrotechniky Přednáška Trojfázová soustava 1 Princip vzniku střídavého proudu 3f - soustavy 2 TROJFÁOÁ SOSTAA základní obrat ve výrobě a užití elektrické energie nesporné výhody při výrobě, přenosu

Více

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka

Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův

Více

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz

Zadané hodnoty: R L L = 0,1 H. U = 24 V f = 50 Hz . STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad.: V elektrickém obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete

Více

Určeno pro posluchače bakalářských studijních programů FS

Určeno pro posluchače bakalářských studijních programů FS rčeno pro posluchače bakalářských studijních programů FS 3. STŘÍDAVÉ JEDNOFÁOVÉ OBVODY Příklad 3.: V obvodě sestávajícím ze sériové kombinace rezistoru, reálné cívky a kondenzátoru vypočítejte požadované

Více

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY

2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY 2. STŘÍDAVÉ JEDNOFÁZOVÉ OBVODY Příklad 2.1: V obvodě sestávajícím ze sériové kombinace rezistoru reálné cívky a kondenzátoru vypočítejte požadované veličiny určete také charakter obvodu a nakreslete fázorový

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze Z předchozích přednášek víme, že kapacitor a induktor jsou setrvačné obvodové prvky, které ukládají energii Dosud jsme se zabývali ustáleným stavem předpokládali jsme, že v minulosti byly všechny kapacitory

Více

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω

U01 = 30 V, U 02 = 15 V R 1 = R 4 = 5 Ω, R 2 = R 3 = 10 Ω B 9:00 hod. Elektrotechnika a) Definujte stručně princip superpozice a uveďte, pro které obvody platí. b) Vypočítejte proudy větvemi uvedeného obvodu metodou superpozice. 0 = 30 V, 0 = 5 V R = R 4 = 5

Více

2.6. Vedení pro střídavý proud

2.6. Vedení pro střídavý proud 2.6. Vedení pro střídavý proud Při výpočtu krátkých vedení počítáme většinou buď jen s činným odporem vedení (nn) nebo u vn s činným a induktivním odporem. 2.6.1. Krátká jednofázová vedení nn U krátkých

Více

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií

Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologií Vysoké učení technické v rně Fakulta elektrotechniky a komunikačních technologií Kolejní 906/4 6 00 rno http://www.utee.feec.vutbr.cz ELEKTOTECHNK (EL) lok nalýza obvodů - speciální metody doc. ng. Jiří

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Přechodné jevy v elektrizačních soustavách

Přechodné jevy v elektrizačních soustavách vičení z předmětu Přechodné jevy v elektrizačních soustavách Další doporučená literatura: 1. Beran, Mertlová, Hájek: Přenos a rozvod elektrické energie. Hájek: Přechodné jevy v elektrizačních soustavách

Více

ITO. Semestrální projekt. Fakulta Informačních Technologií

ITO. Semestrální projekt. Fakulta Informačních Technologií ITO Semestrální projekt Autor: Vojtěch Přikryl, xprikr28 Fakulta Informačních Technologií Vysoké Učení Technické v Brně Příklad 1 Stanovte napětí U R5 a proud I R5. Použijte metodu postupného zjednodušování

Více

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY

PŘÍKLAD PŘECHODNÝ DĚJ DRUHÉHO ŘÁDU ŘEŠENÍ V ČASOVÉ OBLASTI A S VYUŽITÍM OPERÁTOROVÉ ANALÝZY PŘÍKLAD PŘECHODNÝ DĚJ DRHÉHO ŘÁD ŘEŠENÍ V ČASOVÉ OBLASTI A S VYŽITÍM OPERÁTOROVÉ ANALÝZY A) Časová oblast integro-diferenciální rovnice K obvodu na obrázku je v čase t 0 napětí u b (t). t 0 připojen zdroj

Více

Grafické zobrazení frekvenčních závislostí

Grafické zobrazení frekvenčních závislostí Grafické zobrazení frekvenčních závislostí Z minulých přednášek již víme, že impedance / admitance kapacitoru a induktoru jsou frekvenčně závislé Nyní se budeme zabývat tím, jak tato frekvenční závislost

Více

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech.

Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Praktické výpočty s komplexními čísly (především absolutní hodnota a fázový úhel) viz např. vstupní test ve skriptech. Neznalost amplitudové a fázové frekvenční charakteristiky dolní a horní RC-propusti

Více

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka

Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Základy elektrotechniky 2 (21ZEL2) Přednáška 1

Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Základy elektrotechniky 2 (21ZEL2) Přednáška 1 Úvod Základy elektrotechniky 2 hodinová dotace: 2+2 (př. + cv.) zakončení: zápočet, zkouška cvičení: převážně laboratorní informace o předmětu, kontakty na

Více

Studijní opory předmětu Elektrotechnika

Studijní opory předmětu Elektrotechnika Studijní opory předmětu Elektrotechnika Doc. Ing. Vítězslav Stýskala Ph.D. Doc. Ing. Václav Kolář Ph.D. Obsah: 1. Elektrické obvody stejnosměrného proudu... 2 2. Elektrická měření... 3 3. Elektrické obvody

Více

PSK1-15. Metalické vedení. Úvod

PSK1-15. Metalické vedení. Úvod PSK1-15 Název školy: Autor: Anotace: Vzdělávací oblast: Předmět: Tematická oblast: Výsledky vzdělávání: Klíčová slova: Druh učebního materiálu: Typ vzdělávání: Ověřeno: Zdroj: Vyšší odborná škola a Střední

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech Jiří Petržela filtry založené na jiných fyzikálních principech piezoelektrický jev při mechanickém namáhání krystalu ve správném směru na něm vzniká elektrické napětí po přiložení elektrického napětí se

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY

ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY ELEKTRICKÉ OBVODY 1. - TEORETICKÉ OTÁZKY 1. Definujte elektrický proud procházející průřezem vodiče a uveďte jeho jednotku. 2. Definujte elektrické napětí mezi dvěma body v elektrickém poli a uveďte jeho

Více

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY

ELEKTRONIKA. Maturitní témata 2018/ L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY ELEKTRONIKA Maturitní témata 2018/2019 26-41-L/01 POČÍTAČOVÉ A ZABEZPEČOVACÍ SYSTÉMY Řešení lineárních obvodů - vysvětlete postup řešení el.obvodu ohmovou metodou (postupným zjednodušováním) a vyřešte

Více

elektrické filtry Jiří Petržela filtry se syntetickými bloky

elektrické filtry Jiří Petržela filtry se syntetickými bloky Jiří Petržela nevýhoda induktorů, LCR filtry na nízkých kmitočtech kvalita technologická náročnost výroby a rozměry cena nevýhoda syntetických ekvivalentů cívek nárůst aktivních prvků ve filtru kmitočtová

Více

Přenos pasivního dvojbranu RC

Přenos pasivního dvojbranu RC Střední průmyslová škola elektrotechnická Pardubice VIČENÍ Z ELEKTRONIKY Přenos pasivního dvojbranu R Příjmení : Česák Číslo úlohy : 1 Jméno : Petr Datum zadání : 7.1.97 Školní rok : 1997/98 Datum odevzdání

Více

TEORIE ELEKTRICKÝCH OBVODŮ

TEORIE ELEKTRICKÝCH OBVODŮ TEORIE ELEKTRICKÝCH OBVODŮ zabývá se analýzou a syntézou vyšetřovaných soustav ZÁKLADNÍ POJMY soustava elektrické zařízení, složená z jednotlivých prvků, vzájemně mezi sebou propojených tak, aby jimi mohl

Více

9.1 Přizpůsobení impedancí

9.1 Přizpůsobení impedancí 9.1 Přizpůsobení impedancí Základní teorie Impedančním přizpůsobením rozumíme stav, při kterém v obvodu nedochází k odrazu vln a naopak dochází k maximálnímu přenosu energie ze zdroje do zátěže. Impedančním

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady

METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ BRNO,KOUNICOVA16 METODICKÝ LIST Z ELEKTROENERGETIKY PRO 3. ROČNÍK řešené příklady Třída : K4 Název tématu : Metodický list z elektroenergetiky řešené příklady

Více

Zakončení viskózním tlumičem. Charakteristická impedance.

Zakončení viskózním tlumičem. Charakteristická impedance. Kapitola 1 Odraz vln 1.1 Korektní zakončení struny Zakončení viskózním tlumičem. Charakteristická impedance. V mnoha praktických situacích požadujeme, aby prostředím postupovaly signály pouze jedním směrem,

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory

elektrické filtry Jiří Petržela všepropustné fázovací články, kmitočtové korektory Jiří Petržela všepropustné fázovací články, kmitočtové korektory zvláštní typy filtrů všepropustné fázovací články 1. řádu všepropustné fázovací články 2. řádu všepropustné fázovací články vyšších řádů

Více

20ZEKT: přednáška č. 3

20ZEKT: přednáška č. 3 0ZEKT: přednáška č. 3 Stacionární ustálený stav Sériové a paralelní řazení odporů Metoda postupného zjednodušování Dělič napětí Dělič proudu Metoda superpozice Transfigurace trojúhelník/hvězda Metoda uzlových

Více

Experiment s FM přijímačem TDA7000

Experiment s FM přijímačem TDA7000 Experiment s FM přijímačem TDA7 (návod ke cvičení) ílem tohoto experimentu je zkonstruovat FM přijímač s integrovaným obvodem TDA7 a ověřit jeho základní vlastnosti. Nejprve se vypočtou prvky mezifrekvenčního

Více

Osnova kurzu. Základy teorie elektrických obvodů 3

Osnova kurzu. Základy teorie elektrických obvodů 3 Osnova kurzu 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických obvodů 3 5) Základy teorie

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

FEROREZONANCE. Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem).

FEROREZONANCE. Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem). FEROREZONANCE Jev, který vzniká při přesycení jádra induktoru v RLC obvodu s nelineární indukčností (induktor s feromagnetickým jádrem). Popis nelineárními diferenciálními rovnicemi obtížné nebo nemožné

Více

Přechodné děje 1. řádu v časové oblasti

Přechodné děje 1. řádu v časové oblasti Přechodné děje 1. řádu v časové oblasti EO2 Přednáška 6 Pavel Máša Pokud v obvodu dojde ke změně Připojení zdroje Odpojení zdroje Připojení nebo odpojení obvodového prvku (R, L, C, ) Změně velikosti některého

Více

4 Napětí a proudy na vedení

4 Napětí a proudy na vedení 4 Napětí a proudy na vedení předchozí kapitole jsme se seznámili s šířením napěťové a proudové vlny podél přenosového vedení. Diskutovali jsme podobnost šíření vlny podél vedení s šířením vlny volným prostorem.

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

Transformátory. Mění napětí, frekvence zůstává

Transformátory. Mění napětí, frekvence zůstává Transformátory Mění napětí, frevence zůstává Princip funce Maxwell-Faradayův záon o induovaném napětí e u i d dt N d dt Jednofázový transformátor Vstupní vinutí Magneticý obvod Φ h0 u u i0 N i 0 N u i0

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky 5. přednáška Elektrický výkon a energie 1 Základní pojmy Okamžitá hodnota výkonu je deinována: p = u.i [W; V, A] spotřebičová orientace - napětí i proud na impedanci Z mají souhlasný

Více

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně

Trojfázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cíl: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně Trojázová vedení vvn Přenosové soustavy, mezinárodní propojení. Cí: vztah poměrů na obou koncích, ztráty, účinnost. RLGC Vedení s rovnoměrně rozoženými parametry Homogenní vedení parametry R, L, G, C jsou

Více

Profilová část maturitní zkoušky 2016/2017

Profilová část maturitní zkoušky 2016/2017 Tematické okruhy a hodnotící kritéria Střední průmyslová škola, 1/8 ELEKTRONICKÁ ZAŘÍZENÍ Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2016/2017 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA

Více

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1

Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. 1 Harmonický ustálený stav pokyny k měření Laboratorní cvičení č. Zadání. Naučte se pracovat s generátorem signálů Agilent 3320A, osciloskopem Keysight a střídavým voltmetrem Agilent 34405A. 2. Zobrazte

Více

Rovinná harmonická elektromagnetická vlna

Rovinná harmonická elektromagnetická vlna Rovinná harmonická elektromagnetická vlna ---- 1. příklad -------------------------------- 2 GHz prochází prostředím s parametry: r 5, r 1, 0.005 S / m. Amplituda intenzity magnetického pole je H m 0.25

Více

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast

Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast Obecná vlnová rovnice pro intenzitu elektrického pole Vlnová rovnice mimo oblast zdrojů pro obecný časový průběh veličin Vlnová rovnice mimo oblast zdrojů pro harmonický časový průběh veličin Laplaceův

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Z 5 5 4 4 6 Schéma. Z = 0 V = 0 Ω = 40 Ω = 40 Ω 4 = 60 Ω 5 = 90 Ω

Více

Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY

Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Elektromagnetické pole, vlny a vedení (A2B17EPV) PŘEDNÁŠKY Garant: Škvor Z. Vyučující: Pankrác V., Škvor Z. Typ předmětu: Povinný předmět programu (P) Zodpovědná katedra: 13117 - Katedra elektromagnetického

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

(3 body) a) Vlnovou délku této vlny. b) Fázovou rychlost této vlny. c) Vlnovou impedanci prostředí. (4 body)

(3 body) a) Vlnovou délku této vlny. b) Fázovou rychlost této vlny. c) Vlnovou impedanci prostředí. (4 body) . Deskový kondenzátor má rozměry elektrod a = 5 cm x b = 5 cm a vzdálenost elektrod je s = cm. Dielektrikum je bezeztrátové a hodnota jeho relativní permitivity ε r = 2,2 (ε 0 = 8,854.0-2 F/m). Napětí

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

Teoretická elektrotechnika - vybrané statě

Teoretická elektrotechnika - vybrané statě Teoretická elektrotechnika - vybrané statě David Pánek EK 613 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni January 7, 2013 David Pánek EK 613 panek50@kte.zcu.cz Teoretická

Více

Základy elektrotechniky

Základy elektrotechniky Základy elektrotechniky Přednáška Transformátory deální transformátor r 0; 0 bez rozptylu mag. toků 0, Φ Φmax. sinωt ndukované napětí: u i N d N dt... cos t max imax N..f. 4,44..f.N d ui N i 4,44. max.f.n

Více

ZÁKLADY ELEKTROTECHNIKY pro OPT

ZÁKLADY ELEKTROTECHNIKY pro OPT ZÁKLADY ELEKTROTECHNIKY pro OPT Přednáška Rozsah předmětu: 24+24 z, zk 1 Literatura: [1] Uhlíř a kol.: Elektrické obvody a elektronika, FS ČVUT, 2007 [2] Pokorný a kol.: Elektrotechnika I., TF ČZU, 2003

Více

MĚŘENÍ JALOVÉHO VÝKONU

MĚŘENÍ JALOVÉHO VÝKONU MĚŘENÍ JALOVÉHO VÝKONU &1. Které elektrické stroje jsou spotřebiči jalového výkonu a na co ho potřebují? &2. Nakreslete fázorový diagram RL zátěže připojené na zdroj střídavého napětí. &2.1 Z fázorového

Více

Symetrické stavy v trojfázové soustavě

Symetrické stavy v trojfázové soustavě Pro obvod na obrázku Symetrické stavy v trojfázové soustavě a) sestavte admitanční matici obvodu b) stanovte viděnou impedanci v uzlu 3 a meziuzlovou viděnou impedanci mezi uzly 1 a 2 a c) stanovte zdánlivý

Více

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ

MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ MATURITNÍ ZKOUŠKA Z ELEKTROTECHNICKÝCH MĚŘENÍ Třída: A4 Školní rok: 2010/2011 1 Vlastnosti měřících přístrojů - rozdělení měřících přístrojů, stupnice měřících přístrojů, značky na stupnici - uložení otočné

Více

Rezonanční obvod jako zdroj volné energie

Rezonanční obvod jako zdroj volné energie 1 Rezonanční obvod jako zdroj volné energie Ing. Ladislav Kopecký, 2002 Úvod Dlouho mi vrtalo hlavou, proč Tesla pro svůj vynález přístroje pro bezdrátový přenos energie použil název zesilující vysílač

Více

Určeno pro posluchače všech bakalářských studijních programů FS

Určeno pro posluchače všech bakalářských studijních programů FS rčeno pro posluchače všech bakalářských studijních programů FS. STEJNOSMĚNÉ OBVODY pravil ng. Vítězslav Stýskala, Ph D. září 005 Příklad. (výpočet obvodových veličin metodou postupného zjednodušováni a

Více

Základní vztahy v elektrických

Základní vztahy v elektrických Základní vztahy v elektrických obvodech Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Klasifikace elektrických obvodů analogové číslicové lineární

Více

elektrické filtry Jiří Petržela aktivní filtry

elektrické filtry Jiří Petržela aktivní filtry Jiří Petržela postup při návrhu filtru nové struktury analýza daného obvodu programem Snap získání symbolického tvaru přenosové funkce srovnání koeficientů přenosové funkce s přenosem obecného bikvadu

Více

Identifikátor materiálu: VY_32_INOVACE_355

Identifikátor materiálu: VY_32_INOVACE_355 Identifikátor materiálu: VY_32_INOVACE_355 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω. A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty

Více

HARMONICKÝ USTÁLENÝ STAV - FÁZOR, IMPEDANCE

HARMONICKÝ USTÁLENÝ STAV - FÁZOR, IMPEDANCE HAMONICKÝ USTÁLENÝ STAV - FÁZO, IMPEDANCE Úvodem Fyzikální popis induktoru a kapacitoru vede na integrodiferenciální rovnice, jejichž řešení je značně obtížné, zvláště v případě soustav rovnic. Příklad

Více

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3

V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. Zadáno: U Z = 30 V R 6 = 30 Ω R 3 = 40 Ω R 3 . STEJNOSMĚNÉ OBVODY Příklad.: V následujícím obvodě určete metodou postupného zjednodušování hodnoty zadaných proudů, napětí a výkonů. 5 5 U 6 Schéma. = 0 V = 0 Ω = 0 Ω = 0 Ω = 60 Ω 5 = 90 Ω 6 = 0 Ω celkový

Více

1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose.

1 U. 33. Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose. 1. V jakých jednotkách se yjadřuje proud ueďte náze a značku jednotky 2. V jakých jednotkách se yjadřuje indukčnost ueďte náze a značku jednotky 3. V jakých jednotkách se yjadřuje kmitočet ueďte náze a

Více

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/

Více

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. STŘÍDAVÝ ELEKTRICKÝ PROUD Trojfázová soustava TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Vznik trojfázového napětí Průběh naznačený na obrázku je jednofázový,

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

Synchronní stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ TROJE TOČIVÉ Určeno pro posluchače bakalářských studijních programů F ynchronní stroje Ing. Vítězslav týskala h.d. únor 00 říklad 8. Základy napětí a proudy Řešené příklady Třífázový synchronní

Více