Skupenství látek. s g. Blaise Pascal Anders Celsius

Rozměr: px
Začít zobrazení ze stránky:

Download "Skupenství látek. s g. Blaise Pascal Anders Celsius"

Transkript

1 Seství láte s g Blase Pascal 6 66 l Aders Celss

2 Robert Boyle George G. Stoes Thoas Yog Ldwg. Boltza Joseh L. Gay-Lssac Johaes D. a der Waals 87 9

3 Seství láte Seství charatersta stav láty odle sodržost částc. Rozezáváe tř seství, lyé, aalé a evé. Seství lyé (g): Molely se volě ohybjí, vzdáleost ez ožňjí stlačováí. Plyy jso rozíavé, vylňjí vždy celý obje ádoby, do teré jso zavřey. Seství aalé (l): Molely se volě ohybjí, ale vzdáleost ez odovídají rovováze řtažlvých a oddvých terací, stlačováí vede relz. Kaalá tělesa ají roěý tvar, ale stálý obje. Seství evé (s): Polohy olel jso fováy v rystalové řížce, vyoávají je vbrace ole rovovážých řížových oloh. Pevá tělesa ají stálý tvar obje. Láty se v daé sesé stav vysytjí vždy v rčté rozezí tlaů a telot. Zěy seství jso dorovázey soový zěa fyzálích vlastostí láte. (T) evá láta aala čtvrté seství laza: ozovaý ly tvořeý ladý oty a volý eletroy. Nejedá se o seství v ravé slova sysl, rotože ly a laza eřechází soově, steň ozace se lyle zvyšje s teloto. 0 telota táí T Plyy a aaly se sohrě azývají tety.

4 Tla ly Tla : orálová složa síly F ůsobící a loch S: F S Jedoty tla: ascal: Pa = N - atosféra: at = 0 5 Pa řesě (středí atosfércý tla v Paříž řeočteý a hlad oře, tzv. orálí č stadardí tla) bar: bar = 0 5 Pa torr: torr =, Pa (hydrostatcý tla sloce rtt) s: s = 6,895 Pa (od er sqare ch) g g Shg (Hydrostatcý tla je vyvolaý tího aaly: hg S S S ) Tla ly vzá árazy olel ly a stě ádoby. dp dp fdt F f dt dp hybost ředaá stěě ádoby za čas dt hotost olely ly složa rychlost olely olá e stěě ádoby f očet árazů olel ly a stě ádoby za jedot čas

5 w, w y rhové frevece rotace ole os,y w 0 rhová frevece vbrace olely I oet setrvačost olely v rychlost vbračího ohyb v, y v, z v výchyla z rovovážé hodoty tr z y v 0 v vb vb rot tr I y z y w w w erge olel a evých láte Celová eerge olely ly (ř zaedbáí ezolelových terací a vějších sl) je sočte traslačí etcé eerge ( tr ), rotačí etcé eerge ( rot ), vbračí etcé eerge ( vb ), a vbračí otecálí eerge ( vb ): jedoatoová olela dvoatoová olela, y, z složy rychlost ohyb těžště hotost olely rystal v v v 0 v v v vb vb z y z y w

6 vartčí rc ztah ez teloto a středí hodoto eerge ly: rovovážé stav ř telotě T řadá a aždý vadratcý čle ve výraz ro celovo eerg středí hodota T/: jedoatoová olela T dvoatoová olela 7 T =,8.0 - J K - Boltzaova ostata Ato v rystal T R = N A = 8,4 J K - ol - olárí lyová ostata Molárí zochorcá teelá aacta d dt Udává, ja se zvýší eerge jedoho ol láty ř zvýšeí teloty o K C N A Molárí zochorcá teelá aacta deálího ly: Molárí zochorcá teelá aacta rystal (Dlogovo-Pettovo ravdlo): C R C R ztahy latí je ř vysoých telotách, dy se erojeví vatováí vbračí a rotačí eerge (t.j. T je ohe větší ež rozdíl ez eergetcý hlada); teelá aacta je obecě závslá a telotě

7 Ideálí ly Ideálí ly: Nejjedodšší odel ly. Jde o ly s ásledjící vlastost: a) Molely ají lový vlastí obje a eají žádé vtří stě volost (rotace, vbrace středí etcá eerge olely deálího ly je /T), tj. vešeré jejch srážy se stěa ádoby jso dooale elastcé b) Mez olela deálího ly eůsobí žádé terace Reálé lyy se řblžjí chováí deálího ly ř velé zředěí (=velé vzdáleost ez olela, t.j. je ožé zaedbat terace ez a zároveň je jejch vlastí obje zaedbatelý rot obje celé sostavy) a za vysoých telot (ř vysoé etcé eerg olel jso árazy a stěy ádoby elastcé). zdch se za orálí teloty a tla chová téěř jao deálí ly. Stavová rovce ly: Rovce osjící vztah ez tlae, teloto a objee rčtého ožství ly. Stavová rovce deálího ly = NT = RT, = RT hstota deálího ly: R = N A = 8,4 J K - ol - olárí lyová ostata = / olárí obje M M RT

8 Měje ádob tvar rychle o obje a stěách o loše S, v íž je N olel o hotost, ohybjících se rychlostí ve sěrech olých e stěá (e aždé stěě /6 z celového očt). Za čas dt arazí a stě ádoby všechy olely ze vzdáleost d <= dt, t.j. z obje Sdt, ohybjící se ve sěr této stěě (/6), tedy cele 6 N Hybost ředaá olelo stěě ř srážce: P Celová zěa hybost za čas dt: N N dp P Sdt Sdt 6 Tla ly: S d t F S olel dp S dt N Po vyjádřeí středí etcé eerge oocí teloty Zjedodšeé odvozeí stavové rovce deálího ly T N NT N stavová rovce deálího ly

9 (Pa) (ol - ) (Pa) Izochory, zobary a zotery deálího ly 9 6 zochora = ol - záo Gay-Lssacův / = T /T T (K) 9 6 zobara = Pa záo Charlesův / = T /T T (K) zotera T = 7 K záo Boylův-Marottův / = / (d ol - ) T dagra deálího ly zotery zobary... zochory

10 Sěs deálích lyů Parcálí tla: Tla, terý by vyvíjela složa lyé sěs, dyby byla v sostavě řítoa saotá za ja stejých odíe (telota, obje). Parcálí obje: Obje, terý by zajíala složa lyé sěs, dyby byla v sostavě řítoa saotá za ja stejých odíe (telota, tla). RT RT RT RT RT c RT RT... )... ( )... (... Daltoův záo adtvty arcálích tlaů Aagatův záo adtvty arcálích objeů arcálí tlay arcálí objey olárí zloy objeové zloy c olárí ocetrace

11 Stavové rovce reálého ly Stavové rovce reálého ly zohledňjí terace ez olela. a a - b RT - b RT RT - - b a Něteré další stavové rovce: RT - - b b) a der Waalsova stavová rovce va der Waalsovy oefcety -složové sěs: a ( T / a,b va der Waalsovy oefcety ro daý ly a/ orece a řtažlvé terace, tzv. vtří tla (zvyšjí ohez ly, ůsobí ve sěr vějšího tla). Středí vzdáleost ez olela r roste s /, řtažlvé terace lesají s r -6, odtd úěrost -. b orece a oddvé terace, vyločeý obje (obje zajíaý jedí ole olel) Redlchova-Kwogova rovce ejřesější dvoaraetrová stavová rovce RT C brt - a a c B RT A0 e - 6 T T 8 oefcetů: a, b, c, A 0, B 0, C 0,, a a / b b Beedctova- Webbova-Rbova (BWR) rovce

12 (MPa) a der Waalsovy zotery a der Waalsovy zotery ro CO e oblast, de a der Waalsova zotera osclje, dochází reálého ly e zaalňováí C 40 C C rtcá zotera C 0 C 0 C C (d ) Př rtcé telotě slye a a a zoterě do fleího bod: rtcá telota a der Waalsova ly: T 8a 7bR T T 0

13 aala Zaalňováí lyů Ply je ožé zaalt je tehdy, je-l jeho telota žší, ež rtcá telota. oblast oestece ly a aaly se tla ly eěí s objee, eboť olely ř zešováí obje lyé fáze řecházejí do aalé fáze (tzv. tla asyceých ar č teze ar) K=rtcý bod CO Tla a olárí obje asyceých ar ly ř rtcé telotě se azývají rtcý tla a rtcý olárí obje, ly T ( C) (MPa) N -46,9,90 O -8,6 5,050 CO,0 7,77 aala + ly,

14 Teze ar ad aalo Teze ar ad aalo: Tla, ř teré je za daé teloty rychlost vyařováí aaly stejá jao rychlost odezace, t.j. lyé a aalé seství jso v rovováze. = et Teze áry roste s teloto: < et g B log A - Agstova rovce T A, B ostaty l Telota, ř teré teze ar dosáhe vějšího tla, se azývá telota var. Raoltův záo: teze ar -té složy sěs Ø teze ar ad čsto -to složo olárí zloe -té složy ve sěs Teze ar (ř 0 C, v Pa): voda,4 aceto 4, glycerol, rtť, Teze ar ad dvosložovo sěsí: Molárí zloe složy () v arách - y - Pára obsahje ve srováí s aalo více té složy, terá je těavější (=á vyšší tez ar)

15 Povrchové aětí Povrchové aětí je zůsobeo vtahováí olel aaly acházejících se oblíž ovrch dovtř v důsled erovováhy řtažlvých sl dw ds dw ráce vyaložeá a zvětšeí ovrch aaly o ds jedota J - = N - lv ovrchových sl a chováí aaly roste s lesající objee aaly. Působeí ovrchových sl zajíá aalé těleso taový tvar, aby ělo za daých odíe co eješí ovrch (lový tvar, eůsobí-l žádá další síla) Rá s blao z ýdlového rozto l d F dw ds K roztržeí ovrchové vrstvy řeze o délce l je otřeba síla o velost F/l olá řez a tečá ovrch Fd ld F l Závslost ovrchového aětí a telotě: ( T - T / ) ötvösova rovce =, 0-7 J K - ol -/ T rtcá telota

16 Jevy sovsející s ovrchový aětí Sáčeí ovrchů evých láte aala ls gs cos gl otatí úhel gs > ls < 90 - aala sáčí ovrch gs < ls > 90 - aala esáčí ovrch Přetla a zařveé ovrch aaly R R R, R oloěry řvost Yogova-Lalaceova rovce voda-slo: = 0 rtť-slo: = 40 <90 elevace >90 derese alárí elevace: zvedá sloec aaly v aláře, dod se estaví rovováha s hydrostatcý tlae sloce cos hg h a cos ag h h

17 Měřeí ovrchového aětí R Metoda vsící ay: ( hotost ay) g πr s g πrs 90 s Wlhelyho destča: ěří se síla otřebá odtržeí destčy od ovrch aaly F l cos Wlhelyho rovce l obvod destčy Povrchové aětí (rot vzdch, v N - ): voda, 5 C 7 aceto, 0 C 4 glycerol, 0 C 6 rtť, 0 C 487

18 Staoveí rtcé celárí ocetrace SDS dodecylslfát sodý, SDS H O, 75 N 5 M SDS, 5 N / N l c cc l c cc 40 l c l[c/ol l - ]

19 sozta sozta aal: Přeos hybost rodících olel aaly v říčé sěr, zůsobeý ezolelárí terace. Př roděí jso rychlej teocí vrstvy aaly bržděy oalej teocí. Třecí síla ez vrstva aaly je dáa vztahe d z d ( T) e dz F S d Telotí závslost vsozty 0 -b( T -T0 ) vsoztí oefcet S styčá locha vrstev Kaaly: sozta lesá s teloto (čí vyšší je etcá eerge olel, tí éě je jejch ohyb ovlvě ezolelový sla) 0 vsozta ř telotě T 0, b ostata To asfalt, 0 5 Pa s (Uv. Qeeslad, s asfalt vlože do álevy r. 97) Reálé lyy: Přeos hybost robíhá rostředctví sráže, roto vsozta roste s teloto. / T0 C T ( T ) 0 T C T0 Stherladova rovce C Stherladova ostata

20 Měřeí vsozty Měřeí rychlost adající lčy: Rovováha ez tíhovo (F g ), hydrostatco vztlaovo (F v ) a třecí slo (F t ) v rychlost lčy, r oloěr lčy, s hstota lčy, l hstota aaly, vsozta aaly, g=9,8 s - tíhové zrychleí Zeě. 4 4 Fg πr s, Fv πr l, Ft 6πrv Stoesova rovce Ubbelohdeův vsozetr F F F g 4 πr v ( - ) g 6πrv s t l r g( s - l) 9v Měřeí rychlost růto aaly aláro: Posellova rovce πr 4 t 8l t růtoový čas obje aaly r oloěr aláry rozdíl tlaů a ocích aláry l déla aláry (hydrostatcý tla = hg): = Ct (C ostata vsozetr) soztí oefcet (5 C, v Pa s): voda 0,89 aceto 0,06 glycerol 500 rtť,56

Blaise Pascal Anders Celsius

Blaise Pascal Anders Celsius Sueství láte s g Blase Pascal 63 66 l Aders Celsus 70 744 Robert Boyle 67 69 George G. Stoes 89 903 Thomas Youg 773 89 Ludwg E. Boltzma 844 906 Joseh L. Gay-Lussac 778 850 Johaes D. a der Waals 837 93

Více

Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů

Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů Základí teoretický aarát a další otřebé zalosti ro úsěšé studium a strojí fakultě a k řešeí techických roblémů MATEMATIKA: logické uvažováí, matematické ástroje - elemetárí matematika (algebra, geometrie,

Více

Složení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc.

Složení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc. U 8 - Ústav oesí a zaovatelsé tehy FS ČVU Složeí soustav Přehled užívaýh oetaí Symbol efe Rozmě Název m hmotost_ hmotost_ hmotostí o. (odíl) v objem_ objem_ objemová o. (odíl) lat. mozství_ lat. mozství_

Více

Základní vlastnosti polovodičů

Základní vlastnosti polovodičů Základí vlastosti olovodičů Volé osiče áboje - elektroy -e m, - díry +e m V termodyamické rovováze latí Kocetrace osičů je možo vyjádřit omocí Fermiho eergie W F dotace doory ty N dotace akcetory ty P

Více

plynné směsi viriální rozvoj plynné směsi stavové rovnice empirická pravidla pro plynné směsi příklady na procvičení

plynné směsi viriální rozvoj plynné směsi stavové rovnice empirická pravidla pro plynné směsi příklady na procvičení lyé směs válí ovo lyé směs stavové ove emá avdla o lyé směs řílady a ovčeí Směs lyů eálé a deálí hováí eáměší vtahy: magatův áo: m...,, m Daltoův áo:...,,, Směs lyů válí ovo B C... R m m R B SISICKÁ ERMODYMIK:

Více

Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu:

Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu: Kietická teorie plyů - tlak tlak plyu p práce vykoaá při stlačeí plyu o d: d celková práce vykoaá při stlačeí plyu: kdyby všechy molekuly měly stejou -ovou složku rychlost v : hybost předaá při árazu molekuly

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1. Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé

Více

Analytické modely systémů hromadné obsluhy

Analytické modely systémů hromadné obsluhy Aalytcé odely systéů hroadé obsluhy ředěte teore hroadé obsluhy Kedallova lasface - ty SHO: X / Y / c / d / X ty stochastcého rocesu, terý osue říchody Y ty stochastcého rocesu terý osue délu obsluhy c

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

Metoda datových obalů DEA

Metoda datových obalů DEA Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího

Více

1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení

1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení . Čím se zabývá 4PP? zabývá se určováím deformace a porušováím celstvých těles v závslost a vějším zatížeí. Defce obecého apětí + apjatost v bodě tělesa -apětí - je to apětí v určtém bodě určtého tělesa.

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

á í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý

á í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý á ě ý ďě ř ě á č ý ů ě ž ě ý ě ý ý ě á ř ě ý š é é á á á ě ů á ě á á š é ó ě é á č ý ďě ě á á ý ý á Í š ě á é Í ř řě ž á ý č é ě á ě ě ůé ý č ů é ž á á ř ž á ň ý á á ě ř ý á ů š č á á ž á é č é ó ě á ů

Více

FYZIKA I. Newtonovy pohybové zákony

FYZIKA I. Newtonovy pohybové zákony VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová

Více

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g

10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g ..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Ivestice do rozvoje vzděláváí Iovace studia olekulárí a buěčé biologie Teto projekt je spolufiacová Evropský sociálí fode a státí rozpočte České republiky. Ivestice do rozvoje vzděláváí Předět: LRR/CHPI/Cheie

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

2.3. Fázové rovnováhy

2.3. Fázové rovnováhy .3. Fázové rovováhy Buee e zabývat heterogeíi outavai obahujícíi jeu či více ložek, které olu cheicky ereagují. takové říaě očet ložek oovíá očtu cheických iiviuí (látek), kterýi je outava tvořea. Fázová

Více

č Ú Í ř

č Ú Í ř č Ú ř ť á ě á é á ý ě ě é ů ě č ň ě ř é ú ř ž č ě ň ř á ě ě ě ř ů žý č ú ť ě ř ť á š šť č ž ý ů ů ň ě ř ě č é ř á ž ž ž ď š ě ň ů ú Ě é ř á ě ě ř ř ě ř á ý ý ú ř ěž ó ě ý ž ě ý ř ř á ě ě ř š ž š ř ú ý

Více

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI

10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou

Více

Komponenty výkonové elektrotechniky

Komponenty výkonové elektrotechniky Komoety výkoové elektrotechky Osovy ředášek:.. 3. 4. 5. 6. 7. 8. 9.... 3. Úvod do roblematky Výkoové dody Proudem řízeé součástky (výkoové trazstory, tyrstory) Moderí součástky tyrstorového tyu (GTO, IGCT,

Více

2.6.6 Sytá pára. Předpoklady: 2604

2.6.6 Sytá pára. Předpoklady: 2604 .6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,

Více

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.

Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru. Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D. HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

KAPALINY Autor: Jiří Dostál 1) Který obrázek je správný?

KAPALINY Autor: Jiří Dostál 1) Který obrázek je správný? KAPALINY Autor: Jiří Dostál 1) Který obráze je správný? a) b) 2) Vypočti hydrostaticý tla v nádobě s vodou na obrázu: a) v ístě A b) v bodě C c) Doplňové ateriály učebnici Fyzia 7 1 ) V bodě C na obrázu

Více

Přednáška č. 2 náhodné veličiny

Přednáška č. 2 náhodné veličiny Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující

Více

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í ý Í č š ě ů ý ě á ó á ě ě š ť é ř š ě Í é é Í á ř ř ž ů ž ý ů š ěá Í á é á ě ě ó ý ý ť á š ě ž é é č Á ž á Í ř Ě ó é ř á ú Í ě ý é ě š č ý Í ě ř ů ě ú ň Í ť é ě ě š Ě ó á ř č ě ó ů ř ř á Íř ží ř ě č ě

Více

DSpace VSB-TUO

DSpace VSB-TUO DSpace VSB-UO http://www.dspace.vsb.cz þÿx a d a b e z p e o s t í ~ e ý r s t v í / S a f e t y E gþÿx eae dr a g b es zep re es o s t í ~ e ý r s t v í. 2 9 r o. 4 / S þÿ M o~ o s t u p l a t í v r á

Více

íž í ě é á ří ž í é á í í éž š ě ž ě ú í í íší ří í á ý ě áší ě í ě čá í ě š é é í áš í á č é čá ří ď ďí ř á š ř á ř ě ě ž ý ě íší ě ě žáďá ž á í ž ě

íž í ě é á ří ž í é á í í éž š ě ž ě ú í í íší ří í á ý ě áší ě í ě čá í ě š é é í áš í á č é čá ří ď ďí ř á š ř á ř ě ě ž ý ě íší ě ě žáďá ž á í ž ě š áš ř é ř ě ý ě ě é ý ářů š í ů ý Ú á á ří č á í ě á ě ř ě í ř ý ě í žá á é ř ří á ěř í žá č š ě é ě ě ř ář é á Šú é č á ý í ž ř ě ý ě ší á ý í ží á ě ý ě í ď íč é ě ř á í ě á í ě ří č ý é ý é ě é í á

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

á ě ž ž á íš č Š á š ě ě ř ě í Ú ř č á ť žá á í Í ě ý í á ř ž í í í í á í ň á ý ě á ě ú ě ž á Í á Í í á ě š š á á ěř é á š á ý á ž č ž í é ě á é á ě á

á ě ž ž á íš č Š á š ě ě ř ě í Ú ř č á ť žá á í Í ě ý í á ř ž í í í í á í ň á ý ě á ě ú ě ž á Í á Í í á ě š š á á ěř é á š á ý á ž č ž í é ě á é á ě á ě ř é ě ří ž ý ř ý í ž ě ě ž ť č ě ě ž ř á ý á š ě í ů á ě í é á ž š é ě é ů í é řá é í í ě ří č ě é ř é ý ě í ě Í ž á čá í ě ý í á í ě á á í ž š ř á í č ý ž ř ý š ě ó áž ě ý íš á á ší í ě ý ř ě Ž ř ý

Více

Á Á Á š ě ČŇ ŘÁ Ě Á Č ÍŘÁ Ř Ě š ě ť Č Ú ú Č ě Ú ů ů š ě Ň ř ž ěř ů ř ě ř ň ř ž ů ř Ů ě ř š ě ě ú ř ž Č Č ť Ň ě ř š ěú ř ď Ž šú ě ř ř ř Á ě ř ř ť Č ř ř ď ě ě ž ř ě Č ó ě Ň ě ě ě š š ů ě ž ú ž Č šš úě ů

Více

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě

í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

Chemie cvičení 3 Soustavy s chemickou reakcí

Chemie cvičení 3 Soustavy s chemickou reakcí U 8 - Ústav oesí a zaovatelsé tehiy FS ČUT Chemie vičeí 3 Soustavy s hemiou eaí A. Reačí ietia 3/ eatou obíhá eae A + B C. oetae láty A a vstuu do eatou je,3 mol/l a láty B, mol/l. Ja se změí eačí yhlost,

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv

Více

11. Tepelné děje v plynech

11. Tepelné děje v plynech 11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

Geometrické uspořádání koleje

Geometrické uspořádání koleje Geoetricé uspořádáí oeje rají přechodice Otto Páše, doc. Ig. Ph.D. Ústav žeezičích ostrucí a staveb Tato prezetace ba vtvoře pro studijí úče studetů. ročíu baaářsého studia oboru ostruce a dopraví stavb

Více

č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í

č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í ňé ď ď É ý ě á ě ž ť á é áž ě ě ě ř á áž ě áž ě ň Í Í š Á Í Ó á ď ů á ď á á á ě á ý ě é Í Í é á ě é é Ú ý ů ň ě é á á ů ě á á áš é á á á á á á á ť Č ď ů ý ů ě á ď ý ď ď ý á ě ů á ď á á ů é á á ě ý á ý

Více

ž ž ž ž ž Č ž Ž Ž Ů Ů ž Č Ú Č ž Č Č Č Č Č Ů ž Ž ž Ž ž Ž Ů Ž ž ž Ů ž ž Ž ž ž Ů Č ž Ž ž ž Ú ž Ú Ú Ó ž Ů Ú ď Č Ú Ú Ú Č Ú Č Č Č Č Č Č ž Č Ú Č Ó Ú Č Ú Č Č Č Ú Ó Č Ú Č Č Č Č Č Ó Ó Ó Č Č Ž Ú ž ž Ú ž ž Ó Ó Ž Ů

Více

Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í

Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ýň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í ď Í ý ší ř Í é ě ř ó Í š ř Í í ň á ú í ř ě ý ě ší

Více

Ý Á Í ŘÁ Č Á

Ý Á Í ŘÁ Č Á Ý Á Í ŘÁ Č Á Ř Á úč ř č ě ů Ť é č ě š ř ž š é é š é é Ý ž š é ó ó ť š ž ů é Ť é ž é ů ú š ň ž ě š ž š é é ř š š ě š ó č é ů š ě ř š ť ť é ř ž ó ř š é Ť é ě š ř ě ř š ř ě ó é é ú ů Á ř é é é č š é ř ž ř

Více

Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.

Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice. 5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice

Více

ž ř ž ě ěá é é á ě ě ú Í ř Ť á é á ě ž š ž ě č ě ř é ý ě ř á ž ď á é á ě ě ř á á ýě ý ří ě š é ě Í ěá ť ž ř šř Á ý ř ú ý é ě ě č é ě ř á ú á á ť Í á ě

ž ř ž ě ěá é é á ě ě ú Í ř Ť á é á ě ž š ž ě č ě ř é ý ě ř á ž ď á é á ě ě ř á á ýě ý ří ě š é ě Í ěá ť ž ř šř Á ý ř ú ý é ě ě č é ě ř á ú á á ť Í á ě ú á áč ří ěř á é ý Í ř á ž é ž é á ž ň ěá ť á é á é ě ř Í ě é á ý ý ý ř ě é ř é ř ě á Í ž ě é č é é ý š ř ú Í á é ě ě ý ů ř á č á ž á č ěá č é č á ž ř ž ě ěá é é á ě ě ú Í ř Ť á é á ě ž š ž ě č ě ř é ý

Více

č š š ř ř Í ů č Ě Á Š ŠÁ Ř Ď É Í Ě Í Í čí ž ě č é č ě ý Ž ř ě č ý ě ý ý ř ě š ý ě ť ý é é ě ě é ě é ř é ř Ť ě š ě ž ě é ě é é ů ě é ř ú ý ý é ěř ý ý š ý ý ž é é š ý š ě ý ř ř ř ě š ý ě ý ý ř ě é Ž é é

Více

Stísněná plastická deformace PLASTICITA

Stísněná plastická deformace PLASTICITA Stísěá asticá deformace PLASTICITA STÍSNĚNÁ PLASTICKÁ DEORACE VE STATICKY NEURČITÝCH ÚLOHÁCH Elasticé řešeí: N cos, N N cos. Největší síla, tero může prt přeést: N S. Prt přejde do ast. stav prví při zatěž.síle

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

PRŮMYSLOVÉ PROCESY. Přenos hybnosti III Doprava tekutin čerpadla a kompresory

PRŮMYSLOVÉ PROCESY. Přenos hybnosti III Doprava tekutin čerpadla a kompresory PRŮMYSLOVÉ PROCESY Přeos hybosti III orava tekti čeradla a komresory Prof. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

ý ů ř š á š ú ř ň ž Ú ř ž ň á á ř á ý ú Č ř á á ť ť Ň ř Ú ž ř ý ů ř š á š ú ř ň ž ý ú ř á ž á ň á á ň á ů á á ž ř ř ř ž ř ž š š ýš řá ý ů á áš řá ý ř á ů ř ý á áš ř á ž ý á ň á á á řá áž á á á ň á á ž

Více

SRÁŽECÍ REAKCE. Srážecí reakce. RNDr. Milan Šmídl, Ph.D. Cvičení z analytické chemie ZS 2014/

SRÁŽECÍ REAKCE. Srážecí reakce. RNDr. Milan Šmídl, Ph.D. Cvičení z analytické chemie ZS 2014/ 1.1.01 SRÁŽECÍ REACE RNDr. Mila Šídl, Ph.D. Cvičeí z aalytické cheie ZS 01/015 Srážecí reakce působeí srážedla a ějakou látku vziká obtížě rozpustá látka sražeia vzik takové sražeiy je popsá součie rozpustosti

Více

š ý é á ě ý ěž é á áž íž š í á š íř á ší ř í ě ž é ž š ř í í ě ž á á íž č í ě í í ě á í á č ž á ý ě š ť ř ů ý ř í é á ž í éč é í č ý á ň á í ž ě á í ž

š ý é á ě ý ěž é á áž íž š í á š íř á ší ř í ě ž é ž š ř í í ě ž á á íž č í ě í í ě á í á č ž á ý ě š ť ř ů ý ř í é á ž í éč é í č ý á ň á í ž ě á í ž Š Í Ř Ě É Í Ř Á Ř Á Í É á ý á ý í é á í ž č í é ř ý č í í í ý žš ě á í é í ě í í ě é á ž š č í í ů á č é á š ú ž í ř á í á é í úč ý ěšé í í é á ř é íú é í ů ří š í á í ří š á ě í í š ř í ž í ě á ž é ě

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

ř í ší é ě é ří č é č é é š í ě é é á č ý á é ř ě ý ů é é ó ó í ě ěá í ž ě ší ž é á ó ě í ří é é ě ů Ť é ř ý á ě ší ý ž é á í žň á ý é ž í á á ří ž š

ř í ší é ě é ří č é č é é š í ě é é á č ý á é ř ě ý ů é é ó ó í ě ěá í ž ě ší ž é á ó ě í ří é é ě ů Ť é ř ý á ě ší ý ž é á í žň á ý é ž í á á ří ž š ř í ší é ě é ří č é č é é š í ě é é á č ý á é ř ě ý ů é é ó ó í ě ěá í ž ě ší ž é á ó ě í ří é é ě ů Ť é ř ý á ě ší ý ž é á í žň á ý é ž í á á ří ž š Í ě í š í é í čá í š ý ó ý í ř ě ě ý ř ě ší é ý ý ě

Více

4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb

4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb 4.MITÁNÍ VOLNÉ 4. Lárí ktáí (harocký osclátor v fyzc) Vl časý pohy hotého odu j ktavý pohy. táí ud lárí, jstlž síla, ktrá př výchylc x vrací hotý od do rovovážé polohy, j úěrá výchylc F x (4..) kostata

Více

Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á

Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á Ý Á Í ŘÁ Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á ř ů ý Ť Ž ř ř č Í Á ď č ě ř ú ž ě ř ý ý ů řů č ú č ř ž ě ú ž ř ť č ř Ť ú ř ě š ř ý ž ú ě č ý ý ú Ř ú ěš ě ě ř ř č ž ě ř ě ř ě Í ě ý š ý ž šš ě šč ř ř š ř č ý ř ř ý ř

Více

Dynamická analýza rámu brdového listu

Dynamická analýza rámu brdového listu Dacá aalýza ráu rovéo lstu MODELOVÁNÍ MECHANICKÝCH SOUSTAV Šo Kovář 0..0 Brový lst 8..0 Brový lst průřez čů. orí če. olí če. Postrace. áě Tp závěsů těe 8..0 Použté ozačeí sol pops jeota sč oefcet tlueí

Více

Didaktika výpočtů v chemii

Didaktika výpočtů v chemii Didaktika výpočtů v cheii RNDr. ila Šídl, Ph.D. 1 Didaktické zpracováí Pojy: olárí hotost (), hotostí zloek (w), látková ožství (), olárí obje ( ), Avogadrova kostata N A, látková a hotostí kocetrace (c,

Více

ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó

ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó ř í í í í á ř Ť ří Í č á ě á ť ř řá ý á í í á ď Í Ě

Více

á ří á č á á á ÍŽ é á ž ř ž ě ž á é á š ó á é é č é ě é ž é é ř ž č é č é č čá á ý é ý é č é Ě á ř ů á č é ž š ě Í ř ř řěř é É ě č š á ů ň é ó ť ě ě ř

á ří á č á á á ÍŽ é á ž ř ž ě ž á é á š ó á é é č é ě é ž é é ř ž č é č é č čá á ý é ý é č é Ě á ř ů á č é ž š ě Í ř ř řěř é É ě č š á ů ň é ó ť ě ě ř á ří á č á á á ÍŽ é á ž ř ž ě ž á é á š ó á é é č é ě é ž é é ř ž č é č é č čá á ý é ý é č é Ě á ř ů á č é ž š ě Í ř ř řěř é É ě č š á ů ň é ó ť ě ě ř š ť é ž á ťř ář ě ě á é é č é š č ť é ě é é č ž č

Více

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě Í Á Í Ý Á Ú Ř Č Í Í č ř á ý š á ý í í č í í ě í ž ě í č í á í í í í č í í á í ěž ě á í č í ěř í é ýš ý á á ě í í š ů í á í ů č í ž í ž í áš ě ě á é ě á í é š í é ř é á é á í á ě ž áž í ý č á í ž ý ě ší

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

íž ě íž á ť ř ť í ž ě ě á í ň á í á í ů ů íž ď ř ť šíř é ě ě ě ř í ší íř ý ý ů éříš éš ěž ě á í á í ř é šíř ý ěží č ě š é í í ř í á í á í ž ž é ř é í

íž ě íž á ť ř ť í ž ě ě á í ň á í á í ů ů íž ď ř ť šíř é ě ě ě ř í ší íř ý ý ů éříš éš ěž ě á í á í ř é šíř ý ěží č ě š é í í ř í á í á í ž ž é ř é í Í Ý ČÁ Ú ý ší é č ý ůž í š é á é í ř š ř ů ě í í áří ě ž í á é á ě é í ž ě á á ď ří ě č é í í í í ž ě ý á ý ů č í ý ř ě ž í í í í š í í č í ěž ž ž ř é í á ř í í ě í ž í č ě ží ř ž é ř ě š ě ž á í žší é

Více

čá í ř í č í ý á í Č Íí í ý ů č šť í ěř í í ž ůž ý á Ž ý šť ř í í á í á í ý á ů ěž ří š ě í ů ě č ě á ř ší ě ř á í ú á Č í á í ě ý í ř á Š ě Š Š ý ď ě

čá í ř í č í ý á í Č Íí í ý ů č šť í ěř í í ž ůž ý á Ž ý šť ř í í á í á í ý á ů ěž ří š ě í ů ě č ě á ř ší ě ř á í ú á Č í á í ě ý í ř á Š ě Š Š ý ď ě ř á í Č š š úč á á č ý ě í ň á š ó řá š á í á č á č ýú ří ž í ř í ř í á í ř í í á í í í í č ý ý ší í á í ú á í řá Ž čá í ž ří í ů Íí ž á á á í ý ěří ý ů á á ý ó í á í ý ů řá č ý ý á č ř í í íú ý ř š í

Více

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý

á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý á á á é áí ř ý Čá áš ř ý ý á Š ář á Šá á á č ů á á ř ř éč č á č Č á ž á ř ů áš é á ž á Í á ř é úř Ž š ř á š úč á ř Ž é ú ů é č č é á ž á řá á á áš š úř ý á á á ý á Ž š é á á ř ů á á ř á ú ů é á Ž é ř á

Více

řá ó á ú ú š š ř č é ě ě á é č ě š č č á ě í Ž š ě ř č é ž ř č é šč š ž é á č ř á ě á ě á é é ž í ř á é ď ě šč í šč ěšť čš ó ž é é ě ž é ď é ší ě ž é

řá ó á ú ú š š ř č é ě ě á é č ě š č č á ě í Ž š ě ř č é ž ř č é šč š ž é á č ř á ě á ě á é é ž í ř á é ď ě šč í šč ěšť čš ó ž é é ě ž é ď é ší ě ž é é é ě í ří í é č á é ě í Ž é í ě ú ť á ď á ý ž ů é ď á ř é č ě ěšť é ě č č ě ú é í í ě í á é ě š ě í ý ý í ú í ó ď ý í ěž í ě á á í ě ý š ě í í é ď Č Á Č ý á ě ě ě ůž ř ě š ě á ě í á é ž í í á ý á á ž

Více

ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž

ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž á ůž č á č á č á á ň á č á á ů ěř ů ěř á ě ř ň á č č ý ý ě š ě žá á ý á ř ě ú ř á ž ž á ř ě ě Í ě á á č ě á ř ě á ř ř ě ý ú ť ř á á ě ě á á ěě ý á š Ť á ě á á š Í á ž á ě ě ž ě á á á á ě ů ž š ě ý ř Ž

Více

MECHANICKÉ KMITÁNÍ NETLUMENÉ

MECHANICKÉ KMITÁNÍ NETLUMENÉ MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

í í ř č í Í í á é á ý ář ž ř ě Í é í í í ó í ž í á í ď í ě í ď á ě é č é ž š í č é ó ž ší čí ší é í í ň ě á ě é á ě č ě Í ž ř í á á í í ě ší ě é ě á ě

í í ř č í Í í á é á ý ář ž ř ě Í é í í í ó í ž í á í ď í ě í ď á ě é č é ž š í č é ó ž ší čí ší é í í ň ě á ě é á ě č ě Í ž ř í á á í í ě ší ě é ě á ě í í ř č í Í í á é á ý ář ž ř ě Í é í í í ó í ž í á í ď í ě í ď á ě é č é ž š í č é ó ž ší čí ší é í í ň ě á ě é á ě č ě Í ž ř í á á í í ě ší ě é ě á ě ž ý á ž ý á ž ř ě í ý ř Í ě é ý ě ý ž ž ř í ě í ý

Více

é ý čí á ří ř čí ě ř ří í ř š í ě á ě íč ý í á říš í ří ě ů ž ří á ř č á č ž ří ě á ě ý ří ů á á ří ž Ž ý ě ý ů í á ří ě Š čí ě é é č í ů í ů ě ě ý á

é ý čí á ří ř čí ě ř ří í ř š í ě á ě íč ý í á říš í ří ě ů ž ří á ř č á č ž ří ě á ě ý ří ů á á ří ž Ž ý ě ý ů í á ří ě Š čí ě é é č í ů í ů ě ě ý á Í éá í é í á ř í í ů á á čí á é Í ří Í é ř čí á í č á ř í ě é í é č é ř é ř Ž ý é ó ž č í Ž ě ěž ř č ř ší ř í ří ě á í ň ří Ž š é š ě í ý š á í š ěž í é é ý é ý ů ří č éž í ý éú í č á íž ý ó íž ý ó čí

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)

Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228) Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova

Více

Ý áš á í é ť š í

Ý áš á í é ť š í ří ď ě ě é ř ý ří ý é úř á ú ě ě ř ář í ší ž í ř í í Í ř ý áš ě ů é í ď Í ř ý řá óš í áš í ý í ř š í á á ř ří ž ě ž ď š ě í í í á žá ý á Í ÍŽ Š Á Ó ř č í Í é ž é ž á í á á Ž ř ě ž ú á á č ě ě í ěž á í

Více

II. Soustavy s konečným počtem stupňů volnosti

II. Soustavy s konečným počtem stupňů volnosti Jiří Máca - atedra echaiy - B35 - tel. 435 4500 aca@fsv.cvut.cz. Pohybové rovice. Vlastí etlueé itáí 3. Vyuceé etlueé itáí 4. Volé etlueé itáí 5. Metoda ostat poddajosti 6. Přílady 7. Staticá odezace 8.

Více

á í í á í í ž ší ě á ě é á ě á ř í Í ě á ě Č á í á é é é á í ý č ý ě ší ý ž š é č é é ě š ě í í í í á í ý ř č é ř í čá í ř ě é í í ě é ř ě é ěč é ě í

á í í á í í ž ší ě á ě é á ě á ř í Í ě á ě Č á í á é é é á í ý č ý ě ší ý ž š é č é é ě š ě í í í í á í ý ř č é ř í čá í ř ě é í í ě é ř ě é ěč é ě í č É Í É Í Á Í Ž Ě Í Á Í čá í í í ě á í í ě é čá í č ý á é í á ř ů ž ěž ě ý í ý á ý íž á ř í ě á ý ž í ě á í říš ě ř ě č í í í ě á ř ě ů á é ř í ř í ě í á ě íč ý á ý š á á ěží ů Č á í č é á í ů č í ř ž

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

TERMODYNAMICKÁ ROVNOVÁHA

TERMODYNAMICKÁ ROVNOVÁHA TERMODYNAMICÁ ROVNOVÁHA odíky saovolost evatost pocesů a podíky ovováhy V ovováze pobíhají pouze vaté pocesy Systé zolovaý [q,v,w ], adabatcký [q] V toto systéu etope stoupá př evatých dějích ds> a dosahuje

Více

( NV, )} Řešením Schrödingerovy rovnice pro N částic

( NV, )} Řešením Schrödingerovy rovnice pro N částic Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy

Více

í ě ý ě ý á ů ě ší á ž á ý á ž ý č ě ě á ý ě ě ě á ž é é ě ř á ů š ý ů ě é í í í č í í ě ř ý é ě ě ě é ě á í á č ý í ří ž ě ý á í č í í í ří í ý á í ž

í ě ý ě ý á ů ě ší á ž á ý á ž ý č ě ě á ý ě ě ě á ž é é ě ř á ů š ý ů ě é í í í č í í ě ř ý é ě ě ě é ě á í á č ý í ří ž ě ý á í č í í í ří í ý á í ž Ě ĚŠŤ É ří á ý í á ý í Í á í ší ý ň í á ý í čí á ě í ěšé á ě ž ě ť á á ú í é ý ý á ž á ý í á í í š ě í í ří á ž ě ší č é šíř í í ě í í é í ďá á í č ě í á í ý á í ř í á á ž ď á á é í ř á ý í č ý ů č š í

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

ý Í ť č í ý úř í á ěř ý í ří í Č í ě č á Č í ě č áš ý á ě í Č á í Č á á ě í Č á á á í š č á ž í á ě á ýš č í ří š ú ýš č ě čá č ú í š š í ů čá č í á í ří ýš č á á á í íí í Ž í á í ž í áš á á ž ý ě í ý

Více

áš ú ě á á á ž č ý ý í ů é é š ě ě á š ř š ě ů š í ě é ů ě š ž ž í ů ě í í ů ý á í ší ě ž á é á ž í ě é ří á ě č ň š ř ě č ěň é ýš ř é á í é ěň ů ě á

áš ú ě á á á ž č ý ý í ů é é š ě ě á š ř š ě ů š í ě é ů ě š ž ž í ů ě í í ů ý á í ší ě ž á é á ž í ě é ří á ě č ň š ř ě č ěň é ýš ř é á í é ěň ů ě á áš ú ě á á á ž č ý ý í ů é é š ě ě á š ř š ě ů š í ě é ů ě š ž ž í ů ě í í ů ý á í ší ě ž á é á ž í ě é ří á ě č ň š ř ě č ěň é ýš ř é á í é ěň ů ě á ž á č ý á ř á š í á í ý ž š ě ě Ž á á ě ě ě ř áří ž

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

ě š á š í á ý í á ž ý í á í ží í í í á é ě é ř š í í íž í í ě ě é é ě šíř é á í ř ě ě ú ě í á í ě ř ě é řá é Č é ť í í á é ů ěí ť í í š ý íš ě ý šů ž

ě š á š í á ý í á ž ý í á í ží í í í á é ě é ř š í í íž í í ě ě é é ě šíř é á í ř ě ě ú ě í á í ě ř ě é řá é Č é ť í í á é ů ěí ť í í š ý íš ě ý šů ž ě š á š í á ý í á ž ý í á í ží í í í á é ě é ř š í í íž í í ě ě é é ě šíř é á í ř ě ě ú ě í á í ě ř ě é řá é Č é ť í í á é ů ěí ť í í š ý íš ě ý šů ž š é ě ě ř á í í ř á ří š ů ě ě ý í č í á í é ý á í

Více

ž í ý á í á ř í í é á ý ě ž á í ří é ý í ž č ý ě ý éšíř á š á ž á í ě ý ě č é ž í é á ž ří ž í í á á ě í ý ě í í čí ý č é ýš íč á é í é šňů é é á í á

ž í ý á í á ř í í é á ý ě ž á í ří é ý í ž č ý ě ý éšíř á š á ž á í ě ý ě č é ž í é á ž ří ž í í á á ě í ý ě í í čí ý č é ýš íč á é í é šňů é é á í á É í č é á í ž ář í ý ý á í íž ě á ý é í ě í í ž ý ý ý ý ž ě ř ý á í í ý í á é ž Č é á á á á ě č é í é ší č é é č š ř á é č í ě í č č á é ě ž á í ý ř ř í ř í ž é ě é í ž ů á í í ě š é ř é ý ý Č Č é á ůč

Více

ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž

ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž Á á ě á á ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž é ž é É ú á á ě é č ř á é ě ý ý ř ý á ý č

Více

Ě Č ě Š Í Č Ě ě č ň

Ě Č ě Š Í Č Ě ě č ň Ť É Í Ě Č ě Š Í Č Ě ě č ň Í č č č Á Ť č Ť Í ť č Ť č č ě ě ž ě Ť Í ě Ž č ě ě ě ž Ž Í š ť Ď ž č ě ě š Ť ě ě Ě ě š ě ě č Í ž ě ě š Ž šš ž Í Ť Ž ž ě ž Ť Ť ž ď č š ž ž Í Ť š ě Ť ě ž č ď č č ž Í č š Ž Ž Í č

Více

ůž íč á Ě Éč Í ř á í Ř ř ř šň ý é Í í ó Í ě ě Í Í á í á í ý é ě ž ěží á í ě í é Í í Í š ý á Í š ý é č íří ý ěž ž í Í Í í í í é č á č ě ě á ě č ř Ť ě í

ůž íč á Ě Éč Í ř á í Ř ř ř šň ý é Í í ó Í ě ě Í Í á í á í ý é ě ž ěží á í ě í é Í í Í š ý á Í š ý é č íří ý ěž ž í Í Í í í í é č á č ě ě á ě č ř Ť ě í ůž č á Ě Éč Í ř á Ř ř ř šň ý é Í ó Í Í Í á á ý é ž ží á é Í Í š ý á Í š ý é č ř ý ž ž Í Í é č á č á č ř Ť ř ý ř Í č ž ň á á ř č é ř é Í ř č ř ž ž ý úč Í á á č á š é ř é é č č š ž Í ř ó Í ý ř ž áš á č é

Více

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více