Skupenství látek. s g. Blaise Pascal Anders Celsius
|
|
- Ladislav Bezucha
- před 6 lety
- Počet zobrazení:
Transkript
1 Seství láte s g Blase Pascal 6 66 l Aders Celss
2 Robert Boyle George G. Stoes Thoas Yog Ldwg. Boltza Joseh L. Gay-Lssac Johaes D. a der Waals 87 9
3 Seství láte Seství charatersta stav láty odle sodržost částc. Rozezáváe tř seství, lyé, aalé a evé. Seství lyé (g): Molely se volě ohybjí, vzdáleost ez ožňjí stlačováí. Plyy jso rozíavé, vylňjí vždy celý obje ádoby, do teré jso zavřey. Seství aalé (l): Molely se volě ohybjí, ale vzdáleost ez odovídají rovováze řtažlvých a oddvých terací, stlačováí vede relz. Kaalá tělesa ají roěý tvar, ale stálý obje. Seství evé (s): Polohy olel jso fováy v rystalové řížce, vyoávají je vbrace ole rovovážých řížových oloh. Pevá tělesa ají stálý tvar obje. Láty se v daé sesé stav vysytjí vždy v rčté rozezí tlaů a telot. Zěy seství jso dorovázey soový zěa fyzálích vlastostí láte. (T) evá láta aala čtvrté seství laza: ozovaý ly tvořeý ladý oty a volý eletroy. Nejedá se o seství v ravé slova sysl, rotože ly a laza eřechází soově, steň ozace se lyle zvyšje s teloto. 0 telota táí T Plyy a aaly se sohrě azývají tety.
4 Tla ly Tla : orálová složa síly F ůsobící a loch S: F S Jedoty tla: ascal: Pa = N - atosféra: at = 0 5 Pa řesě (středí atosfércý tla v Paříž řeočteý a hlad oře, tzv. orálí č stadardí tla) bar: bar = 0 5 Pa torr: torr =, Pa (hydrostatcý tla sloce rtt) s: s = 6,895 Pa (od er sqare ch) g g Shg (Hydrostatcý tla je vyvolaý tího aaly: hg S S S ) Tla ly vzá árazy olel ly a stě ádoby. dp dp fdt F f dt dp hybost ředaá stěě ádoby za čas dt hotost olely ly složa rychlost olely olá e stěě ádoby f očet árazů olel ly a stě ádoby za jedot čas
5 w, w y rhové frevece rotace ole os,y w 0 rhová frevece vbrace olely I oet setrvačost olely v rychlost vbračího ohyb v, y v, z v výchyla z rovovážé hodoty tr z y v 0 v vb vb rot tr I y z y w w w erge olel a evých láte Celová eerge olely ly (ř zaedbáí ezolelových terací a vějších sl) je sočte traslačí etcé eerge ( tr ), rotačí etcé eerge ( rot ), vbračí etcé eerge ( vb ), a vbračí otecálí eerge ( vb ): jedoatoová olela dvoatoová olela, y, z složy rychlost ohyb těžště hotost olely rystal v v v 0 v v v vb vb z y z y w
6 vartčí rc ztah ez teloto a středí hodoto eerge ly: rovovážé stav ř telotě T řadá a aždý vadratcý čle ve výraz ro celovo eerg středí hodota T/: jedoatoová olela T dvoatoová olela 7 T =,8.0 - J K - Boltzaova ostata Ato v rystal T R = N A = 8,4 J K - ol - olárí lyová ostata Molárí zochorcá teelá aacta d dt Udává, ja se zvýší eerge jedoho ol láty ř zvýšeí teloty o K C N A Molárí zochorcá teelá aacta deálího ly: Molárí zochorcá teelá aacta rystal (Dlogovo-Pettovo ravdlo): C R C R ztahy latí je ř vysoých telotách, dy se erojeví vatováí vbračí a rotačí eerge (t.j. T je ohe větší ež rozdíl ez eergetcý hlada); teelá aacta je obecě závslá a telotě
7 Ideálí ly Ideálí ly: Nejjedodšší odel ly. Jde o ly s ásledjící vlastost: a) Molely ají lový vlastí obje a eají žádé vtří stě volost (rotace, vbrace středí etcá eerge olely deálího ly je /T), tj. vešeré jejch srážy se stěa ádoby jso dooale elastcé b) Mez olela deálího ly eůsobí žádé terace Reálé lyy se řblžjí chováí deálího ly ř velé zředěí (=velé vzdáleost ez olela, t.j. je ožé zaedbat terace ez a zároveň je jejch vlastí obje zaedbatelý rot obje celé sostavy) a za vysoých telot (ř vysoé etcé eerg olel jso árazy a stěy ádoby elastcé). zdch se za orálí teloty a tla chová téěř jao deálí ly. Stavová rovce ly: Rovce osjící vztah ez tlae, teloto a objee rčtého ožství ly. Stavová rovce deálího ly = NT = RT, = RT hstota deálího ly: R = N A = 8,4 J K - ol - olárí lyová ostata = / olárí obje M M RT
8 Měje ádob tvar rychle o obje a stěách o loše S, v íž je N olel o hotost, ohybjících se rychlostí ve sěrech olých e stěá (e aždé stěě /6 z celového očt). Za čas dt arazí a stě ádoby všechy olely ze vzdáleost d <= dt, t.j. z obje Sdt, ohybjící se ve sěr této stěě (/6), tedy cele 6 N Hybost ředaá olelo stěě ř srážce: P Celová zěa hybost za čas dt: N N dp P Sdt Sdt 6 Tla ly: S d t F S olel dp S dt N Po vyjádřeí středí etcé eerge oocí teloty Zjedodšeé odvozeí stavové rovce deálího ly T N NT N stavová rovce deálího ly
9 (Pa) (ol - ) (Pa) Izochory, zobary a zotery deálího ly 9 6 zochora = ol - záo Gay-Lssacův / = T /T T (K) 9 6 zobara = Pa záo Charlesův / = T /T T (K) zotera T = 7 K záo Boylův-Marottův / = / (d ol - ) T dagra deálího ly zotery zobary... zochory
10 Sěs deálích lyů Parcálí tla: Tla, terý by vyvíjela složa lyé sěs, dyby byla v sostavě řítoa saotá za ja stejých odíe (telota, obje). Parcálí obje: Obje, terý by zajíala složa lyé sěs, dyby byla v sostavě řítoa saotá za ja stejých odíe (telota, tla). RT RT RT RT RT c RT RT... )... ( )... (... Daltoův záo adtvty arcálích tlaů Aagatův záo adtvty arcálích objeů arcálí tlay arcálí objey olárí zloy objeové zloy c olárí ocetrace
11 Stavové rovce reálého ly Stavové rovce reálého ly zohledňjí terace ez olela. a a - b RT - b RT RT - - b a Něteré další stavové rovce: RT - - b b) a der Waalsova stavová rovce va der Waalsovy oefcety -složové sěs: a ( T / a,b va der Waalsovy oefcety ro daý ly a/ orece a řtažlvé terace, tzv. vtří tla (zvyšjí ohez ly, ůsobí ve sěr vějšího tla). Středí vzdáleost ez olela r roste s /, řtažlvé terace lesají s r -6, odtd úěrost -. b orece a oddvé terace, vyločeý obje (obje zajíaý jedí ole olel) Redlchova-Kwogova rovce ejřesější dvoaraetrová stavová rovce RT C brt - a a c B RT A0 e - 6 T T 8 oefcetů: a, b, c, A 0, B 0, C 0,, a a / b b Beedctova- Webbova-Rbova (BWR) rovce
12 (MPa) a der Waalsovy zotery a der Waalsovy zotery ro CO e oblast, de a der Waalsova zotera osclje, dochází reálého ly e zaalňováí C 40 C C rtcá zotera C 0 C 0 C C (d ) Př rtcé telotě slye a a a zoterě do fleího bod: rtcá telota a der Waalsova ly: T 8a 7bR T T 0
13 aala Zaalňováí lyů Ply je ožé zaalt je tehdy, je-l jeho telota žší, ež rtcá telota. oblast oestece ly a aaly se tla ly eěí s objee, eboť olely ř zešováí obje lyé fáze řecházejí do aalé fáze (tzv. tla asyceých ar č teze ar) K=rtcý bod CO Tla a olárí obje asyceých ar ly ř rtcé telotě se azývají rtcý tla a rtcý olárí obje, ly T ( C) (MPa) N -46,9,90 O -8,6 5,050 CO,0 7,77 aala + ly,
14 Teze ar ad aalo Teze ar ad aalo: Tla, ř teré je za daé teloty rychlost vyařováí aaly stejá jao rychlost odezace, t.j. lyé a aalé seství jso v rovováze. = et Teze áry roste s teloto: < et g B log A - Agstova rovce T A, B ostaty l Telota, ř teré teze ar dosáhe vějšího tla, se azývá telota var. Raoltův záo: teze ar -té složy sěs Ø teze ar ad čsto -to složo olárí zloe -té složy ve sěs Teze ar (ř 0 C, v Pa): voda,4 aceto 4, glycerol, rtť, Teze ar ad dvosložovo sěsí: Molárí zloe složy () v arách - y - Pára obsahje ve srováí s aalo více té složy, terá je těavější (=á vyšší tez ar)
15 Povrchové aětí Povrchové aětí je zůsobeo vtahováí olel aaly acházejících se oblíž ovrch dovtř v důsled erovováhy řtažlvých sl dw ds dw ráce vyaložeá a zvětšeí ovrch aaly o ds jedota J - = N - lv ovrchových sl a chováí aaly roste s lesající objee aaly. Působeí ovrchových sl zajíá aalé těleso taový tvar, aby ělo za daých odíe co eješí ovrch (lový tvar, eůsobí-l žádá další síla) Rá s blao z ýdlového rozto l d F dw ds K roztržeí ovrchové vrstvy řeze o délce l je otřeba síla o velost F/l olá řez a tečá ovrch Fd ld F l Závslost ovrchového aětí a telotě: ( T - T / ) ötvösova rovce =, 0-7 J K - ol -/ T rtcá telota
16 Jevy sovsející s ovrchový aětí Sáčeí ovrchů evých láte aala ls gs cos gl otatí úhel gs > ls < 90 - aala sáčí ovrch gs < ls > 90 - aala esáčí ovrch Přetla a zařveé ovrch aaly R R R, R oloěry řvost Yogova-Lalaceova rovce voda-slo: = 0 rtť-slo: = 40 <90 elevace >90 derese alárí elevace: zvedá sloec aaly v aláře, dod se estaví rovováha s hydrostatcý tlae sloce cos hg h a cos ag h h
17 Měřeí ovrchového aětí R Metoda vsící ay: ( hotost ay) g πr s g πrs 90 s Wlhelyho destča: ěří se síla otřebá odtržeí destčy od ovrch aaly F l cos Wlhelyho rovce l obvod destčy Povrchové aětí (rot vzdch, v N - ): voda, 5 C 7 aceto, 0 C 4 glycerol, 0 C 6 rtť, 0 C 487
18 Staoveí rtcé celárí ocetrace SDS dodecylslfát sodý, SDS H O, 75 N 5 M SDS, 5 N / N l c cc l c cc 40 l c l[c/ol l - ]
19 sozta sozta aal: Přeos hybost rodících olel aaly v říčé sěr, zůsobeý ezolelárí terace. Př roděí jso rychlej teocí vrstvy aaly bržděy oalej teocí. Třecí síla ez vrstva aaly je dáa vztahe d z d ( T) e dz F S d Telotí závslost vsozty 0 -b( T -T0 ) vsoztí oefcet S styčá locha vrstev Kaaly: sozta lesá s teloto (čí vyšší je etcá eerge olel, tí éě je jejch ohyb ovlvě ezolelový sla) 0 vsozta ř telotě T 0, b ostata To asfalt, 0 5 Pa s (Uv. Qeeslad, s asfalt vlože do álevy r. 97) Reálé lyy: Přeos hybost robíhá rostředctví sráže, roto vsozta roste s teloto. / T0 C T ( T ) 0 T C T0 Stherladova rovce C Stherladova ostata
20 Měřeí vsozty Měřeí rychlost adající lčy: Rovováha ez tíhovo (F g ), hydrostatco vztlaovo (F v ) a třecí slo (F t ) v rychlost lčy, r oloěr lčy, s hstota lčy, l hstota aaly, vsozta aaly, g=9,8 s - tíhové zrychleí Zeě. 4 4 Fg πr s, Fv πr l, Ft 6πrv Stoesova rovce Ubbelohdeův vsozetr F F F g 4 πr v ( - ) g 6πrv s t l r g( s - l) 9v Měřeí rychlost růto aaly aláro: Posellova rovce πr 4 t 8l t růtoový čas obje aaly r oloěr aláry rozdíl tlaů a ocích aláry l déla aláry (hydrostatcý tla = hg): = Ct (C ostata vsozetr) soztí oefcet (5 C, v Pa s): voda 0,89 aceto 0,06 glycerol 500 rtť,56
Blaise Pascal Anders Celsius
Sueství láte s g Blase Pascal 63 66 l Aders Celsus 70 744 Robert Boyle 67 69 George G. Stoes 89 903 Thomas Youg 773 89 Ludwg E. Boltzma 844 906 Joseh L. Gay-Lussac 778 850 Johaes D. a der Waals 837 93
Základní teoretický aparát a další potřebné znalosti pro úspěšné studium na strojní fakultě a k řešení technických problémů
Základí teoretický aarát a další otřebé zalosti ro úsěšé studium a strojí fakultě a k řešeí techických roblémů MATEMATIKA: logické uvažováí, matematické ástroje - elemetárí matematika (algebra, geometrie,
Složení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc.
U 8 - Ústav oesí a zaovatelsé tehy FS ČVU Složeí soustav Přehled užívaýh oetaí Symbol efe Rozmě Název m hmotost_ hmotost_ hmotostí o. (odíl) v objem_ objem_ objemová o. (odíl) lat. mozství_ lat. mozství_
Základní vlastnosti polovodičů
Základí vlastosti olovodičů Volé osiče áboje - elektroy -e m, - díry +e m V termodyamické rovováze latí Kocetrace osičů je možo vyjádřit omocí Fermiho eergie W F dotace doory ty N dotace akcetory ty P
plynné směsi viriální rozvoj plynné směsi stavové rovnice empirická pravidla pro plynné směsi příklady na procvičení
lyé směs válí ovo lyé směs stavové ove emá avdla o lyé směs řílady a ovčeí Směs lyů eálé a deálí hováí eáměší vtahy: magatův áo: m...,, m Daltoův áo:...,,, Směs lyů válí ovo B C... R m m R B SISICKÁ ERMODYMIK:
Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu:
Kietická teorie plyů - tlak tlak plyu p práce vykoaá při stlačeí plyu o d: d celková práce vykoaá při stlačeí plyu: kdyby všechy molekuly měly stejou -ovou složku rychlost v : hybost předaá při árazu molekuly
Téma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.
Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé
Analytické modely systémů hromadné obsluhy
Aalytcé odely systéů hroadé obsluhy ředěte teore hroadé obsluhy Kedallova lasface - ty SHO: X / Y / c / d / X ty stochastcého rocesu, terý osue říchody Y ty stochastcého rocesu terý osue délu obsluhy c
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
Metoda datových obalů DEA
Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího
1. Čím se zabývá 4PP? zabývá se určováním deformace a porušováním celistvých těles v závislosti na vnějším zatížení
. Čím se zabývá 4PP? zabývá se určováím deformace a porušováím celstvých těles v závslost a vějším zatížeí. Defce obecého apětí + apjatost v bodě tělesa -apětí - je to apětí v určtém bodě určtého tělesa.
Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
á í ě ý ďě í í í í í í ř ě á íč ý ů ě ž í ě ý ě ý í ý ě á í í ří ě í í í í ý š í é é á í í á á ě ů á í ě á á í íš é ó ě í í í é í á í č ý ďě ě á á ý ý
á ě ý ďě ř ě á č ý ů ě ž ě ý ě ý ý ě á ř ě ý š é é á á á ě ů á ě á á š é ó ě é á č ý ďě ě á á ý ý á Í š ě á é Í ř řě ž á ý č é ě á ě ě ůé ý č ů é ž á á ř ž á ň ý á á ě ř ý á ů š č á á ž á é č é ó ě á ů
FYZIKA I. Newtonovy pohybové zákony
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA AKULTA STROJNÍ YZIKA I Newtoovy pohybové zákoy Prof. RNDr. Vlé Mádr, CSc. Prof. Ig. Lbor Hlváč, Ph.D. Doc. Ig. Ire Hlváčová, Ph.D. Mgr. Art. Dgr Mádrová
10 částic. 1,0079 1, kg 1, kg. 1, kg. 6, , kg 0, kg 1,079g
..7 oláí veličiy I Předpoklady: 0 Opakováí z iulé hodiy: Ato uhlíku A C C je přibližě x těžší ež ato H. Potřebujee,0 0 atoů uhlíku C abycho dohoady získali g látky. Pokud áe,0 0 částic látky, říkáe, že
Inovace studia molekulární a buněčné biologie
Ivestice do rozvoje vzděláváí Iovace studia olekulárí a buěčé biologie Teto projekt je spolufiacová Evropský sociálí fode a státí rozpočte České republiky. Ivestice do rozvoje vzděláváí Předět: LRR/CHPI/Cheie
Lineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
2.3. Fázové rovnováhy
.3. Fázové rovováhy Buee e zabývat heterogeíi outavai obahujícíi jeu či více ložek, které olu cheicky ereagují. takové říaě očet ložek oovíá očtu cheických iiviuí (látek), kterýi je outava tvořea. Fázová
č Ú Í ř
č Ú ř ť á ě á é á ý ě ě é ů ě č ň ě ř é ú ř ž č ě ň ř á ě ě ě ř ů žý č ú ť ě ř ť á š šť č ž ý ů ů ň ě ř ě č é ř á ž ž ž ď š ě ň ů ú Ě é ř á ě ě ř ř ě ř á ý ý ú ř ěž ó ě ý ž ě ý ř ř á ě ě ř š ž š ř ú ý
10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
Komponenty výkonové elektrotechniky
Komoety výkoové elektrotechky Osovy ředášek:.. 3. 4. 5. 6. 7. 8. 9.... 3. Úvod do roblematky Výkoové dody Proudem řízeé součástky (výkoové trazstory, tyrstory) Moderí součástky tyrstorového tyu (GTO, IGCT,
2.6.6 Sytá pára. Předpoklady: 2604
.6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,
Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný
Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR
HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.
S k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.
HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická
KAPALINY Autor: Jiří Dostál 1) Který obrázek je správný?
KAPALINY Autor: Jiří Dostál 1) Který obráze je správný? a) b) 2) Vypočti hydrostaticý tla v nádobě s vodou na obrázu: a) v ístě A b) v bodě C c) Doplňové ateriály učebnici Fyzia 7 1 ) V bodě C na obrázu
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í
ý Í č š ě ů ý ě á ó á ě ě š ť é ř š ě Í é é Í á ř ř ž ů ž ý ů š ěá Í á é á ě ě ó ý ý ť á š ě ž é é č Á ž á Í ř Ě ó é ř á ú Í ě ý é ě š č ý Í ě ř ů ě ú ň Í ť é ě ě š Ě ó á ř č ě ó ů ř ř á Íř ží ř ě č ě
DSpace VSB-TUO
DSpace VSB-UO http://www.dspace.vsb.cz þÿx a d a b e z p e o s t í ~ e ý r s t v í / S a f e t y E gþÿx eae dr a g b es zep re es o s t í ~ e ý r s t v í. 2 9 r o. 4 / S þÿ M o~ o s t u p l a t í v r á
íž í ě é á ří ž í é á í í éž š ě ž ě ú í í íší ří í á ý ě áší ě í ě čá í ě š é é í áš í á č é čá ří ď ďí ř á š ř á ř ě ě ž ý ě íší ě ě žáďá ž á í ž ě
š áš ř é ř ě ý ě ě é ý ářů š í ů ý Ú á á ří č á í ě á ě ř ě í ř ý ě í žá á é ř ří á ěř í žá č š ě é ě ě ř ář é á Šú é č á ý í ž ř ě ý ě ší á ý í ží á ě ý ě í ď íč é ě ř á í ě á í ě ří č ý é ý é ě é í á
FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn
Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a
7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
á ě ž ž á íš č Š á š ě ě ř ě í Ú ř č á ť žá á í Í ě ý í á ř ž í í í í á í ň á ý ě á ě ú ě ž á Í á Í í á ě š š á á ěř é á š á ý á ž č ž í é ě á é á ě á
ě ř é ě ří ž ý ř ý í ž ě ě ž ť č ě ě ž ř á ý á š ě í ů á ě í é á ž š é ě é ů í é řá é í í ě ří č ě é ř é ý ě í ě Í ž á čá í ě ý í á í ě á á í ž š ř á í č ý ž ř ý š ě ó áž ě ý íš á á ší í ě ý ř ě Ž ř ý
Á Á Á š ě ČŇ ŘÁ Ě Á Č ÍŘÁ Ř Ě š ě ť Č Ú ú Č ě Ú ů ů š ě Ň ř ž ěř ů ř ě ř ň ř ž ů ř Ů ě ř š ě ě ú ř ž Č Č ť Ň ě ř š ěú ř ď Ž šú ě ř ř ř Á ě ř ř ť Č ř ř ď ě ě ž ř ě Č ó ě Ň ě ě ě š š ů ě ž ú ž Č šš úě ů
í í ú ř Í ř í á í é é é Í á ý ň ř í š í č í í á í í é í í í á á ó ě Í í ě í í í í í řá ů čč ř č á í í í ě á ě ě í á í š ť Í ě Í ř ě í ě č Í ř é č š ě
ú ř Í ř á é é é Í á ý ň ř š č á é á á ó Í řá ů čč ř č á á á š ť Í Í ř č Í ř é č š á č ý č é ó á č ř ů á č č š á ů á Í á á é č ú ó ť ý Í ř č é Í č š á ř á é á ř á ř ů ř ř á áž á Í ý é é č ý čů á é é é č
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
Chemie cvičení 3 Soustavy s chemickou reakcí
U 8 - Ústav oesí a zaovatelsé tehiy FS ČUT Chemie vičeí 3 Soustavy s hemiou eaí A. Reačí ietia 3/ eatou obíhá eae A + B C. oetae láty A a vstuu do eatou je,3 mol/l a láty B, mol/l. Ja se změí eačí yhlost,
Výpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
1. Přirozená topologie v R n
MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu
V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln
Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv
11. Tepelné děje v plynech
11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové
Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU
Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ
Geometrické uspořádání koleje
Geoetricé uspořádáí oeje rají přechodice Otto Páše, doc. Ig. Ph.D. Ústav žeezičích ostrucí a staveb Tato prezetace ba vtvoře pro studijí úče studetů. ročíu baaářsého studia oboru ostruce a dopraví stavb
č ňé ď í ďí É ý ě á ě ž č í í ť á é áž ě í í ě í ě ř á áž ě í í áž ě í í ň Í č í č č í
ňé ď ď É ý ě á ě ž ť á é áž ě ě ě ř á áž ě áž ě ň Í Í š Á Í Ó á ď ů á ď á á á ě á ý ě é Í Í é á ě é é Ú ý ů ň ě é á á ů ě á á áš é á á á á á á á ť Č ď ů ý ů ě á ď ý ď ď ý á ě ů á ď á á ů é á á ě ý á ý
ž ž ž ž ž Č ž Ž Ž Ů Ů ž Č Ú Č ž Č Č Č Č Č Ů ž Ž ž Ž ž Ž Ů Ž ž ž Ů ž ž Ž ž ž Ů Č ž Ž ž ž Ú ž Ú Ú Ó ž Ů Ú ď Č Ú Ú Ú Č Ú Č Č Č Č Č Č ž Č Ú Č Ó Ú Č Ú Č Č Č Ú Ó Č Ú Č Č Č Č Č Ó Ó Ó Č Č Ž Ú ž ž Ú ž ž Ó Ó Ž Ů
Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ý ň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í
Í í É ť ď í é í ř ě ž ří á í í í í ů ě ě é ě É ž ě í á š ýň á ý ř ů á Í é ž ě ě í á ů á í í ří á ž é ř ě ř á á ř Í č ů í Í ž ří ě ý ě Í ě ří ř ší á í Í ď Í ý ší ř Í é ě ř ó Í š ř Í í ň á ú í ř ě ý ě ší
Ý Á Í ŘÁ Č Á
Ý Á Í ŘÁ Č Á Ř Á úč ř č ě ů Ť é č ě š ř ž š é é š é é Ý ž š é ó ó ť š ž ů é Ť é ž é ů ú š ň ž ě š ž š é é ř š š ě š ó č é ů š ě ř š ť ť é ř ž ó ř š é Ť é ě š ř ě ř š ř ě ó é é ú ů Á ř é é é č š é ř ž ř
Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.
5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice
ž ř ž ě ěá é é á ě ě ú Í ř Ť á é á ě ž š ž ě č ě ř é ý ě ř á ž ď á é á ě ě ř á á ýě ý ří ě š é ě Í ěá ť ž ř šř Á ý ř ú ý é ě ě č é ě ř á ú á á ť Í á ě
ú á áč ří ěř á é ý Í ř á ž é ž é á ž ň ěá ť á é á é ě ř Í ě é á ý ý ý ř ě é ř é ř ě á Í ž ě é č é é ý š ř ú Í á é ě ě ý ů ř á č á ž á č ěá č é č á ž ř ž ě ěá é é á ě ě ú Í ř Ť á é á ě ž š ž ě č ě ř é ý
č š š ř ř Í ů č Ě Á Š ŠÁ Ř Ď É Í Ě Í Í čí ž ě č é č ě ý Ž ř ě č ý ě ý ý ř ě š ý ě ť ý é é ě ě é ě é ř é ř Ť ě š ě ž ě é ě é é ů ě é ř ú ý ý é ěř ý ý š ý ý ž é é š ý š ě ý ř ř ř ě š ý ě ý ý ř ě é Ž é é
Stísněná plastická deformace PLASTICITA
Stísěá asticá deformace PLASTICITA STÍSNĚNÁ PLASTICKÁ DEORACE VE STATICKY NEURČITÝCH ÚLOHÁCH Elasticé řešeí: N cos, N N cos. Největší síla, tero může prt přeést: N S. Prt přejde do ast. stav prví při zatěž.síle
Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:
ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
PRŮMYSLOVÉ PROCESY. Přenos hybnosti III Doprava tekutin čerpadla a kompresory
PRŮMYSLOVÉ PROCESY Přeos hybosti III orava tekti čeradla a komresory Prof. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická
ý ů ř š á š ú ř ň ž Ú ř ž ň á á ř á ý ú Č ř á á ť ť Ň ř Ú ž ř ý ů ř š á š ú ř ň ž ý ú ř á ž á ň á á ň á ů á á ž ř ř ř ž ř ž š š ýš řá ý ů á áš řá ý ř á ů ř ý á áš ř á ž ý á ň á á á řá áž á á á ň á á ž
SRÁŽECÍ REAKCE. Srážecí reakce. RNDr. Milan Šmídl, Ph.D. Cvičení z analytické chemie ZS 2014/
1.1.01 SRÁŽECÍ REACE RNDr. Mila Šídl, Ph.D. Cvičeí z aalytické cheie ZS 01/015 Srážecí reakce působeí srážedla a ějakou látku vziká obtížě rozpustá látka sražeia vzik takové sražeiy je popsá součie rozpustosti
š ý é á ě ý ěž é á áž íž š í á š íř á ší ř í ě ž é ž š ř í í ě ž á á íž č í ě í í ě á í á č ž á ý ě š ť ř ů ý ř í é á ž í éč é í č ý á ň á í ž ě á í ž
Š Í Ř Ě É Í Ř Á Ř Á Í É á ý á ý í é á í ž č í é ř ý č í í í ý žš ě á í é í ě í í ě é á ž š č í í ů á č é á š ú ž í ř á í á é í úč ý ěšé í í é á ř é íú é í ů ří š í á í ří š á ě í í š ř í ž í ě á ž é ě
2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
ř í ší é ě é ří č é č é é š í ě é é á č ý á é ř ě ý ů é é ó ó í ě ěá í ž ě ší ž é á ó ě í ří é é ě ů Ť é ř ý á ě ší ý ž é á í žň á ý é ž í á á ří ž š
ř í ší é ě é ří č é č é é š í ě é é á č ý á é ř ě ý ů é é ó ó í ě ěá í ž ě ší ž é á ó ě í ří é é ě ů Ť é ř ý á ě ší ý ž é á í žň á ý é ž í á á ří ž š Í ě í š í é í čá í š ý ó ý í ř ě ě ý ř ě ší é ý ý ě
4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb
4.MITÁNÍ VOLNÉ 4. Lárí ktáí (harocký osclátor v fyzc) Vl časý pohy hotého odu j ktavý pohy. táí ud lárí, jstlž síla, ktrá př výchylc x vrací hotý od do rovovážé polohy, j úěrá výchylc F x (4..) kostata
Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á
Ý Á Í ŘÁ Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á ř ů ý Ť Ž ř ř č Í Á ď č ě ř ú ž ě ř ý ý ů řů č ú č ř ž ě ú ž ř ť č ř Ť ú ř ě š ř ý ž ú ě č ý ý ú Ř ú ěš ě ě ř ř č ž ě ř ě ř ě Í ě ý š ý ž šš ě šč ř ř š ř č ý ř ř ý ř
Dynamická analýza rámu brdového listu
Dacá aalýza ráu rovéo lstu MODELOVÁNÍ MECHANICKÝCH SOUSTAV Šo Kovář 0..0 Brový lst 8..0 Brový lst průřez čů. orí če. olí če. Postrace. áě Tp závěsů těe 8..0 Použté ozačeí sol pops jeota sč oefcet tlueí
Didaktika výpočtů v chemii
Didaktika výpočtů v cheii RNDr. ila Šídl, Ph.D. 1 Didaktické zpracováí Pojy: olárí hotost (), hotostí zloek (w), látková ožství (), olárí obje ( ), Avogadrova kostata N A, látková a hotostí kocetrace (c,
ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó
ů Í ď Í í Č ó š Í á ť ř ú í é á é á ááý á Í Ú í ý ý á á Í ť ď ď á á Í í ý á ě é é ď á řá Í ň á Í č íí Í ý í í í á ť í č í Í á á í ř ř á ě č á á í é ó ř í í í í á ř Ť ří Í č á ě á ť ř řá ý á í í á ď Í Ě
á ří á č á á á ÍŽ é á ž ř ž ě ž á é á š ó á é é č é ě é ž é é ř ž č é č é č čá á ý é ý é č é Ě á ř ů á č é ž š ě Í ř ř řěř é É ě č š á ů ň é ó ť ě ě ř
á ří á č á á á ÍŽ é á ž ř ž ě ž á é á š ó á é é č é ě é ž é é ř ž č é č é č čá á ý é ý é č é Ě á ř ů á č é ž š ě Í ř ř řěř é É ě č š á ů ň é ó ť ě ě ř š ť é ž á ťř ář ě ě á é é č é š č ť é ě é é č ž č
ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě
Í Á Í Ý Á Ú Ř Č Í Í č ř á ý š á ý í í č í í ě í ž ě í č í á í í í í č í í á í ěž ě á í č í ěř í é ýš ý á á ě í í š ů í á í ů č í ž í ž í áš ě ě á é ě á í é š í é ř é á é á í á ě ž áž í ý č á í ž ý ě ší
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
íž ě íž á ť ř ť í ž ě ě á í ň á í á í ů ů íž ď ř ť šíř é ě ě ě ř í ší íř ý ý ů éříš éš ěž ě á í á í ř é šíř ý ěží č ě š é í í ř í á í á í ž ž é ř é í
Í Ý ČÁ Ú ý ší é č ý ůž í š é á é í ř š ř ů ě í í áří ě ž í á é á ě é í ž ě á á ď ří ě č é í í í í ž ě ý á ý ů č í ý ř ě ž í í í í š í í č í ěž ž ž ř é í á ř í í ě í ž í č ě ží ř ž é ř ě š ě ž á í žší é
čá í ř í č í ý á í Č Íí í ý ů č šť í ěř í í ž ůž ý á Ž ý šť ř í í á í á í ý á ů ěž ří š ě í ů ě č ě á ř ší ě ř á í ú á Č í á í ě ý í ř á Š ě Š Š ý ď ě
ř á í Č š š úč á á č ý ě í ň á š ó řá š á í á č á č ýú ří ž í ř í ř í á í ř í í á í í í í č ý ý ší í á í ú á í řá Ž čá í ž ří í ů Íí ž á á á í ý ěří ý ů á á ý ó í á í ý ů řá č ý ý á č ř í í íú ý ř š í
á ř č á é Ž ř ů á á ř á Čá Ž ř á á é ž ř á á Š ý é ř é ř á ř Š ář ř ž á ř ý ž á ř á ý ú ů á ř ý á á ú ň ý ř č á č ř Ž á á Žá ý ý ř ý ř č ú ř ůž á žá ý
á á á é áí ř ý Čá áš ř ý ý á Š ář á Šá á á č ů á á ř ř éč č á č Č á ž á ř ů áš é á ž á Í á ř é úř Ž š ř á š úč á ř Ž é ú ů é č č é á ž á řá á á áš š úř ý á á á ý á Ž š é á á ř ů á á ř á ú ů é á Ž é ř á
řá ó á ú ú š š ř č é ě ě á é č ě š č č á ě í Ž š ě ř č é ž ř č é šč š ž é á č ř á ě á ě á é é ž í ř á é ď ě šč í šč ěšť čš ó ž é é ě ž é ď é ší ě ž é
é é ě í ří í é č á é ě í Ž é í ě ú ť á ď á ý ž ů é ď á ř é č ě ěšť é ě č č ě ú é í í ě í á é ě š ě í ý ý í ú í ó ď ý í ěž í ě á á í ě ý š ě í í é ď Č Á Č ý á ě ě ě ůž ř ě š ě á ě í á é ž í í á ý á á ž
ř ž ť ť čá á ý ý á á áč ž ý ě ě ů á ř ž ř á ř ž ř ž ň á ř ř ř ý ěř ž ž ý č á ř ý č č šť á á Ú ý ó ž ť č ž á ě á š ě ř á á ě ůř ů ě š á ř ž á ě ř ř š ž
á ůž č á č á č á á ň á č á á ů ěř ů ěř á ě ř ň á č č ý ý ě š ě žá á ý á ř ě ú ř á ž ž á ř ě ě Í ě á á č ě á ř ě á ř ř ě ý ú ť ř á á ě ě á á ěě ý á š Ť á ě á á š Í á ž á ě ě ž ě á á á á ě ů ž š ě ý ř Ž
MECHANICKÉ KMITÁNÍ NETLUMENÉ
MECHANICKÉ KMITÁNÍ NETLUMENÉ Kitání je PERIODICKÝ pohyb hotného bodu (tělesa). Pohybuje se z jedné rajní polohy KP do druhé rajní polohy KP a zpět. Jaýoliv itající objet se nazývá OSCILÁTOR. A je aplituda
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží
í í ř č í Í í á é á ý ář ž ř ě Í é í í í ó í ž í á í ď í ě í ď á ě é č é ž š í č é ó ž ší čí ší é í í ň ě á ě é á ě č ě Í ž ř í á á í í ě ší ě é ě á ě
í í ř č í Í í á é á ý ář ž ř ě Í é í í í ó í ž í á í ď í ě í ď á ě é č é ž š í č é ó ž ší čí ší é í í ň ě á ě é á ě č ě Í ž ř í á á í í ě ší ě é ě á ě ž ý á ž ý á ž ř ě í ý ř Í ě é ý ě ý ž ž ř í ě í ý
é ý čí á ří ř čí ě ř ří í ř š í ě á ě íč ý í á říš í ří ě ů ž ří á ř č á č ž ří ě á ě ý ří ů á á ří ž Ž ý ě ý ů í á ří ě Š čí ě é é č í ů í ů ě ě ý á
Í éá í é í á ř í í ů á á čí á é Í ří Í é ř čí á í č á ř í ě é í é č é ř é ř Ž ý é ó ž č í Ž ě ěž ř č ř ší ř í ří ě á í ň ří Ž š é š ě í ý š á í š ěž í é é ý é ý ů ří č éž í ý éú í č á íž ý ó íž ý ó čí
1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.
Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.
Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
Ý áš á í é ť š í
ří ď ě ě é ř ý ří ý é úř á ú ě ě ř ář í ší ž í ř í í Í ř ý áš ě ů é í ď Í ř ý řá óš í áš í ý í ř š í á á ř ří ž ě ž ď š ě í í í á žá ý á Í ÍŽ Š Á Ó ř č í Í é ž é ž á í á á Ž ř ě ž ú á á č ě ě í ěž á í
II. Soustavy s konečným počtem stupňů volnosti
Jiří Máca - atedra echaiy - B35 - tel. 435 4500 aca@fsv.cvut.cz. Pohybové rovice. Vlastí etlueé itáí 3. Vyuceé etlueé itáí 4. Volé etlueé itáí 5. Metoda ostat poddajosti 6. Přílady 7. Staticá odezace 8.
á í í á í í ž ší ě á ě é á ě á ř í Í ě á ě Č á í á é é é á í ý č ý ě ší ý ž š é č é é ě š ě í í í í á í ý ř č é ř í čá í ř ě é í í ě é ř ě é ěč é ě í
č É Í É Í Á Í Ž Ě Í Á Í čá í í í ě á í í ě é čá í č ý á é í á ř ů ž ěž ě ý í ý á ý íž á ř í ě á ý ž í ě á í říš ě ř ě č í í í ě á ř ě ů á é ř í ř í ě í á ě íč ý á ý š á á ěží ů Č á í č é á í ů č í ř ž
5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu
. ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se
TERMODYNAMICKÁ ROVNOVÁHA
TERMODYNAMICÁ ROVNOVÁHA odíky saovolost evatost pocesů a podíky ovováhy V ovováze pobíhají pouze vaté pocesy Systé zolovaý [q,v,w ], adabatcký [q] V toto systéu etope stoupá př evatých dějích ds> a dosahuje
( NV, )} Řešením Schrödingerovy rovnice pro N částic
Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy
í ě ý ě ý á ů ě ší á ž á ý á ž ý č ě ě á ý ě ě ě á ž é é ě ř á ů š ý ů ě é í í í č í í ě ř ý é ě ě ě é ě á í á č ý í ří ž ě ý á í č í í í ří í ý á í ž
Ě ĚŠŤ É ří á ý í á ý í Í á í ší ý ň í á ý í čí á ě í ěšé á ě ž ě ť á á ú í é ý ý á ž á ý í á í í š ě í í ří á ž ě ší č é šíř í í ě í í é í ďá á í č ě í á í ý á í ř í á á ž ď á á é í ř á ý í č ý ů č š í
STRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
ý Í ť č í ý úř í á ěř ý í ří í Č í ě č á Č í ě č áš ý á ě í Č á í Č á á ě í Č á á á í š č á ž í á ě á ýš č í ří š ú ýš č ě čá č ú í š š í ů čá č í á í ří ýš č á á á í íí í Ž í á í ž í áš á á ž ý ě í ý
áš ú ě á á á ž č ý ý í ů é é š ě ě á š ř š ě ů š í ě é ů ě š ž ž í ů ě í í ů ý á í ší ě ž á é á ž í ě é ří á ě č ň š ř ě č ěň é ýš ř é á í é ěň ů ě á
áš ú ě á á á ž č ý ý í ů é é š ě ě á š ř š ě ů š í ě é ů ě š ž ž í ů ě í í ů ý á í ší ě ž á é á ž í ě é ří á ě č ň š ř ě č ěň é ýš ř é á í é ěň ů ě á ž á č ý á ř á š í á í ý ž š ě ě Ž á á ě ě ě ř áří ž
Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
ě š á š í á ý í á ž ý í á í ží í í í á é ě é ř š í í íž í í ě ě é é ě šíř é á í ř ě ě ú ě í á í ě ř ě é řá é Č é ť í í á é ů ěí ť í í š ý íš ě ý šů ž
ě š á š í á ý í á ž ý í á í ží í í í á é ě é ř š í í íž í í ě ě é é ě šíř é á í ř ě ě ú ě í á í ě ř ě é řá é Č é ť í í á é ů ěí ť í í š ý íš ě ý šů ž š é ě ě ř á í í ř á ří š ů ě ě ý í č í á í é ý á í
ž í ý á í á ř í í é á ý ě ž á í ří é ý í ž č ý ě ý éšíř á š á ž á í ě ý ě č é ž í é á ž ří ž í í á á ě í ý ě í í čí ý č é ýš íč á é í é šňů é é á í á
É í č é á í ž ář í ý ý á í íž ě á ý é í ě í í ž ý ý ý ý ž ě ř ý á í í ý í á é ž Č é á á á á ě č é í é ší č é é č š ř á é č í ě í č č á é ě ž á í ý ř ř í ř í ž é ě é í ž ů á í í ě š é ř é ý ý Č Č é á ůč
ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž
Á á ě á á ž ř áú č é ř č ř á ý é ř ýš ů á ý ě ž ť é á ě ý ě ý é ž řó é ý é ď ý č š é č š ž á é é á ýó č á ú ť č é ó óř č ý ý ě ž ů á ě š ě ž ý ř ě ň š ýš ž ý ž é ž é É ú á á ě é č ř á é ě ý ý ř ý á ý č
Ě Č ě Š Í Č Ě ě č ň
Ť É Í Ě Č ě Š Í Č Ě ě č ň Í č č č Á Ť č Ť Í ť č Ť č č ě ě ž ě Ť Í ě Ž č ě ě ě ž Ž Í š ť Ď ž č ě ě š Ť ě ě Ě ě š ě ě č Í ž ě ě š Ž šš ž Í Ť Ž ž ě ž Ť Ť ž ď č š ž ž Í Ť š ě Ť ě ž č ď č č ž Í č š Ž Ž Í č
ůž íč á Ě Éč Í ř á í Ř ř ř šň ý é Í í ó Í ě ě Í Í á í á í ý é ě ž ěží á í ě í é Í í Í š ý á Í š ý é č íří ý ěž ž í Í Í í í í é č á č ě ě á ě č ř Ť ě í
ůž č á Ě Éč Í ř á Ř ř ř šň ý é Í ó Í Í Í á á ý é ž ží á é Í Í š ý á Í š ý é č ř ý ž ž Í Í é č á č á č ř Ť ř ý ř Í č ž ň á á ř č é ř é Í ř č ř ž ž ý úč Í á á č á š é ř é é č č š ž Í ř ó Í ý ř ž áš á č é
Přednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě