7. Analytická geometrie
|
|
- Zdenka Kopecká
- před 5 lety
- Počet zobrazení:
Transkript
1 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp Defiice 7.1. Příka v roviě je ožia bodů o souřadicích [, ] daá jedí z ásledujících způsobů: 1) 2) 3) 4) p = {[, ] R R a + b + c =, a, b, c R}, kde alespoň jedo z čísel a, b je růzé od ul. p = {[, ] R R = a 1 + s 1 t, = a 2 + s 2 t, t R}, kde A = [a 1, a 2 ] je bod, který příka prochází a s = (s 1, s 2 ) je její sěrový vektor. p = {[, ] R R = k + q, k, q R} p = {[, ] R R p + q = 1}, kde p, q jsou úsek, které příka vtíá a osách,. V prví případě je příka zadáa poocí své obecé rovice, v druhé poocí paraetrických rovic, ve třetí se jedá o sěricový tvar rovice přík a ve čtvrté o úsekový tvar. Pozáka 7.2. Vlastosti koeficietů obecé rovice. 1) Koeficiet a, b určují souřadice orálového vektoru = (a, b) a tí i souřadice sěrového vektoru s = ( b, a). 2) Pokud a =, je příka rovoběžá s osou. 3) Pokud b =, je příka rovoběžá s osou. 4) Pokud c =, příka prochází počátke souřadé soustav. Pozáka 7.3. Vlastosti sěricového tvaru rovice přík. Teto tvar ezahruje přík rovoběžé s osou, eboť koeficiet u eí ikd rove. Navíc teto způsob zadáí odpovídá zadáí lieárí fukce, jejíž grafe eůže být příka rovoběžá s osou. Koeficiet k se azývá sěrice přík, více o sěricích viz. kapitola Derivace fukce. Koeficiet q je úsek, který příka vtíá a ose. 1 Ú SI VUT v Brě 28
2 7. Aaltická geoetrie Studijí tet Věta 7.4. Vzdáleost bodu od přík v roviě. ěje příku p : a+b+c = a bod A = [a 1, a 2 ], který a í eleží. Pak vzdáleost v bodu A od přík p je dáa vztahe. v = a a 1 + b a 2 + c a2 + b 2 Defiice 7.5. Odchlkou dvou růzoběžých příek rozuíe úhel, který je dá a) jako ostrý úhel, který svírají sěrové vektor těchto příek, b) jako rozdíl příého úhlu (π) a tupého úhlu, který svírají sěrové vektor těchto příek. Věta 7.6. Odchlka dvou příek. Jsou-li s a, s b sěrové vektor příek a, b, poto pro odchlku ϕ těchto dvou příek platí cos ϕ = s a s b s a s b, kde v čitateli je skalárí souči vektorů. Defiice 7.7. Vzájeá poloha příek v roviě. ěje přík p, q daé obecýi rovicei p : a 1 + b 1 + c 1 =, q : a 2 + b 2 + c 2 =. Pak tto přík ohou být a) rovoběžk splývající, jestliže eistuje r R \ {} takové, že platí a 1 = ra 2 b 1 = rb 2 c 1 = rc 2. (jeda rovice je ásobke druhé) b) rovoběžk růzé, jestliže eistuje r R \ {} takové, že platí a 1 = ra 2 b 1 = rb 2 c 1 rc 2. (orálové resp. sěrové vektor jsou lieárě závislé, ale přík eají společý bod) c) růzoběžk kolé, jestliže a 1 a 2 + b 1 b 2 =. (skalárí souči orálových resp. sěrových vektorů je rove ) d) růzoběžk (ekolé), jestliže eplatí ai jeda z předchozích ožostí. Rovia v prostoru je jedozačě určea: B. Rovia v prostoru třei růzýi bod, které eleží a jedé příce, dvěa růzoběžýi příkai, tj, příkai, které ají společý právě jede bod a jejichž sěrové vektor jsou lieárě ezávislé, dvěa růzýi rovoběžýi příkai, bode a příkou, která daý bode eprochází. Ú SI VUT v Brě 29
3 7. Aaltická geoetrie Studijí tet Následující defiice obsahuje i aaltické vjádřeí rovi v prostoru. Defiice 7.8. způsobů: Rovia v prostoru je ožia bodů o souřadicích [,, z] daá jedí z ásledujících 1) σ = {[,, z] R 3 a + b + cz + d =, a, b, c, d R}, kde alespoň jedo z čísel a, b, c je růzé od ul. 2) σ = {[,, z] R 3 = a 1 + s 1 p + r 1 q, = a 2 + s 2 p + r 2 q, z = a 3 + s 3 p + r 3 q, p, q R}, kde A = [a 1, a 2, a 3 ] je bod, který leží v zadaé roviě a s = (s 1, s 2, s 3 ) a r = (r 1, r 2, r 3 ) jsou její sěrové vektor. V prví případě řekee, že rovia je zadaá poocí obecé rovice, ve druhé poocí paraetrických rovic. Pozáka 7.9. Z paraetrických rovic dostaee obecou rovici vloučeí paraetrů, tj. sčítáí vhodých ásobků paraetrických rovic. Z obecé rovice přejdee k paraetrický sado volbou dvou proěých jako paraetrů (apř. = p, z = q) a dopočítáí třetí proěé. Pozáka 7.1. Vlastosti koeficietů obecé rovice rovi. 1) Koeficiet a, b, c určují souřadice orálového vektoru = (a, b, c). Pozor: arozdíl od přík, orálový vektor k roviě eůže jedozačě určit sěrový vektor rovi, eboť rovia á sěrové vektor dva! 2) Pokud a =, je rovia rovoběžá se souřadou osou. 3) Pokud b =, je rovia rovoběžá s osou. 3) Pokud c =, je rovia rovoběžá s osou z. 4) Pokud d =, rovia prochází počátke souřadé soustav. 5) Pokud jsou dva koeficiet z trojice a, b, c rov ule, je daá rovia rovoběžá se souřadou roviou určeou osai s ulovýi koeficiet, ted apříklad je-li a = b =, je daá rovia rovoběžá s roviou. Defiice Odchlkou dvou růzoběžých rovi rozuíe úhel, který je dá a) jako ostrý úhel, který svírají orálové vektor těchto rovi, b) jako rozdíl příého úhlu (π) a tupého úhlu, který svírají orálové vektor těchto rovi. Věta Odchlka dvou rovi. Jsou-li σ, ρ orálové vektor rovi σ, ρ, poto pro odchlku ϕ těchto dvou rovi platí cos ϕ = σ ρ σ ρ, kde v čitateli je skalárí souči vektorů. Pozáka roviě. Vzájeá poloha dvou rovi v prostoru je aalogická vzájeý polohá příek v Ú SI VUT v Brě 3
4 7. Aaltická geoetrie Studijí tet C. Příka v prostoru Defiice způsobů: Příka v prostoru je ožia bodů o souřadicích [,, z] daá jedí z ásledujících 1) 2) p = {[,, z] R 3 = a 1 + s 1 t, = a 2 + s 2 t, z = a 3 + s 3 t, t R}, kde A = [a 1, a 2, a 3 ] je bod, který leží a zadaé příce a s = (s 1, s 2, s 3 ) je její sěrový vektor. p = {[,, z] R 3 a 1 s 1 = a 2 s 2 = z a 3 s 3 }, kde A = [a 1, a 2, a 3 ] je bod, který leží a zadaé příce a s = (s 1, s 2, s 3 ) je její sěrový vektor. V prví případě se jedá o paraetrické rovice přík v prostoru, druhý případ se azývá kaoický tvar rovice přík. Pozáka Příku v prostoru lze zadat i jako průsečici dvou růzoběžých rovi p : a 1 + b 1 + c 1 z + d 1 = a q : a 2 + b 2 + c 2 z + d 2 =, tj, jako řešeí sstéu dvou obecých rovic rovi o třech ezáých: p = {[,, z] R 3 a 1 + b 1 + c 1 z + d 1 =, a 2 + b 2 + c 2 z + d 2 =, }. Teto tvar se ěkd azývá obecá rovice přík v prostoru. Pozáka Z kaoických rovic dostaee paraetrické rovice sado tak, že položíe každý z výrazů rove paraetru a vpočítáe proěou, opačě z každé paraetrické rovice spočítáe paraetr, vziklé výraz se pak usí rovat. Pozáka Odchlka dvou příek v prostoru je defiováa a spočítá se stejě jako odchlka příek v roviě Narozdíl od rovié situace, v prostoru áe ještě jedu ožou vzájeou polohu dvou příek. Defiice Dvě přík v prostoru jsou rovoběžé splývající, jestliže ají lieárě závislé sěrové vektor a ekoečě oho společých bodů, rovoběžé, jestliže ají lieárě závislé sěrové vektor a žádý společý bod, růzoběžé, jestliže ají lieárě ezávislé sěrové vektor a právě jede společý bod. Je-li avíc skalárí souči sěrových vektorů rove ule, jsou přík jii určeé a sebe kolé. ioběžé, jestliže ají lieárě ezávislé sěrové vektor a žádý společý bod. 1. Parabola D. Kuželosečk Defiice Parabolou azýváe ožiu takových bodů [, ] v roviě, které jsou stejě vzdále od pevého bodu (ohiska) a pevé přík d (řídící příka). Ú SI VUT v Brě 31
5 7. Aaltická geoetrie Studijí tet D V d V ohisko parabol řídící příka parabol = [, ] vrchol parabol V = V D = p, p je paraetr parabol 2 d libovolý bod a parabole Defiice 7.2. Je-li parabola zadáa rovicí 2 + A + B + C =,, A, B, C R, A, je-li osa parabol rovoběžá s osou ebo 2 + A + B + C =,, A, B, C R, B, je-li osa parabol rovoběžá s osou, pak tuto rovici azvee obecou rovicí parabol. Defiice Je-li dáa parabola s vrchole V = [, ], pak její vrcholová rovice je dáa: ( ) 2 = ±2p( ), je-li osa parabol rovoběžá s osou ; ( ) 2 = ±2p( ), je-li osa parabol rovoběžá s osou. 2. Kružice r S S = [, ] střed kružice r poloěr kružice libovolý bod a kružici Defiice Kružicí azýváe ožiu takových bodů v roviě o souřadicích [, ], které jsou od pevého bodu (středu) stejě vzdále. Defiice Je-li kružice zadáa rovicí A + B + C =, A, B, C R, pak se tato rovice azývá obecá rovice kružice. 1 Defiice Středová rovice kružice je tvaru ( ) 2 + ( ) 2 = r 2, kde S = [, ] je střed kružice a r je její poloěr. Ú SI VUT v Brě 32
6 7. Aaltická geoetrie Studijí tet Defiice Paraetrické rovice kružice jsou: = + r cos t, = + r si t, kde bod S = [, ] je střed, r je poloěr,, jsou souřadice libovolého bodu a kružici a t R je paraetr. Pozáka Paraetr t v paraetrických rovicích kružice udává úhel, který svírá úsečka S a kladý sěr os, je libovolý bod a kružici. Pro jedozačě daou kružici je ted t 2π. 3. Elipsa A E e S b a B E, ohiska elips S = [, ] střed elips a, b hlaví a vedlejší poloosa elips libovolý bod a elipse e = a 2 b 2 ecetricita elips Defiice Elipsou azýváe ožiu takových bodů v roviě o souřadicích [, ], jejichž součet vzdáleostí od dvou pevých bodů E, (ohisek) je rove kostatě 2a je-li a > b ebo 2b je-li b > a. Defiice Je-li elipsa zadáa rovicí A 2 + B 2 + C + D + E =, A, B, C, D, E R, A >, B >, A B, pak se tato rovice azývá obecá rovice elips. Defiice Středová rovice elips je tvaru ( ) 2 ( )2 a 2 + b 2 = 1, kde S = [, ] je střed elips a a, b jsou délk jejích poloos. Defiice 7.3. Paraetrické rovice elips jsou: = + a cos t, = + b si t, kde bod S = [, ] je střed, a, b jsou délk poloos,, jsou souřadice libovolého bodu a elipse a t R je paraetr. Ú SI VUT v Brě 33
7 7. Aaltická geoetrie Studijí tet 4. Hperbola E A S B e a b E, ohiska hperbol S = [, ] střed hperbol a, b hlaví a vedlejší poloosa hperbol libovolý bod a hperbole e = a 2 + b 2 ecetricita hperbol Defiice Hperbolou azýváe ožiu takových bodů v roviě o souřadicích [, ], jejichž rozdíl vzdáleostí od dvou pevých bodů E, (ohisek) je v absolutí hodotě rove kostatě 2a. Defiice Je-li hperbola zadáa rovicí A 2 B 2 + C + D + E =, A, B, C, D, E R, A >, B >, je-li hlaví osa rovoběžá s osou, A 2 + B 2 + C + D + E =, A, B, C, D, E R, A >, B >, je-li hlaví osa rovoběžá s osou, pak se tato rovice azývá obecá rovice hperbol. Defiice Středová rovice hperbol je tvaru ( ) 2 ( )2 a 2 b 2 = 1, je-li hlaví osa rovoběžá s osou, ( )2 ( )2 a 2 + b 2 = 1, je-li hlaví osa rovoběžá s osou, kde S = [, ] je střed elips a a, b jsou délk jejích poloos. 1 Ú SI VUT v Brě 34
VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ
VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
Více3. DIFERENCIÁLNÍ ROVNICE
3 DIFERENCIÁLNÍ ROVNICE Difereciálí rovice (dále je DR) jsou veli důležitou částí ateatické aalýz, protože uožňují řešit celou řadu úloh z fzik a techické prae Občejé difereciálí rovice: rovice, v íž se
VíceKomplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
VíceKuželosečky jako algebraické křivky 2. stupně
Kuželosečk Pretrické iplicití vjádřeí kuželoseček P. Pech: Kuželosečk, JU České Budějovice 4, 59s Kuželosečk jko lgerické křivk. stupě Kuželosečk je oži odů v roviě, jejichž souřdice (, ) vhovují v ějké
Více1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
VícePřijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
VícePřijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
VíceAbstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VíceX = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
VíceMATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
VíceDIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
Vícen=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
Více11. přednáška 16. prosince Úvod do komplexní analýzy.
11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám
Více. viz věty 1.7 a 1.2 (čísla m a M lze vybrat tak, aby nerovnost platila v R n i R m ). Máme m f x h f x l h f x h f x l h M f x h f x l h
MATEMATICKÁ ANALÝZA III předášky M. Krupky Zií seestr 999/. Derivace prvío řádu V této základí kapitole pojedáváe o dierecovatelosti zobrazeí : U R R (podožia U je vždy otevřeá). Zavádíe ěkolik základíc
VícePřednáška 7: Soustavy lineárních rovnic
Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé
VíceMatematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta
Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.
VíceGEOMETRIE I. Pavel Burda
GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor
Více6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
VíceAnalytická geometrie
Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí
Vícea) 1 b) 0 c) 1 d) 2 x e) 2x
FSI VUT v Brě zdáí č.. str. Příjmeí jméo: Z uvedeých odpovědí je vžd právě jed správá. Zkroužkujte ji! ) Je-li 0, pk 0 c) e) ) Výrz lze uprvit tvr c) e) ) Nerovice má řešeí c) e) ) Rovice 0 má právě jedo
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
Více9. Racionální lomená funkce
@ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro
Více7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
VíceJestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.
V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby
Více2.7.5 Racionální a polynomické funkce
75 Racioálí a poloické fukce Předpoklad: 704 Pedagogická pozáka: Při opisováí defiic racioálí a poloické fukce si ěkteří studeti stěžovali, že je to příliš těžké Ve skutečosti je ssté, který jsou fukce
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut
Vícen-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
VíceKapitola 4 Euklidovské prostory
Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro
VíceAlgebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.
ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
VíceKapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
VíceMatematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice
Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké
VíceS k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
Více-cenzura- Obsah. 1.1 Přeskoč není důležité
Čísla v obecější pohledu -cezura- kotakt str. - Obsah.. Příklad ze kterých představa vchází. Přeskoč eí důležité str. -.. Model str. -.. Pravidla pro počítáí se zobecělý áhlede a čísla str. -.. Důsledk
VíceTéma 11 Prostorová soustava sil
Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra
Více1.1. Primitivní funkce a neurčitý integrál
Mateatia II. NEURČITÝ INTEGRÁL.. Priitiví fuce a eurčitý itegrál Defiice... Říáe, že fuce F( ) je v itervalu ( ab, ) priitiví fucí fuci f ( ), platí-li pro všecha ( ab, ) vztah F = f. Defiice... Možia
Vícen=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
VíceI. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
Více10. Analytická geometrie kuželoseček 1 bod
10. Analytická geometrie kuželoseček 1 bod 10.1. Kružnice opsaná obdélníku ABCD, kde A[2, 3], C[8, 3], má rovnici a) x 2 10x + y 2 + 7 = 0, b) (x 3) 2 + (y 3) 2 = 36, c) x 2 + 10x + y 2 18 = 0, d) (x 10)
Více1 Nekonečné řady s nezápornými členy
Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí
Více= + nazýváme tečnou ke grafu funkce f
D E R I V A C E F U N KCE Deiice. (derivace Buď ukce,!. Eistuje-li limitu derivací ukce v bodě a začíme ji (. lim ( + lim Deiice. (teča a ormála Přímku o rovici y ( v bodě, přímku o rovici y ( (, kde (
VíceFunkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
VíceNalezení výchozího základního řešení. Je řešení optimální? ne Změna řešení
Sipleová etoda: - patří ezi uiverzálí etody řešeí úloh lieárího prograováí. - de o etodu iteračí, t. k optiálíu řešeí dospíváe postupě, krok za kroke. - výpočetí algoritus se v každé iteraci rozpadá do
Více2.4. INVERZNÍ MATICE
24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
Více1.7.4 Těžiště, rovnovážná poloha
74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit
Vícejsou reálná a m, n jsou čísla přirozená.
.7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou
VícePlochy počítačové grafiky
II Iterpolačí plochy Bezierovy pláty ad obdélíkovou a trojúhelíkovou sítí Recioálí Bezierovy pláty B-splie NURBS Kostrukce a zadáí plochy hraičí křivky sítí bodů Kiematicky vytvořeé křivky rotačí plochy
Víceprávě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly
FSI VUT v Brě zdáí č.. str. MATEMATIKA 009 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk : 6 6 c) 6 e) ) Nerovice < má řešeí < > c)
VíceIterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....
Víceprávě jedna správná. Zakroužkujte ji! a) a b) a c)
FSI VUT v Brě zdáí č. str. MATEMATIKA 06 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Je-li > 0, pk c) e) ) Je-li > 0, pk 6 c) 6 9 e) 9 ) Rovice má řešeí v itervlu ; )
VíceMatematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceGRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components
Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test
Vícef B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]
6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost
Více1 Základní pojmy a vlastnosti
Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).
Více5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu
. ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se
Více23. Mechanické vlnění
3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze
Vícec) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),
a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte
VíceAritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
VíceNMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
Více1 Základy Z-transformace. pro aplikace v oblasti
Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi
Vícemnožina všech reálných čísel
/6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,
Více1 Trochu o kritériích dělitelnosti
Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
VíceM - Posloupnosti VARIACE
M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,
Více1. Přirozená topologie v R n
MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
Více1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem
Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
VíceOkruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-
Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,
VícePracovní listy PRAVOÚHLÁ AXONOMETRIE
Techická uiverita v Liberci Fakulta řírodovědě-huaití a edagogická Katedra ateatik a didaktik ateatik PRVOÚHLÁ XONOMETRIE Petra Pirklová Liberec, lede 208 2. V ravoúhlé aooetrii obrate růět bodů [2; 5;
Vícedefinované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12
Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se
VíceOdhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
VíceÚstav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10
Ústav yzikálího ižeýrství Fakulta strojího ižeýrství VUT v Brě GEOMETRICKÁ OPTIKA Předáška 10 1 Obsah Základy geometrické (paprskové) optiky - Zobrazeí cetrovaou soustavou dvou kulových ploch. Rovice čočky.
VíceODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady
ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste
VíceDigitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitálí učeí mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitěí výuk prostředictvím ICT Číslo ázev šlo klíčové ktivit III/ Iovce zkvlitěí výuk prostředictvím ICT Příjemce podpor Gmázium,
Více( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.
.. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f
VíceTěžiště a moment setrvačnosti Nalezení práce polohy těžiště a momentu setrvačnosti vůči zadané ose u homogenních těles v třírozměrném prostoru.
Těžiště a momet setrvačosti Naleeí práce polohy těžiště a mometu setrvačosti vůči adaé ose u homogeích těles v tříroměrém prostoru. Př. 1 Najděte těžiště a momet setrvačosti kulové vrstvy vůči rotačí ose
VíceS polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
Víceprávě jedna správná. Zakroužkujte ji! ax + ay bx by ax ay bx + by d) a b 4) Řešením nerovnice x 3x e) nemá řešení
FSI VUT v Brě zdáí č.. str. MATEMATIKA 0 Příjmeí jméo: Z uvedeých odpovědí je vždy právě jed správá. Zkroužkujte ji! ) Pro všechy přípusté hodoty pltí: + y y b) y + y c) + b b + y b by y b + by d) b +
VíceMatice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1
Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky
Více1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
VíceAnalytická geometrie
MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),
Více8.1.3 Rekurentní zadání posloupnosti I
8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VícePetr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
Více