FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

Rozměr: px
Začít zobrazení ze stránky:

Download "FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn"

Transkript

1 Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a stejné che. složení) nazýváe ji FÁZE různé fáze nař. různá skuenství, různé krystalové struktury evné látky Soustava ůže obsahovat více fází. FÁZOVÁ ZMĚNA řechod látky z jedné fáze do druhé Jeden z druhů fázové zěny je ZMĚNA SKUPENSVÍ. ání a tuhnutí telota tání t t skuenské telo tání L t (telo, které těleso o hotnosti z krystalické látky řije ři telotě tání, aby se řeěnilo v kaalinu téže teloty) Lt 1 ěrné skuenské telo tání l t lt = [ lt ] = J kg Oačný děj tuhnutí skuenské telo tuhnutí L t (aorfní látky ostuně ěknou až se řeění v kaalinu, neají evnou t t ) Látka řijíá telo roste E k částic zvětšuje se střední vzdálenost částic roste E vzájené olohy částic ři t t se rozkity částic narušuje vazba ezi částicei krystalové řížky řížka se rozadá tání Látka ři t t řijíá telo neění se ale E k a tí ani t zvětšuje se jen E Při t t je U roztátého tělesa > U téhož tělesa v krystalické stavu ři téže t. Kaalina odevzdává telejší tělesů telo E k částic kaaliny klesá, t kaaliny klesá Při telotě tuhnutí vznikají krystalizační jádra krystalizace vznikne soustava volně se ohybujících krystalků neravidelného tvaru. Při ztuhnutí celé látky se krystalky dotýkají a vznikají zrna vzniká olykrystalická látka onokrystalická látka vznik z jednoho krystalizačního jádra, ke kteréu se řiojují další částice látky

2 0 FYZIKA 2. ROČNÍK Křivka tání A) u většiny látek - s rostoucí vnější roste telota tání B) led, antion, některé slitiny - s rostoucí vnější telota tání klesá (ř. regelace ledu) A A 0 olovo 0 led Za norálního tlaku se udávají norální teloty tání látky tyu A ři tání zvětšují obje látky tyu B ři tání snižují obje (zalňování rostorových kanálků ři tání) důsledek lavání ledu na hladině Subliace řeěna z evného skuenství v lynné (oak je desubliace) Měrné skuenské telo subliace: Ls ls = L s skuenské telo subliace řijaté tělese o hotnosti ři jeho subliaci za dané t l s závisí na telotě, ři které látka subliuje = J kg [ ] 1 l s Subliuje-li látka o dostatečné hotnosti o čase se ustaví rovnovážný stav ezi evnou fází a její árou, ta se nazývá sytá ára. Subliační křivka závislost tlaku syté áry na telotě - body znázorňují rovnovážné stavy ezi evnou látkou a její sytou árou A Subliační křivka

3 Vyařování a var kaaliny Vyařování robíhá z volného ovrchu kaaliny za každé teloty. l v L v = ěrné sku. telo vyařování S rostoucí telotou vyařování l v klesá. Var: kaalina se vyařuje i uvnitř (bublinky) telota varu (norální t v ři norální vnější ) (vyšší vnější vyšší t v Painův hrnec; nižší vnější nižší t v ) Měrné skuenské telo varu = l v ři t v Vyařování kaaliny z hlediska olekulové fyziky: olekuly s dostatečnou energií unikají z volného ovrchu kaaliny - ovrch kaaliny oouštějí olekuly s nejvyšší E k - střední E k olekul kaaliny se zenší okles teloty vyařující se kaaliny Obrácený děj - kaalnění (kondenzace) Měrné skuenské telo kondenzace = ěrné skuenské telo vyařování ři téže t kaalnění sojování olekul do kaiček (snazší na drobných zrncích rachu nebo el. nabitých částicích) Úlohy: 1/ Led o hotnosti 1,0 kg a očáteční telotě -10 C se řeěnil na vodu o telotě 20 C za norálního tlaku. Sestrojte graf závislosti teloty tělesa na řijaté tele. Měrná teelná kaacita ledu je 2,1 kj kg K, ěrná teelná kaacita vody je 4,2 kj kg K, ěrné skuenské telo tání ledu je l = 1 kg t l = 10 C c l = 2,1 kj kg K -1 l t = 334 kj kg v = 1 kg c v = 4,2 kj kg K t v = 20 C Q =? Q = c 0 t + l + c (20 0) l ( l ) t v ( ) ( ) kj Q = 1 2, , 2 20 kj Q = + + Q = 439kJ kj kg. Vyočítejte celkové řijaté telo.

4 Celkové řijaté telo je 439 kj. 2/ Jak se zění vnitřní energie tělesa z cínu o hotnosti 3,0 kg ři telotě tání, jestliže se řeění z evného skuenství v kaalné téže teloty? Měrné skuenské telo tání cínu je 61 kj kg K. = 3 kg l t = J kg K U =? 3 U = Q = l t = = 183 kj Vnitřní energie tělesa se zvýší o 183 kj. 3/ Jak se liší vnitřní energie vody o hotnosti 300 g a teloty 20 C od vnitřní energie vodní -1 áry téže hotnosti a teloty, je-li l 20 = 2, 43 MJ kg? Práci sojenou se zvětšení objeu ři vyařování vody zanedbejte. = 0,3 kg t = 20 C -1 l 20 = 2, 43 MJ kg U =? U = L 20 = l 20 = 0,3 2,43 = 0,729 MJ Vnitřní energie vodní áry je vyšší o 0,729 MJ. 4/ Vodní ára o hotnosti 2,0 kg a o telotě 100 C zkaalní a vzniklá voda se ochladí na telotu 20 C. Jaké celkové telo odevzdá soustava do okolí? = 2 kg t = 100 C

5 l v = 3-1 2,26 10 kj kg c = 4,18 kj kg K t v = 20 C Q =? Q = l v + c (t t v ) = (2 2, ,18 80) kj = kj = 5,2 MJ Celkové odevzdané telo do okolí je 5,2 MJ. Křivka syté áry - vyařování ka. v uzavřené nádobě - nastane dynaická rovnováha ezi ka. a árou sytá ára (Při rovnováze očet olekul, které oouštějí ovrch kaaliny za dobu t = očet olekul které se do kaaliny vracejí za dobu t). tlak syté áry nezávisí na objeu ři stálé t (zvětšíe-li obje nad kaalinou izotericky, okračuje vyařování do ůvodní hodnoty tlaku syté áry) nelatí ani Boyle - Mariottův zákon ani stavová rovnice - tlak syté áry roste s rostoucí telotou (olekuly ají větší E k, více jich řejde v áru ) - KŘIVKA SYÉ PÁRY závislost syté áry na její K K A A 0 A A očáteční bod křivky syté áry K A telota tuhnutí kaalné fáze ři tlaku A nejenší hodnota a, kdy je kaalina a sytá ára ještě v rovnováze K kritický bod křivky syté áry Při K a k je hustota kaaliny rovna hustotě syté áry zizí rozhraní ezi kaalinou a její sytou árou, látka se stává stejnorodou.

6 Při vyšší telotě než k je jen ára. Z křivky syté áry lze odečíst telotu varu kaaliny ři dané vnější tlaku ři varu v kaalině vznikají bubliny syté áry a vystuují k volnéu ovrchu kaaliny. o je v říadě, kdy se tlak syté áry uvnitř bublin rovná vnějšíu tlaku. Zvýší-li se tlak nad volný ovrche kaaliny, nastane var až o takové zvýšení teloty kaaliny, že se tlak uvnitř bublin vyrovná vnějšíu tlaku. elota varu tedy roste s rostoucí vnější tlake. Fázový diagra - všechny 3 výše uvedené křivky v jedno grafu I II K evné kaalné l. k b l. k IV III A řehřátá lyn ára k s 0 Každý bod znázorňuje určitý stav látky ři zvolené a. A trojný bod (ro H 2 O = 273,16 K A 610 Pa - v uzavřené nádobě led, voda a sytá ára) Oblast III řehřátá ára - á nižší tlak a hustotu než sytá ára téže teloty (buď sytou áru izotericky rozenee anebo ji zahříváe bez řítonosti kaaliny) Pokud je řehřátá ára daleko od stavu syté áry, oto ro ni řibližně latí stavová rovnice ideálního lynu. ( Pro sytou áru nelatí stavová rovnice ro IP Její tlak nezávisí na její objeu; Při dostatečné zvětšení objeu nebo zahřívání áry bez řítonosti kaaliny se bude rojevovat závislost tlaku na objeu áry) Oblast IV lyn - lyn zkaalníe ochlazení od telotu k a oto ho stlačíe ochlazení: - adiabatický rozínání - rudký vyařování některých zkaalněných lynů lze dosáhnout veli nízkých telot

7 Vodní ára v atosféře absolutní vlhkost vzduchu = vlastně hustota vodních ar V Vodní ára ve vzduchu je zravidla řehřátá ři určité telotě řejde v sytou (nař. další vyaření vody, oto je vlhkost axiální ( = ρ hustotě syté áry za dané teloty) relativní vlhkost vzduchu ϕ = v % Klesá-li telota vzduchu s řehřátou árou řehřátá ára se stává sytou a kaalní telota rosného bodu t r (je-li t r < 0 oto jinovatka nebo sníh) Příklad: Jaká je absolutní a relativní vlhkost vzduchu, á-li vzduch telotu 10 C a telota rosného bodu je 0 C? -3 abulky: Hustota syté vodní áry ři telotě 0 C á hodnotu 4,8 g. uto hustotu á i řehřátá ára vody teloty 10 C. Absolutní vlhkost vzduchu teloty 10 C je tedy -3 = 4,8 g. -3 Hustota syté vodní áry ři telotě 10 C je ρ = 9,4 g. Relativní vlhkost vzduchu ři této telotě je 4,8 ϕ = 100% 51%. 9, 4 Relativní vlhkost vzduchu se dá ěřit nař. vlasový vlhkoěre. en je založen na jevu, že lidský vlas zbaven tuku ění ři značné vlhkosti svou délku. Vlas se vede řes kladku oatřenou ručičkou. a ukazuje na stunici relativní vlhkost vzduchu. Úlohy: 1/ Při které telotě vzduchu je telota rosného bodu -5 C a relativní vlhkost vzduchu 67 %? t r = 5 C ϕ = 10 C t =?.

8 ϕ = = 0,67 t r = 5 C z tabulek: = 3, 24 g tr 3 = = 4,84 g z tabulek: t = 0 C 0,67 Výše uvedený odínká odovídá telota 0 C. tr 3 2/ V ístnosti o objeu je ři telotě 15 C relativní vlhkost vzduchu 60 %. Jakou hotnost ají vodní áry v ístnosti? V = t = 15 C ϕ = 60 % =?. = 12,8 g 3 = = 3 = ,8 10 0,6 = V V ϕ = 0,92 kg Hotnost vodních ar v ístnosti je 0,92 kg.

2.6.6 Sytá pára. Předpoklady: 2604

2.6.6 Sytá pára. Předpoklady: 2604 .6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,

Více

13. Skupenské změny látek

13. Skupenské změny látek 13. Skuenské změny látek Skuenství je konkrétní forma látky, charakterizovaná ředevším usořádáním částic v látce a rojevující se tyickými fyzikálními a chemickými vlastnostmi. Pro označení skuenství se

Více

11. Tepelné děje v plynech

11. Tepelné děje v plynech 11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára

Změna skupenství, Tání a tuhnutí, Sublimace a desublimace Vypařování a kapalnění Sytá pára, Fázový diagram, Vodní pára Zěny skupenství átek Zěna skupenství, Tání a tuhnutí, Subiace a desubiace Vypařování a kapanění Sytá pára, Fázový diagra, Vodní pára Zěna skupenství = fyzikání děj, při které se ění skupenství átky Skupenství

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Fázové přechody. navzájem nezávislé chemicky čisté látky obsažené v termod.soustavě

Fázové přechody. navzájem nezávislé chemicky čisté látky obsažené v termod.soustavě Fázoé řechody Složky soustay s: nazáje nezáislé cheicky čisté látky obsažené terod.soustaě Fáze látky f: hoogenní soubor olekul, který je akroskoické ěřítku ostře ohraničen od jiných souborů olekul, které

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

FÁZOVÉ PŘECHODY. Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství.

FÁZOVÉ PŘECHODY. Fyzikální děj, při kterém se mění skupenství látky, se nazývá změna skupenství. SSPU OPAVA, Fyzika 3, školní rok 2006-2007 1 FÁZOVÉ PŘECHODY Skupenství je stav tělesa z terodynaického hlediska. Skupenství rozeznáváe: 1. Pevné potenciální energie olekul je značně větší než jejich kinetická

Více

MĚŘENÍ VLHKOSTI. Vlhkoměr CHM 10 s kapacitní sondou

MĚŘENÍ VLHKOSTI. Vlhkoměr CHM 10 s kapacitní sondou MĚŘENÍ VLHKOSTI 1. Úkol ěření a) Zěřte relativní vlhkost vzduchu v laboratoři sychroetre a oocí řístrojů s kaacitní olyerní sondou. b) S oocí tabulek a vzorců v teoretické úvodu vyočítejte rosný bod, absolutní

Více

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

SKUPENSKÉ PŘEMĚNY POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D11_Z_OPAK_T_Skupenske_premeny_T Člověk a příroda Fyzika Skupenské přeměny Opakování

Více

(test version, not revised) 24. listopadu 2010

(test version, not revised) 24. listopadu 2010 Změny skupenství (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tání Tuhnutí Sublimace a desublimace Vypařování a var. Kondenzace Sytá pára Fázový diagram Vodní

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SUPENSTÍ LÁTE evné láky ání uhnuí kaalné láky desublimace sublimace vyařování kaalnění (kondenzace) lynné láky 1. Tání a uhnuí amorfní láky nemají bod ání ají osuně X krysalické láky ají ři určiém

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

LOGO. Změny skupenství

LOGO. Změny skupenství Změny skupenství Látka existuje ve třech skupenstvích Pevném Kapalném Plynném Látka může přecházet z jednoho skupenství do druhého. Existují tedy tyto změny skupenství: Změny skupenství plyn sublimace

Více

Fyzikální chemie. 1.2 Termodynamika

Fyzikální chemie. 1.2 Termodynamika Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 06_6_ Změny skupenství látek Ing. Jakub Ulmann 6 Změny skupenství látek 6.1 Tání 6.2 Tuhnutí 6.3 Změna

Více

Digitální učební materiál

Digitální učební materiál Evidenční číslo materiálu: 516 Digitální učební materiál Autor: Mgr. Pavel Kleibl Datum: 22. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Energie Téma:

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné.

ZÁKLADNÍ POZNATKY Hydrostatika Kapaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná napětí, jsou dokonale pružné. ZÁKLDNÍ POZNTKY Hydrostatika Kaaliny málo stlačitelné, za rovnovážného stavu nemohou vznikat tečná naětí, jsou dokonale ružné. Tlak v kaalině F, F. S S tlaková síla Pascalův zákon : Tlak je na všech místech

Více

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti

Tepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Kruhový děj s plynem

Kruhový děj s plynem .. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch

Více

IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc.

IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc. IDEÁLNÍ PLYN II Prof. RNDr. Eanuel Svoboa, Sc. ZÁKLADNÍ RONIE PRO LAK IP F ýchoisko efinice tlaku vztahe S Náoba tvaru krychle, stejná rychlost olekul všei sěry (olekulární chaos, všechny sěry stejně ravěoobné)

Více

F - Změny skupenství látek

F - Změny skupenství látek F - Změny skupenství látek Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn

Více

Popis fyzikálního chování látek

Popis fyzikálního chování látek Popis fyzikálního chování látek pro vysvětlení noha fyzikálních jevů již nevystačíe s pouhý echanický popise Terodynaika oblast fyziky, která kroě echaniky zkouá vlastnosti akroskopických systéů, zejéna

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

F8 - Změny skupenství Číslo variace: 1

F8 - Změny skupenství Číslo variace: 1 F8 - Změny skupenství Číslo variace: 1 1. K vypařování kapaliny dochází: při každé teplotě v celém jejím objemu pouze při teplotě 100 C v celém objemu kapaliny pouze při normální teplotě a normálním tlaku

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou

Více

8. Termodynamika a molekulová fyzika

8. Termodynamika a molekulová fyzika 8. erodynaika a olekulová fyzika Princi energie je záležitost zkušenosti. Pokud by tedy jednoho dne ěla být jeho všeobecná latnost zochybněna, což v atoové fyzice není vyloučeno, stal by se náhle aktuální

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Definice termodynamiky

Definice termodynamiky erodynaika Definice terodynaiky erodynaika (θερμη telo, δυναμις síla) je obor fyziky zabývající se vzájenýi řeěnai různých fore energie, zejéna ráce a tela, a s nii související robleatikou sontánnosti

Více

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc.

Termodynamická soustava Vnitřní energie a její změna První termodynamický zákon Řešení úloh Prof. RNDr. Emanuel Svoboda, CSc. Vnitřní energie a její zěna erodynaická soustava Vnitřní energie a její zěna První terodynaický zákon Řešení úloh Prof. RNDr. Eanuel Svoboda, CSc. erodynaická soustava a její stav erodynaická soustava

Více

Řešení: Fázový diagram vody

Řešení: Fázový diagram vody Řešení: 1) Menší hustota ledu v souladu s Archimédovým zákonem zapříčiňuje plování jedu ve vodě. Vodní nádrže a toky tudíž zamrzají shora (od hladiny). Kdyby hustota ledu byla větší než hustota vody, docházelo

Více

Termodynamika pro +EE1 a PEE

Termodynamika pro +EE1 a PEE ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]

Více

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2 i I i II... i F i..k Binární mě, ideální kaalina, ideální lyn x y y 2 Křivka bodů varu: Křivka roných bodů: Pákové ravidlo: x y y 2 n I n x I z II II z x Henryho zákon: 28-2 U měi hexan() + hetan(2) ři

Více

Malé písemné práce II. 8. třída Tři malé opakovací písemné práce

Malé písemné práce II. 8. třída Tři malé opakovací písemné práce Malé písené práce II. 8. řída Tři alé opakovací písené práce Oblas: Člověk a příroda Předě: Fyzika Teaický okruh: Práce, energie, eplo Ročník: 8. Klíčová slova: přehled fyzikálních veličin a jednoek, vyjádření

Více

STRUKTURA KAPALIN STRUKTURA KAPALIN

STRUKTURA KAPALIN STRUKTURA KAPALIN Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 18. 5. 2013 Název zpracovaného celku: STRUKTURA KAPALIN STRUKTURA KAPALIN Struktura kapalin, povrchová vrstva kapaliny: Každá molekula kapaliny

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná

Více

Hustota plynů - jak ji změřit?

Hustota plynů - jak ji změřit? eletrh náadů učitelů fyziky 9 Hustota lynů - jak ji zěřit? ER SÁDEK, UKÁŠ AWERA edagogická fakulta U, Brno Abstrakt ěření hustoty evných látek a kaalin je běžná laboratorní úloha na řadě škol, nicéně ěření

Více

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO. 01) Složení látek opakování učiva 6. ročníku: Všechny látky jsou složeny z částic nepatrných rozměrů (tj. atomy, molekuly,

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie) Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny

Více

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději.

Termika. Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. Termika Nauka o teple se zabývá měřením teploty, tepla a tepelnými ději. 1. Vnitřní energie Brownův pohyb a difúze látek prokazují, že částice látek jsou v neustálém neuspořádaném pohybu. Proto mají kinetickou

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Registrační číslo: CZ.1.07/2.2.00/28.

Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Registrační číslo: CZ.1.07/2.2.00/28. Středoeroské centr ro ytáření a realzac nooaných techncko-ekonockých stdjních rograů Regstrační číslo: CZ..07/..00/8.030 CT 07 - Teroechanka VUT, FAST, ústa Technckých zařízení bdo Ka. Základní úlohy z

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

03 Návrh pojistného a zabezpečovacího zařízení

03 Návrh pojistného a zabezpečovacího zařízení 03 Návrh ojistného a zabezečovacího zařízení Roman Vavřička ČVUT v raze, Fakulta strojní Ústav techniky rostředí 1/14 htt://ut.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ojistné zařízení chrání zdroj tela roti

Více

Termodynamické základy ocelářských pochodů

Termodynamické základy ocelářských pochodů 29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

3.1.8 Přeměny energie v mechanickém oscilátoru

3.1.8 Přeměny energie v mechanickém oscilátoru 3..8 Přeěny energie v echanické oscilátoru Předoklady: 0050, 03007 Pedagogická oznáka: Odvození zákona zachování energie rovádí na vodorovné ružině, rotože je říočařejší. Pro zájece je uvedeno na konci

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Molekulová fyzika a termika

Molekulová fyzika a termika Molekulová fyzika a termika Fyzika 1. ročník Vzdělávání pro konkurenceschopnost Inovace výuky oboru Informační technologie MěSOŠ Klobouky u Brna Mgr. Petr Kučera 1 Obsah témat v kapitole Molekulová fyzika

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_

23_ 2 24_ 2 25_ 2 26_ 4 27_ 5 28_ 5 29_ 5 30_ 7 31_ Obsah 23_ Změny skupenství... 2 24_ Tání... 2 25_ Skupenské teplo tání... 2 26_ Anomálie vody... 4 27_ Vypařování... 5 28_ Var... 5 29_ Kapalnění... 5 30_ Jak určíš skupenství látky?... 7 31_ Tepelné motory:...

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Číslo materiálu Mgr. Vladimír Hradecký 8_F_1_13 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Povrchové procesy. Přichycení na povrch.. adsorbce. monomolekulární, multimolekulární (namalovat) Přichycení do objemu, také plyn v kapalině.

Povrchové procesy. Přichycení na povrch.. adsorbce. monomolekulární, multimolekulární (namalovat) Přichycení do objemu, také plyn v kapalině. Povrchové procesy Plyny obklopující pevné látky jsou vázány do objeu a na povrch - sorbce, nebo jsou z něho uvolňovány - desorbce oba jevy probíhají zároveň Přichycení na povrch.. adsorbce. onoolekulární,

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,

Více

Zmena skupenstva látok

Zmena skupenstva látok 1. Keď má sústava v rovnovážnom stave vo vrtkých častiach rovnaké fyzikálne a chemické vlastnosti, napr. rovnakú hustotu, štruktúru, rovnaké chemické zloženie, nazýva sa fáza. Prechod látky z jednej fázy

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Inženýrství chemicko-farmaceutických výrob

Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace

Více

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin. Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace

Více

Měření měrného skupenského tepla tání ledu

Měření měrného skupenského tepla tání ledu KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

Příloha 4/B. Podpisy zdrojů Lokální topeniště. Vzduchotechnické parametry při měření

Příloha 4/B. Podpisy zdrojů Lokální topeniště. Vzduchotechnické parametry při měření Podpisy zdrojů 2009 Lokální topeniště Kontrolní den etapy 2009 projektu 208040 Lokální topeniště kachlová kana ěkké dřevo fáze 1 Datu : 14.prosinec 2009 Kachlová kana Atosférický tlak p a 99900 Pa Teplota

Více

III. Základy termodynamiky

III. Základy termodynamiky III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn?

1 Poznámka k termodynamice: Jednoatomový či dvouatomový plyn? Kvantová a statistická fyzika (erodynaika a statistická fyzika) 1 Poznáka k terodynaice: Jednoatoový či dvouatoový plyn? Jeden ol jednoatoového plynu o teplotě zaujíá obje V. Plyn však ůže projít cheickou

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ TUHÉ TĚLESO DOPLŇKOÉ TXTY BB0 PAL SCHAUR INTRNÍ MATRIÁL FAST UT BRNĚ TUHÉ TĚLSO Tuhé těleso je těleso, o teé latí, že libovolná síla ůsobící na těleso nezůsobí jeho defoaci, ale ůže ít ouze ohybový účine. Libovolná

Více

Molekulová fyzika a termodynamika

Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Molekulová fyzika a termodynamika Úvod, vnitřní energie soustavy, teplo, teplota, stavová rovnice ideálního plynu Termodynamické zákony, termodynamické děje Teplotní a

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc.

Molekulová fyzika. Reálný plyn. Prof. RNDr. Emanuel Svoboda, CSc. Molekulová fyzik Reálný lyn Prof. RNDr. Enuel Svood, CSc. Reálný lyn Existence vzájeného silového ůsoení ezi částicei (tzv. vn der Wlsovské síly) Odudivá síl ezi částicei (interkce řekryvová) ři dosttečně

Více

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Termika Číslo a název materiálu VY_32_INOVACE_0301_0220 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

IV. Fázové rovnováhy. 4. Fázové rovnováhy Ústav procesní a zpracovatelské techniky FS ČVUT v Praze IV. Fázové rovnováhy 1 4. Fázové rovnováhy 4.1 Základní pojmy 4.2 Fázové rovnováhy jednosložkové soustavy 4.3 Fázové rovnováhy dvousložkových soustav 4.3.1 Soustava tuhá složka tuhá složka 4.3.2 Soustava

Více