( NV, )} Řešením Schrödingerovy rovnice pro N částic
|
|
- Miluše Křížová
- před 6 lety
- Počet zobrazení:
Transkript
1 Partčí fuc { E ( V, )} Řším Schrödgrovy rovc pro částc Zdoduší (?) H = H E = E Ψ= Ψ BOSOY stavy sou obsazováy bz omzí FERMIOY frmoy mohou být v stém stavu Přílady: Ply (ízý tla) => mzmolulové trac zadbáy Polyatomcé moluly sparac Hamltoáu
2 1. Systém rozlštlých částc H H = { a } ε Ergtcá hlada částc a. a b c b E (, )/ (...)/ a / / c V T T T T / T a b c,,,... QVT (,, ) Molulová partčí fuc x ( VT, ) x / T Pro sté (rozlštlé) částc dovolé rgtcé hlady sou sté: => Mohočástcový problém s zrduu a dočástcový Přílad: rystal molulvá partčí fuc: molcul tr rotvbl - další zdoduší QVT (,, ) VT (, ) závslé Rozlštlé
3 . Systém rozlštlých částc = { ε } E ε ε ε ε l... l Ergtcá hlada částc. ( l )/ T QVT (,, ), l,,,... Sčítací dxy,,,... sou závslé sumac lz rozdělt. Frmoy: dva frmoy mohou být v stém rgtcém stavu Bosoy: bz omzí E l... splňuící! Možostí 1/! l... l... E l... splňuící Vyřazy Trmy s a víc dxy stým způsobuí problém!, l,,,... ( )/ l T lz zdodušt! E l... splňuící! Možostí 1/! E l... splňuící X možostí 1/X Aproxmatví řší
4 J-l počt dovolých stavů výrazě větší ž počt částc pravděpodobost, ž částc obsadí stý stav malá. Tyto stuac zadbám. QVT (,, ) V T / T (, )! Rduc -částcového problému pro Opodstatěí přílad: částc v 3-D boxu -Počt vatových stavů s rgí ε m10 g a 10cm T 300 o K F () 3/ p8ma 6 h 30 F ( ) 10 rozlštlé částc Požadum aby F () Tato podmía v většě případů splěa: 3 T p 1mT 6 h 3/ V Splěo zméa pro vysoé tploty, těžé částc a ízé hustoty BOLTZMAOVA STATISTIKA splěo pouz pro lhé částc za ízých tplot. Tabula 4.1 straa 7
5
6 BOLTZMAOVA STATISTIKA Aproxmac platí lépa za vyšších tplot E T l Q T V, QVT (,, ) V T / T (, )! E - průměrá rg částc p / T / T Pravděpodobost, ž molula v stavu s rgíí ε Stý výsld ao u Boltzmaova odvozí Gbbsovo odvozí rgorózí.
7 dw 0 d l 0 W W!! lw l! l! d l! 0 E d Strlgův vzorc: l! l l d 0 d 0 d 0 l d ad b d 0 l d 0 Zcla závslé varac δ α ab l 0 a b a b b b
8 BOLTZMAOVA STATISTIKA Aproxmac platí lépa za vyšších tplot E T l Q T V, QVT (,, ) V T / T (, )! E - průměrá rg částc p / T / T Pravděpodobost, ž molula v stavu s rgíí ε Flutuac v ε sou stého řádu ao ε dstrbuc rgí dotlvých molul šroá. Extrémě úzá Gaussovsá dstrbuc E (pro vlá ) may-body ft!
9 Frm-Dracova a Bos-Estova statsta Odvozí a záladě GCE ε... možé vatové stavy dotlvých molul E (,V)... dostupé rgtcé stavy souboru molul (E )... počt molul v stavu ε v systému charatrzovaém E { } charatrzu vatový stav souboru m / T,, (,, ) (,, ) X VTm QVT l QVT 0 0 E b * l * začí, ž sumac probíhá pouz přs dovolé stavy 0 ( ) * * 0 ( ) 0 ( ) l b l 1 1 b 1 b 1 b b l l l l b max max max max max Frm-Drac X FD max 1 (1 l b ) Bos-Est BE max b b 1 (1 ) X l l 0
10 Frm-Drac X (1 l b ) FD l X l X l T l m l 1l VT, VT, b b l 1 l b b E l 1l pv T l 1 b b b pv T l X V, T, m Bos-Est X (1 l b ) BE 1 Obdobé výrazy, amísto plus bud míus Přstož zadbávám mzmolulové trac dotlvé částc sou v rámc vatové statsty závslé důsld symtr vlové fuc. Molulová partčí fuc í dfováa.
11 Kvatové statsty Frm-Dracova a Bos-Estova přchází a lascou Boltmaovu statstu v lmtě pro vysoé tploty bo ízé hustoty plyu (počt dovolých vatových stavů výrazě větší ž počt částc). 0 l 0 Z hldsa trmodyamy to zamá ž l 0: l b V 0 bo Vysčítáím přs a vydělím obou rovc T l 1 l b b b b b Boltzmaova statsta Obdobě dostam orspodc mz Bos-Estovou a Frm-Dracovou statstou. Kvatová statsta zbytá pouz v ětrých xtrémích případch ltroy v ovu apalé hlum
12 Idálí doatomový ply Mzmolulové trac mohou být zadbáy (p < 1 atmosféra, T > 300 K). Idálí ply počt vatových stavů výrazě větší ž počt molul: QVT (,, ) V (, T) traslct ucl! Traslačí partčí fuc tras,, 1 x y z b x y z h ε = + + x y z 8ma ( ),, x y z b h b h x y b h z xp xp xp 1 8ma 1 8ma 1 8ma x y z b h xp 1 8ma 3 3 3/ b h /8ma pmt tras ( V, T ) d V h 0 1/ pmt 1 h L Λ thrmal d Brogl wavlgth tras V L 3
13 Eltrocá partčí fuc lct w b Erg záladího stavu = 0 lct w 1w bd 1 Ergtcé hlady sou v většě případů přílš vzdálé. Podstaté zahrout dgrac záladího stavu. H prví xctovaý stav ~ 0 V: H (300 K)... Populac xctovaého stav ~ H (3000 K) ~ Atomy s ízo lžícím xctovaým stavy apř. halogy zahrutí ěola člů ulárí partčí fuc Jště větší rgtcá sparac hlad uvažum pouz dgrac záladího stavu.
14
15 Partčí fuc mooatomcého dálího plyu QVT (,, ) tras lc ucl! 3/ pmt tras ( VT, ) V h w w lct w ucl bd... V L Pouz multplatví ostata v Q Ovlví pouz S a A ostata V řadě případů musím uvažovat l Q 3 E T T T bd1 1 V, w D lc... l Q p T V T, T V
16
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Hartre-Fock method (HF)
Cofgurato Iteracto (CI) Coupled Clusters (CC) Perturbato Theory (PT, MP) Electro correlato H Ψ = EΨ Bor-Oppehemer approxmato Model of depedet electros Product wave fucto (Slater determat) MO LCAO Hartre-Fock
Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
Lineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
3. Charakteristiky a parametry náhodných veličin
3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo
PRAVDĚPODOBNOST A STATISTIKA
P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí
Interakce světla s prostředím
Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos
Analýza signálů ve frekvenční oblasti
Aalýza sigálů v frvčí oblasti Fourirova trasformac Záladí ida trasformac () Trasformac () Zpracováí v časové oblasti Zpracováí v trasform. oblasti () Ivrzí Trasformac () Typy Fourirových trasformací Discrt
k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln
Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
PRAVDĚPODOBNOST A STATISTIKA
P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tty - NOV NOV tty provádí pomocí aalýzy rozptylů NOV ouhré tty pro víc ěž dva výběry. NOV paramtrcká ttováí charaktrtk z zámých rozdělí pokud
8. Zákony velkých čísel
8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy
PRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
ck f Podmínka pro nalezení nejvhodnější variační funkce (minimální energie): = 0
Varačí teorém W Φ H Φ = ΦΦ E 0 Aproxmatví vlová fukce dává eerg, která je vždy větší (ebo rova) E 0 Leárí varačí fukce: Φ = k k W Podmíka pro alezeí ejvhodější varačí fukce (mmálí eerge): = 0 ck f c =>
Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:
. cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.
Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):
Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při
Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení
Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází
14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
Kmity a rotace molekul
Kity a otace oleul Svět oleul je eustále v poybu eletoy se poybují oolo jade jáda itají ole ovovážýc polo oleuly otují a přesouvají se Io H + podoběji Kity vibace oleul disociačí eegie vazby E D se liší
3. cvičení 4ST201. Míry variability
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry varablty
q q q ... Nw De p kt Partiční funkce monoatomického ideálního plynu
Patičí fukc mooatomického idálího plyu QNVT (,, ) tas lc ucl N! N 3/ pmkt tas ( VT, ) V h w w lct w ucl 1 1 1 bd... V L Pouz multiplikativí kostata v Q Ovliví pouz S a A kostata V řadě případů musím uvažovat
Kombinatorika- 3. Základy diskrétní matematiky, BI-ZDM
Kombiatorika- 3 doc. RNDr. Josef Kolář, CSc. Katedra teoretické iformatiky FIT České vysoké učeí techické v Praze c Josef Kolar, 2011 Základy diskrétí matematiky, BI-ZDM ZS 2011/12, Lekce 8 Evropský sociálí
2. Definice plazmatu, základní charakteristiky plazmatu
2. efiice plazmatu, základí charakteristiky plazmatu efiice plazmatu Plazma bývá obyčejě ozačováo za čtvrté skupeství hmoty. Pokud zahříváme pevou látku, dojde k jejímu roztaveí, při dalším zahříváí se
Kapitola 2. Bohrova teorie atomu vodíku
Kapitola - - Kapitola Bohrova tori atomu vodíku Obsah:. Klasické modly atomu. Spktrum atomu vodíku.3 Bohrův modl atomu vodíku. Frack-Hrtzův pokus Litratura: [] BEISER A. Úvod do modrí fyziky [] HORÁK Z.,
3. cvičení 4ST201 - řešení
cvčící Ig. Jaa Feclová 3. cvčeí 4ST0 - řešeí Obah: Míry varablty Rozptyl Směrodatá odchyla Varačí oefcet Rozlad rozptylu a mezupovou a vtroupovou varabltu Změa rozptylu Vyoá šola eoomcá VŠE urz 4ST0 Míry
Pro orientaci v této problematice jsme se seznámili s nkolika novými pojmy:
Ig. Marta Ltschmaová Statsta I., cveí 8 LIMITNÍ VTY Lmtí vty jsou tvrzeí, terá jsou dležtá pro pops pravdpodobostích model v pípad rostoucího potu áhodých pous.. ro oretac v této problematce jsme se sezáml
NEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
T > 0K T = 0K. Elektrická vodivost E C. ΔE g. E v
Klasfac vých lát z hldsa vodvost Polovodč ltro a díra Vlastí olovodč (očt ltroů a děr Nvlastí olovodč (actory a doory Vlv tloty a vodvost olovodč Possoova rovc ro olovodč Nadbytčí ostlé áboj, grac a rombac
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Stabilita svahu Mechanika hornin a zemin - cvičení 05
Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Stablta svahu Mechaka hor a zem - cvčeí 05 Iovace studjího oboru eotechka reg. č. CZ..07/2.2.00/28.0009 Slové metody (metody mezí rovováhy)
Kinetická teorie plynů - tlak F S F S F S. 2n V. tlak plynu. práce vykonaná při stlačení plynu o dx: celková práce vykonaná při stlačení plynu:
Kietická teorie plyů - tlak tlak plyu p práce vykoaá při stlačeí plyu o d: d celková práce vykoaá při stlačeí plyu: kdyby všechy molekuly měly stejou -ovou složku rychlost v : hybost předaá při árazu molekuly
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a pravděpodobos AIIKA VZORCE RO 4 a 4 verze 8 posledí aualzace:. 9. 8 K 8 opsá sasa p p =,,...,... () () ( ),, z, ( z ) ( z ) ( z), z
STUDIJNÍ TEXT PRO ZVÍDAVÉ
TF3: STATISTICKÁ FYZIKA STUDIJÍ TEXT PRO ZVÍDAVÉ PETR KULHÁEK PRAHA 5 FEL ČVUT PŘEDMLUVA Chceme-li popisovat chováí velého souboru moha stejých systémů (lasicým příladem je ply složeý z moha stejých moleul),
Generování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
8. cvičení 4ST201. Obsah: Neparametrické testy. Chí-kvadrát test dobréshody Kontingenční tabulky Analýza rozptylu (ANOVA) Neparametrické testy
cvičící 8. cvičeí 4ST1 Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST1 Neparametricé testy Neparametricétesty využíváme,
Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace
Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost
MATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
Analytické modely systémů hromadné obsluhy
Aalytcé odely systéů hroadé obsluhy ředěte teore hroadé obsluhy Kedallova lasface - ty SHO: X / Y / c / d / X ty stochastcého rocesu, terý osue říchody Y ty stochastcého rocesu terý osue délu obsluhy c
rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil
3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR
Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Statistická rozdělení
Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí
2. Vícekriteriální a cílové programování
2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě
Předmět VYT ,
Předmět VYT 216 1085, 216 2114 Podmíy zísáí zápočtu: 75 % docháza a cvičeí (7 cvičeí = miimálě 5 účastí) Kozultačí hodiy: po dohodě Roma.Vavrica@fs.cvut.cz Místost č. 817 Faulta strojí, blo B1, 8. patro
1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.
Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.
9 Kombinatorika, teorie pravděpodobnosti a matematická statistika
9 Kombatora, teore pravděpodobost a matematcá statsta Te, do argumetue průměrým platem, e s velou pravděpodobostí vysoce adprůměrý vůl s hluboce podprůměrým vzděláím (Mloslav Drucmüller) 9. Kombatora Kombatora
Cvičení z termomechaniky Cvičení 5.
Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko
6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.
Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh
je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost
Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet
4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
3. Charakteristiky a parametry náhodných veličin
3. Charatersty a parametry áhodýh velč Úolem této aptoly je zavést pomoý aparát, terým budeme dále popsovat pomoí jedoduhýh prostředů áhodé velčy. Taovýmto aparátem jsou tzv. parametry ebo haratersty áhodé
Analýza rozptylu (ANOVA)
Aalýza rozptylu (ANOVA) Tato aptola j věováa záladímu popsu statstcé mtody zvaé aalýza rozptylu, trá j záladí mtodou pro tstováí hypotéz o střdích hodotách víc ž dvou sup a trá využívá srováí pozorovaé
5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
S k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a ravděodobos AIIKA VZORCE RO 4 a 4 verze 8 osledí aualzace:. 9. 8 K 8 osá sasa,,...,... ( ( (,, z +, ( z ( z + ( z+, z H H H G... R ma
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor Lbor Žák SP Náhodý vektor Lbor Žák Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu
Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
Kuželové upínací prvky
SHAFTLOCK 01 Upínací prvky Utahovací d D L 1 L Mt Ft P P 1 mm mm mm mm mm Nm kn N/mm 2 N/mm 2 Nm 19 47 17 20 26 299 26.8 220 93 8 M6x18 17 20 47 17 20 26 308 26.8 210 93 8 M6x18 17 22 47 17 20 26 325 26.8
ÚBYTKY NAPĚTÍ V ES Jednoduchá ss vedení nn, vn Dvouvodičový rozvod. Předpoklad konst. průřezu a rezistivity. El. trakce, elektrochemie, světelné
ÚBYTKY NAPĚTÍ V ES Jedoduchá ss vedeí, v Dvouvodičový rozvod. Předpoad ost. průřezu a rezistivity. E. trace, eetrochemie, světeé zdroje, dáové přeosy, výoová eetroia. Osaměé zátěže apájeé z jedé stray
Přechod PN. Přechod PN - pásový diagram. Přechod PN strmý, asymetrický. kontakt přechod PN kontakt. (dotace) Rozložení příměsí. N-typ.
řchod v trmodyamické rovováz Vzik trmodyamické rovováhy, difúzí otciál ásový diagram Oblast rostorového ábo, růběh aětí a itzity lktrického ol roustá olarizac Ikc mioritích ositlů ábo roud řchodm, Shocklyho
4. Model M1 syntetická geometrie
4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor
SP Náhodý vektor PRAVDĚPODOBNOS A SAISIKA Náhodý vektor SP Náhodý vektor Náhodý vektor Náhodý vektor slouží k popsu výsledku pokusu kdy měříme více údaů o procesu. Před provedeím pokusu eho výsledek a
Testy statistických hypotéz
Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč
8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Iontozvukové vlny (elektrostatické nízkofrekvenční vlny) jsou to podélné vlny podobné klasickému zvuku. B e kt
DALŠÍ TYPY VLN Iotozvukové vly (elektostatiké ízkofekvečí vly) jsou to podélé vly podobé klasikému zvuku v plyu ω γ kt k M B s = = plazma zvuk pomalý po elektoy, yhlý po ioty hustota elektoů je v každém
7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ
7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů
Lineární a adaptivní zpracování dat. 8. Modely časových řad I.
Lieárí a adaptiví zpracováí dat 8. Modely časových řad I. Daiel Schwarz Ivestice do rozvoje vzděláváí Cíl, motivace Popis a idetifikace systémů BLACK BOX Cíl, motivace Popis a idetifikace systémů BLACK
Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d
Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím
Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti
Katedra pravděpodobosti a matematické statistiky Oborový semiář χ 2 test ezávislosti Petr Míchal 27 listopadu 2017 Situace 2 X {1,, I}, Y {1,, J} Jsou X a Y ezávislé? K dispozici máme áhodý vyběr (X 1,
!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.
Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím
Lineární a adaptivní zpracování dat. 12. Adaptivní filtrace a predikce III.
Leárí a adatví zracováí dat 12. Adatví ftrace a redce III. Dae Scharz Ivestce do rozvoje vzděáváí Adatví ftrace aace 1. Idetface systémů 2. Potačeí šumu 3. Leárí redce Vždy utá dostuost chybové sevece
Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.
STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M
Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha
Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
P2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
DSpace VSB-TUO
DSpace VSB-UO http://www.dspace.vsb.cz þÿx a d a b e z p e o s t í ~ e ý r s t v í / S a f e t y E gþÿx eae dr a g b es zep re es o s t í ~ e ý r s t v í. 2 9 r o. 4 / S þÿ M o~ o s t u p l a t í v r á
SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
SPOTŘEBITELSKÝ ÚVĚR Úloha 3 - Fiacováí stavebích úprav Rozhodli jsme se pro stavebí úpravy v bytě. Po zhotoveí rozpočt a tyto úpravy jsme zjistili, že ám chybí ještě 30 000,-Kč. Máme možost si tto část
Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce
Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx
Národní informační středisko pro podporu kvality
Národí iformačí střediso pro podporu vality Problémy s uazateli způsobilosti a výoosti v praxi Dr.Jiří Michále, CSc. Ústav teorie iformace a automatizace AVČR Uazatel způsobilosti C p Předpolady: ormálí
Alternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení
Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi
Vytápění systémy součastných vozidel
Vytápěí systémy součastých vozdl. trakčí lok. E,D tplovzdušé vytápěí s výměíkm l. topdlo-vzduch 2. motorové vozy E,D vytápěí tplovzdušé využívaí odpadí tplo dslu - rg dslu -33% a trakc, 33% spaly a 33%
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
Důkazy Ackermannova vzorce
Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem
z možností, jak tuto veličinu charakterizovat, je určit součet
6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p
1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n
Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte
4. KRUHOVÁ KONVOLUCE, RYCHLÁ FOURIEROVA TRANSFORMACE (FFT) A SPEKTRÁLNÍ ANALÝZA SIGNÁLŮ
4. KRUHOVÁ KOVOLUCE, RYCHLÁ FOURIEROVA TRASFORMACE FFT A SEKTRÁLÍ AALÝZA SIGÁLŮ Kruová cylcá ovoluce Ryclá Fourerova trasformace Aplace DFT a aalogové sgály, frevečí aalýza perodcýc aalogovýc sgálů s využtím
2. TEORIE PRAVDĚPODOBNOSTI
. TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme
C o r e 4, s p o l. s r. o.
e L e a r n i n g o v ý s y s t é m s p o l o é n o s t i S L A P o u ž í v a te s k ý m a n u á l Š T U D E N T C o r e 4, s p o l. r. so. S t r a n a 2 O b s a h 1 Ú V O D 3 2 P O P I S 4 2. 1 R e g
Jednotkou tepla je jednotka energie, tj. 1 Joule (J). Z definice dále plyne, že jednotkou tepelného toku je 1 J/s ( neboli 1 W )
5. Sdíleí tepla. pomy: Pomem tepelá eergie ozačueme eergii mikroskopického pohybu částic (traslačího, rotačího, vibračího). Měřitelou mírou této eergie e teplota. Teplo e část vitří eergie, která samovolě
kde je rychlost zuhelnatění; t čas v minutách. Pro rostlé a lepené lamelové dřevo jsou rychlosti zuhelnatění uvedeny v tab. 6.1.
6 DŘEVĚNÉ KONSTRUKCE Petr Kulí Kapitola je zaměřena na oblematiu navrhování vů a spojů dřevěných onstrucí na účiny požáru. Postupy výpočtu jsou uázány na příladu návrhu nosníu a sloupu. 6. VLASTNOSTI DŘEVA