Přednáška č. 10 Analýza rozptylu při jednoduchém třídění
|
|
- Jan Radomír Musil
- před 6 lety
- Počet zobrazení:
Transkript
1 Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě stálých odmíek, řčemž úlý os těchto odmíek je velm obtížý evet. v ěkterých říadech je raktcky emožý (část vlvů-faktorů může být zřejmá, ěkteré lze detfkovat obtížě č vůbec. Náhodá velča se měí ůsobeím sledovaých faktorů, ale ro ás ezámých vlvů (áhodých vlvů. Aalýza roztylu umožňuje rozdělt romělvost (varabltu a: - jedotlvé složky odle zámých faktorů, - složku odovídající áhodým vlvům. Aalýza roztylu umožňuje určt faktory, které ovlvňují výsledek áhodého okusu trvale tj. výzamě a faktory, jejchž ůsobeí je áhodé a evýzamé. Podle zůsobu vyhodocováí se aalýza dělí a: - aalýza ř jedoduchém tříděí; osuzujeme výzamost ůsobeí ouze jedoho vybraého faktoru, - aalýza ř dvojém tříděí; ostu ř dvou faktorech, - aalýza faktorálího tříděí; současé sledováí většího očtu faktorů včetě jejch vzájemého ůsobeí. Aalýza ř jedoduchém tříděí Př aalýze se osuzují výsledky áhodých okusů (exermet ebo soubory získaé jým zůsobem (rozbory dat ř: - ůsobeí jedoho vybraého faktoru, který záměrě ovlvňujeme, - celkovém očtu úroví vybraého faktoru. Aalyzuje se celkem ezávslých výběrů o četostech,,,. Četost ř oakováí mohou být růzé. Př aalýze se ředokládá, že všechy výběry byly rovedey z téhož základího souboru, který je osá ormálí áhodou velčou N(. Pro většu říadů v žeýrské rax je možé uvedeý ředoklad řjmou vzhledem k velkému očtu vlvů (faktorů ůsobících a vzk áhodé velčy. Prcem aalýzy je rokázáí, že vlastost jedotlvých výběrů jsou takové, že lze řjmout ředoklad o středí hodotě: H o : =. Souhrou aalýzu je možé rovést ásledujícím zůsobem. Usořádáí údajů v hodoceých výběrových souborech je dle tabulky včetě výočtu odhadů základí charakterstky áhodé velčy - středí hodoty. Úroveň Hodoty v souboru Počet Součet Průměr faktoru (aměřeé hodoty hodot y, y,., y j,...y, x y x. y, y,..., y j, y, x y x. y, y,., y j, y, x y x Součet y
2 Pro jedotlvé úrově (řádky zavedeme ozačeí Součet hodot v řádku Odhad středí hodoty v řádku x y j y x Pro celkový hodoceý soubor hodot celkový součet x j y Odhad středí hodoty ro celkový hodoceý soubor hodot y j Mez jedotlvým hodotam áhodé velčy y j a zvoleým arametry ro osuzovaí exstují odchylky, které je možé zázort ve schématu j j y x celk celk y kde: odchylky růměrů ř jedotlvých úrovích faktoru a celkového růměru (romělvost mez řádky odchylky jedotlvých hodot áhodě velčy od růměru a úrov (romělvost uvtř řádků celk... odchylka jedotlvých hodot áhodé velčy od celkového růměru ( osouzeí vlastostí erozděleého souboru Mez odchylkam latí vztah což dle schématu lze vyjádřt ( yj y ( yx y ( yj yx odchylky mohou být odle ulatěí vlvů kladé č záoré a ro osouzeí jejch celkové velkost se roto volí druhá moca odchylek. Bude roto ř -té úrov vybraého faktoru hodotící krtérum čtverec odchylky y y y y ( y j y x j x
3 a o úravách ro celý soubor hodot (zaedbáy eodstaté odchylky ( yj y ( yx y j j ( y j y y Celkový součet čtverců odchylek jedotlvých hodot áhodé velčy od celkové odchylky se skládá ze dvou složek a součet čtverců odchylek mez úroví vybraého faktoru ( y x y b součet čtverců odchylek uvtř tříd (rezduálí ůsobeí ostatí faktorů a áhodou velču ( yj yx j Pro osouzeí velkostí a se určí středí hodoty těchto velč eboť se jedá o velčy áhodé. Výočet se rovádí z ásledující úvahy: - velčy ve výběrovém souboru y j jsou ezávslé.. os ormálí áhodou velčou N(, - řádkové středí hodoty. os ormálí áhodou velčou N(, - celkový růměr y etříděého souboru. os ormálí áhodou velčou N(. Odhad středí hodoty a roztylu etříděého souboru (vybraý faktor má evýzamý vlv bude. Př testu se sestavuje tabulka aalýzy roztylu: E( y Součet čtverců odchylek Mez úrověm faktoru(řádkový ( y y x Uvtř úroví (resduálí ( yj yx j Celkový ( y y j Počet stuňů volost - - Podíl = /(- = /(- - = celk /(-
4 Hodoty lze určt dle výše uvedeých vztahů evet. omocí součtových hodot. x y j x celk y j Test výzamost Formulace hyotéz H o : vlv vybraého faktoru je evýzamý H : vlv faktoru eí evýzamý Hlada výzamost testu, Test jedostraý. Výočet charakterstk výběrových souborů Určíme středí hodoty součtu čtverců odchylek: osující romělvost mez řádky (úrověm faktoru, osující romělvost uvtř řádků (vlv ostatích faktorů. 3 Výočet testovacího krtéra K osouzeí vlvu vybraého faktoru slouží odíl varablty zůsobeé růzou úroví vybraého faktoru, kterou získáme záměrým ovlvěím úrově tohoto faktoru ř exermetu, růzkumu aod. a celkové varablty od ůsobeí ostatích faktorů. T Testovací krtérum je áhodá velča a vzhledem ke struktuře vztahu se jedá o velču Fscherovu F k,k. Stuě volost jsou k = - a k = -. 4 Určeí krtcké hodoty testovacího krtéra Vzhledem k charakteru testu se jedá o jedostraý test a mezí hodota testovacího krtéra je kvatl Fscherovy áhodé velčy. T kr F, k, k 5 Platost H o Testovaou hyotézu řjímáme okud latí T T kr
5
Přednáška č. 11 Analýza rozptylu při dvojném třídění
Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané
a další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah
Testování statistických hypotéz
Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
PRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
PRAVDĚPODOBNOST A STATISTIKA
P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí
PRAVDĚPODOBNOST ... m n
RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:
Chyby přímých měření. Úvod
Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,
Národní informační středisko pro podporu kvality
Národí iformačí středisko ro odoru kvality Testováí zůsobilosti a výkoosti výrobího rocesu RNDr. Jiří Michálek, Sc Ústav teorie iformace a automatizace AVČR UKAZATELE ZPŮSOBILOSTI 3 UKAZATELE ZPŮSOBILOSTI
3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
Téma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:
9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí
Mendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu
Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot
Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec
Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky
9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
můžeme toto číslo považovat za pravděpodobnost jevu A.
RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout áhodé rocesy. Náhodé okusy: rocesy,
11. INDUKTIVNÍ STATISTIKA
Pravděodobost a statstka. INDUKTIVNÍ STATISTIKA Iduktví statstka Průvodce studem Navážeme a katolu 7 a ukážeme, jak racovat se soubory, jejchž všechy rvky ejsou zámy. Předokládaé zalost Pojmy z ředchozích
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Testování hypotéz. 3.1 Základní pojmy a obecný postup při testování
Lekce 3 Testováí hypotéz Vlajkovou lodí matematcké statstky jsou techky testováí hypotéz. Formulace hypotéz a jejch ověřováí jsou základím mechasmem postupu ldského pozáí. Pokud jsou formace, potřebé k
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
Úvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
Genetická diverzita. doc. Ing. Jindřich. ich Čítek, CSc. Genetickou diverzitu chápeme jako různost mezi živými organismy, která je geneticky fixovaná.
Geetcká dverzta hosodářských ských zvířat doc. Ig. Jdřch ch Čítek, CSc. Zemědělsk lská fakulta JU Katedra geetky, šlechtěí a výžvy zvířat Geetckou dverztu cháeme jako růzost mez žvým orgasmy, která je
Úvod do teorie měření
Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých
- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
PRAVDĚPODOBNOST A STATISTIKA
SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
11. Časové řady. 11.1. Pojem a klasifikace časových řad
. Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Náhodná veličina-označení Parametry Obor platnosti Normální N(µ,σ) Střední hodnota µ Střední směr. odchylka σ. Střední hodnota µ
ředáša č 4 Teoretcé sojté áhodé velčy ožtí těchto áhodých velč je ro říady, dy velča může abývat lbovolých hodot v omezeém č eomezeém terval V techcé rax se jedá o os vlastostí solehlvost výrob (doba do
, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
APLIKOVANÁ STATISTIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
Testy statistických hypotéz
Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ
Statistika - vícerozměrné metody
Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
Definice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
Obsah. Statistika verze 1.0
Statstka verze. Obsah Obsah.... Výzam ojmu STATISTIKA.... Kombatorka... 4 3. Statstcká jedotka, soubor, zak, data a ukazatele... 5 4. Úvod do ravděodobost... 7 5. Objektví, subjektví, odmíěá ravděodobost
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta ANALÝZA DAT. 2. upravené vydání. Josef Tvrdík
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. upraveé vydáí Josef Tvrdík OSTRAVSKÁ UNIVERZITA 008 OBSAH: Úvod... 3 Parametrcké testy o shodě středích hodot... 4. Jedovýběrový t-test...
Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Příklady z přednášek Statistické srovnávání
říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
Testujeme hypotézu: proti alternativě. Jednoduché třídění:
Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché
P1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
8.3.1 Vklady, jednoduché a složené úrokování
8..1 Vklady, jedoduché a složeé úrokováí Předoklady: 81 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží
Pravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
VYUŽITÍ STATISTIKY V POŽÁRNÍM ZKUŠEBNICTVÍ
Eergetcky efektví budovy 05 sympozum Společost pro techku prostředí 5. říja 05, Buštěhrad VYUŽITÍ STATISTIKY V POŽÁRNÍM ZKUŠEBNICTVÍ Otto Dvořák Archtektura a terakce budov s žvotím prostředím, UCEEB,
8. Zákony velkých čísel
8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy
2. TEORIE PRAVDĚPODOBNOSTI
. TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme
Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
Náhodné jevy, jevové pole, pravděpodobnost
S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.
Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
Statistická analýza dat
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031
STATISTICKÁ ANALÝZA. Doc. RNDr. Zden k Karpíšek, CSc. P ehledový u ební text pro doktorské studium. Vysoké u ení technické v Brn
Vysoké ueí techcké v Br Fakulta strojího žeýrství STATISTICKÁ ANALÝZA Doc. RNDr. Zdek Karpíšek, CSc. Pehledový uebí tet pro doktorské studum BRNO 008 Pedášející: Doc. RNDr. Zdek Karpíšek, CSc. Cetrum pro
VY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
Domácí práce z p edm tu D01M6F Statistika
eské vysoké u eí techcké Fakulta Elektrotechcká Domácí práce z p edm tu D0M6F Statstka Test dobré shody Bradá Marek 4.ro ík Ak. rok 004/00, LS M6F Test dobré shody Obsah Zadáí...3 Hypotéza...3 3 Zj t é
Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový
Statistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
S1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
7. cvičení 4ST201-řešení
cvičící 7. cvičeí 4ST21-řešeí Obsah: Bodový odhad Itervalový odhad Testováí hypotéz Vysoká škola ekoomická 1 Úvod: bodový a itervalový odhad Statistický soubor lze popsat pomocípopisých charakteristik
Univerzita Karlova v Praze Pedagogická fakulta
Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
Markovovy řetězce s diskrétním časem (Discrete Time Markov Chain)
Stochastcé rocesy Marovovy řetězce s dsrétím časem (Dscrete Tme Marov Cha) Stochastcý roces Stochastcým rocesem {X(t), tr} je moža áhodých velč X(t) závslých a jedom arametru t. Stavový rostor : moža možých
14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat
4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
jsou varianty znaku) b) při intervalovém třídění (hodnoty x
Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém
11 TESTOVÁNÍ HYPOTÉZ Základní pojmy
EOVÁNÍ YPOÉZ. Základí ojmy V Kaitole jsme se sezámili s ostuem, jak odhadout ezámé arametry základího souboru oulace v říadě, že emáme k disozici všechy jeho rvky, ale je jeho část - áhodý výběr. V raxi
Ing. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
Digitální učební materiál
Dgtálí učebí materál Číslo projetu CZ..07/.5.00/34.080 Název projetu Zvaltěí výuy prostředctvím ICT Číslo a ázev šabloy líčové atvty III/ Iovace a zvaltěí výuy prostředctvím ICT Příjemce podpory Gymázum,
Regresní a korelační analýza
Regresí a korelačí aalýza Závslost příčá (kauzálí). Závslostí pevou se ozačuje případ, kdy výskytu jedoho jevu utě odpovídá výskyt druhé jevu (a často aopak). Z pravděpodobostího hledska jde o vztah, který
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 OBSAH ÚVOD... 3 PROGRAMOVÉ PROSTŘEDKY PRO STATISTICKÉ VÝPOČTY... 4. TABULKOVÝ PROCESOR EXCEL...4.
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
B a k a l ářská práce
Vysoká škola ekoomcká v Praze Fakulta maagemetu v Jdřchově Hradc B a k a l ářská práce Iveta Doležalová 007 Vysoká škola ekoomcká v Praze Fakulta maagemetu v Jdřchově Hradc Katedra maagemetu formací Katedra