Téma 6: Indexy a diference
|
|
- František Pokorný
- před 9 lety
- Počet zobrazení:
Transkript
1 dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel - roměá velča zak, která kvattatvě osje hromadý jev. Z věcého hledska se kazatele se dělí a: exteztí kazatele - objem možství, velkost, hodota,, oz. res. teztí kazatele - oměr exteztích kazatelů úroveň,, oz. ař.: rům. áklady celkové áklady / objem rodkce rodktvta hodota rodkce / očet racovíků tržba cea x velkost rodkce ro srováváí hodot kazatelů je důležtá jejch stejorodost z hledska jejch věcého obsah - exteztí kazatel je stejorodý, okd jeho hodoty lze sčítat ař. deí rodkce odk ; hodota vkladů a rčtý ty účtů, - teztí kazatel je stejorodý, okd je odílem exteztích stejorodých velč ař. hektarový výos ckrovky ; rodktvta ráce v odk, Jako rostředky ke srováváí hodot kazatelů složí dexy a dferece. absoltí srováí omocí rozdílů dferece, relatví srováí omocí odílů dexy, kde a jso hodoty kazatele ve vztah k čas, rostor ebo drh ř srováváí v čase ožíváme ozačeí: základí období; běžé období - 8 -
2 dexy a dferece odle vymezeí velč rozděljeme dexy a dferece a: časové srováí hodot kazatele ve časových bodech res. tervalech, vymezeí rostorové a věcé je shodé ař.: hodota vývoz v r. 98 a 99 v ČR ; očet ových bytů v ČR v r. 96 a 98, rostorové srováí hodot kazatele ve místech res. oblastech, vymezeí časové a věcé je shodé ař.: cea bez v /99 v Brě a Ostravě ; očet bytů a ts. obyv. v r. 98 v raze a v Brě, věcé srováí hodot kazatelů, vymezeí časové a rostorové je shodé ař.: rodej mobl. telefoů egas a Erotel v r. 99 v ČR ; rodej tzemských a zahračích at v r. 98 v ČR. odle věcého obsah kazatelů dělíme dexy a dferece a: objemové srovávají hodoty exteztího kazatele, úrovňové srovávají hodoty teztího kazatele. Klasfkace dexů a dferecí dvdálí jedodché a složeé ro stejorodé kazatele sohré jedodché a složeé ro růzorodé kazatele dvdálí jedodché dexy a dferece os velčy, která je dále eděltelá oz.. dvdálí složeé a sohré dexy a dferece os velčy, jejíž hodoty jsme řed srováváím shrl oz.. výběrové získaé z výběrových šetřeí, složí ke kostrkc odhadů osé srovávací, složí ke srováí hodot je ve srovávaé stac Vlastost dexů Kvalta ožtých dexů se oszje omocí 5 tzv. Fsherových testů axomů test záměy čas / / test okržost řetězeí / / 3/ / test terkalace m/k k/j k/j m/k m/j test detty test soměřtelost - 8 -
3 dexy a dferece dvdálí jedodché dexy a dferece srovávají hodoty stejorodého kazatele ve stacích hodoty jso dále eděltelé a objemové res. res. b úrovňové res. V delším časovém období můžeme charakterzovat vývoj sledovaého kazatele časovo řado dvdálích jedodchých dexů. odle toho, jaké období ovažjeme za základí, rozlšjeme bázcké dexy - dexy se stálým základem ; / ; ; / / řetězové dexy - dexy s ohyblvým základem ; / ; / ; ; 3 3/ / Vztah mez bazckým a řetězovým dexy: bazcké získáme z řetězových sočem mějme řetězové dexy / ; / ; 3/ ; ; /-, otom / / ; / / / ; 3/ 3/ / / ; ; / /- / / řetězové získáme z bazckých odílem mějme bazcké dexy / ; / ; 3/ ; ; /, otom / / / ; ; / / ; ; 3/ 3/ / / / / dvdálí složeé dexy a dferece ředokládají stejorodost kazatelů exteztích teztích a exstec dílčího čleěí hodot kazatelů hodot sledovaého kazatele dostaeme jako úhr hodot dílčích kazatelů za část sledovaého celk. dvdálí složeé dexy a dferece se tvoří odlšě ro
4 dexy a dferece a exteztí kazatele - objemové dexy a dferece jso Σ Σ Σ res. Σ Σ Σ Σ Σ Σ res. Σ Σ Σ. b teztí kazatele Sohry hodot dílčích kazatelů teztího ty elze získat sčítáím, ale omocí růměrých hodot těchto kazatelů, tj. Σ, kde res. Σ. otom úrovňové dexy a dferece jso res.. Všechy 3 dexy, tj. Σ, Σ a, lze vádět též v růměrových tvarech omocí artmetckého res. harmockého růměr: jso-l k dsozc údaje je ro základí období a dvdálí jedodché dexy res., otom vyjádříme dexy Σ a Σ ve tvar artmetckého růměr Σ Σ res. Σ Σ Σ ; Σ jso-l k dsozc údaje je ro běžé období a dvdálí jedodché dexy res., otom vyjádříme dexy Σ a Σ ve tvar harmockého růměr Σ Σ res. Σ Σ Σ ; Σ dex romělvého složeí lze vyjádřt ve tvar Σ Σ : res. Σ Σ Σ :. Σ Σ Σ
5 dexy a dferece ředáška - Sohré dexy a dferece Dělí se a jedodché a složeé, my se bdeme zabývat oze jedodchým, omocí chž srováváme sohrě hodoty estejorodých exteztích teztích velč a rčtém celk, který eí dále třídě a dílčí část. Je možé je rozdělt a:. ceové teztí kazatele, úrovňové dexy a dferece. objemové exteztí kazatele, objemové dexy a dferece Sohré ceové dexy a dferece Hstorckém vývoj odovídají 3 geerace dexů:. geerace : vycházejí z rostých tvarů charakterstk úrově, tj. z rostého artmetckého, geometrckého, harmockého růměr, medá a mod ař. ceový dex ve tvar artmetckého růměr a, geometrckého růměr g, kde je očet oložek. V sočasé době se řílš eožívají, rotože - evažjí vývoj exteztí velčy objem výroby - dex ve tvar artm. růměr eslňje test záměy čas dex ve tvar geom. růměr ao!. geerace : vycházejí z vážeých tvarů charakterstk úrově, tj. z vážeého artmetckého, geometrckého, harmockého růměr, medá a mod aseyresův dex a dferece objem výroby se važje ze základího období aseyresův dex - srovává hodot rodkce. základího období oceěo ceam běžého období s hodoto téže rodkce vyjádřeo v ceách základího období, tj. kazje změ hodoty rodkce v důsledk změy ce za ředoklad, že objem výroby zůstae a úrov základího období rčje relatví změ cey ř stálém objem výroby ze základího období
6 dexy a dferece - eslňje test záměy čas ; vzhledem ke kostrkc adhodocje sktečost aseyeresova dferece - dává absoltí změ hodoty rodkce základího období vyjádřeé v ceách běžého období rot sktečost v základím období aascheho dex a dferece objem výroby se važje z běžého období aascheho dex - srovává hodot rodkce. běžého období s hodoto téže rodkce vyjádřeo v ceách základího období, tj. kazje změ hodoty rodkce v důsledk změy ce za ředoklad, že objem výroby zvolíme a úrov běžého období rčje relatví změ cey ř stálém objem výroby z běžého období - také eslňje test záměy čas ; vzhledem ke kostrkc odhodocje sktečost aascheho dferece - dává absoltí změ hodoty rodkce v běžém období rot hodotě téže rodkce běžého období vyjádřeé v ceách základího období aseyresovy a aascheho ceové dexy jso závslé a volbě vah, kterým jso hodoty rodkce v základím res. běžém období. Z čstě raktckých důvodů se často dává ředost aseyresov dex v říadě, že cey srováváme v osloost více let aseyresův dex ožívá totž stále stejo váh, kdežto aascheho dex ožívá váh, která se každý rok měí - statstcká ročeka ČR ožívá aseyresovy dexy, váhy se měí cca za 5 let. ro dexy obecě latí. Oba dexy eslňjí kromě jého test záměy čas. dexy tohoto ty elze mez sebo ásobt a vytvářet z ch řady bázckých a řetězových dexů. Teto roblém řeší dexy 3. geerace. 3. geerace : závslost dexů a volbě vah je řešeá bď zrůměrováím vah ebo zrůměrováím dexů Na zrůměrováí vah je založe tzv. Edgeworthův dex a dferece +, + E
7 dexy a dferece [ ] + + E. Na zrůměrováí dexů je založe tzv. Fsherův dex a dferece F, F +. Užtí ceových dexů: a ve sféře sotřebtelské sotřebtelské cey, žvotí áklady, b ve sféře výrobí směé relace, výrobí áklady, c ve sféře zahračího obchod vývoz, dovoz d ve sféře akcí vývoj krzů Sohré objemové dexy a dferece V rax ás vedle vývoje ce zajímá také vývoj vytvořeé rodkce. K tom složí objemové dexy a dferece. odstato sohrých objemových dexů a dferecí je řevod estejorodé esčtatelé velčy a velč stejorodo srovatelo, ejčastěj omocí cey. aseyresův dex a dferece cea se važje ze základího období Vyjadřjí relatví res. absoltí změ objem rodkce ř ceové hladě základího období. aascheho dex a dferece cea se važje z běžého období Vyjadřjí relatví res. absoltí změ objem rodkce ř ceové hladě běžého období
8 dexy a dferece Fsherův dex a dferece F F + růměrové tvary dexů okd ejso k dsozc všechy údaje o ceách a výrobě,,,, ale jso zámé hodoty rodkce, a dvdálí dexy,, otom lze cey res. objemy výroby doočítat ebo vyžít římo růměrové tvary dexů. aseyresovy dexy zámá hodota rodkce a dvdálí dexy res. aascheho dexy zámá hodota rodkce a dvdálí dexy res....
Přednáška č. 10 Analýza rozptylu při jednoduchém třídění
Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě
Více2. Úvod do indexní analýzy
2. Úvod do idexí aalýzy 2.. Motivace Tato kaitola se zabývá srováváím ukazatelů v datových souborech, které se liší buď časově ebo rostorově ebo věcě. Nejdůležitější je srováváí ukazatelů z časového hlediska.
Více9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:
9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí
VíceSpolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
VíceTento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
VíceBIVŠ. Pravděpodobnost a statistika
BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz
Více3. Hodnocení přesnosti měření a vytyčování. Odchylky a tolerance ve výstavbě.
3. Hodoceí přesost měřeí a vytyčováí. Odchylky a tolerace ve výstavbě. 3.1 Úvod o měřeí obecě 3.2 Chyby měřeí a jejch děleí 3.2.1 Omyly a hrubé chyby 3.2.2 Systematcké chyby 3.2.3 Náhodé chyby 3.3 Výpočet
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
VíceMendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
VíceStřední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1
Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,
VícePODNIKOVÁ EKONOMIKA 3. Cena cenných papírů
Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý
Více11. Časové řady. 11.1. Pojem a klasifikace časových řad
. Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah
Vícejsou varianty znaku) b) při intervalovém třídění (hodnoty x
Výběr z eřeštelých příkladů ze zkouškových testů Jde o výběr z tpů příkladů, jejchž úspěšost řešeí u zkoušek se blíží ule. Itervalové versus bodové tříděí V tabulce je uvedeo rozděleí četostí a) př bodovém
Více1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.
SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě
VíceObsah. Statistika verze 1.0
Statstka verze. Obsah Obsah.... Výzam ojmu STATISTIKA.... Kombatorka... 4 3. Statstcká jedotka, soubor, zak, data a ukazatele... 5 4. Úvod do ravděodobost... 7 5. Objektví, subjektví, odmíěá ravděodobost
Více1. Základy měření neelektrických veličin
. Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost
VíceOdhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
VíceTento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
Teto projekt je spolufiacová Evropským sociálím fodem a Státím rozpočtem ČR IoBio CZ..07/2.2.00/28.008 Připravil: Ig. Vlastimil Vala, CSc. Metody zkoumáí ekoomických jevů Kapitola straa 3 Metoda Z řeckého
Více4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
VícePříklady z přednášek Statistické srovnávání
říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada
VíceS1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
VíceUSTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH
USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou
VíceMetody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
VíceNáhodné jevy, jevové pole, pravděpodobnost
S Náhodé jevy pravděpodobost Náhodé jevy jevové pole pravděpodobost Lbor Žák S Náhodé jevy pravděpodobost Lbor Žák Základí pojmy Expermet česky též vědecký pokus je soubor jedáí a pozorováí jehož účelem
VíceStatistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
VíceOdhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
VíceMetoda datových obalů DEA
Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího
VíceOptimalizace portfolia
Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí
VíceNárodní informační středisko pro podporu kvality
Národí iformačí středisko ro odoru kvality Testováí zůsobilosti a výkoosti výrobího rocesu RNDr. Jiří Michálek, Sc Ústav teorie iformace a automatizace AVČR UKAZATELE ZPŮSOBILOSTI 3 UKAZATELE ZPŮSOBILOSTI
VíceGenetická diverzita. doc. Ing. Jindřich. ich Čítek, CSc. Genetickou diverzitu chápeme jako různost mezi živými organismy, která je geneticky fixovaná.
Geetcká dverzta hosodářských ských zvířat doc. Ig. Jdřch ch Čítek, CSc. Zemědělsk lská fakulta JU Katedra geetky, šlechtěí a výžvy zvířat Geetckou dverztu cháeme jako růzost mez žvým orgasmy, která je
VíceOdhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
VíceASYNCHRONNÍ STROJE. Obsah
VŠB TU Ostrava Fakulta elektrotechiky a iformatiky Katedra obecé elektrotechiky ASYCHROÍ STROJE Obsah. Výzam a oužití asychroích motorů 2. rici čiosti asychroího motoru 3. Rozděleí asychroích motorů 4.
VíceP1: Úvod do experimentálních metod
P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu
VíceDeskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
VíceANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ
ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ THE ANALYSIS OF CONSUMER BEHAVIOR WITH TÖRNQUIST FUNCTIONS USING FOR CHOICE FOOD PRODUCTS Pavlína Hálová
VíceZákladní typy ukazatelů
Srovnávání hodnot statstkýh kazatelů - osem a analýzo ekonomkýh jevů a roesů omoí kazatelů se zabývá hosodářská statstka; - ílem je nalézt zůsoby měření ekonomké sktečnost (ve formě kazatelů) a jejího
VícePRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Vícea další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
Více10.2.3 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI
Středí hodoty Artmetcý průměr vážeý Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR S REÁLNÝMI VAHAMI Zatím jsme počítal s tím, že četost ve vztahu pro vážeý artmetcý průměr byla přrozeá čísla Četost mohou
VíceIng. Vladimíra Michalcová, Ph.D. Katedra stavební mechaniky (228)
Stavebí statka - vyučující Dooručeá lteratura Ig. Vladmíra chalcová, h.d. Katedra stavebí mechaky (228) místost: LH 47/ tel.: (59 732) 348 e mal: vladmra.mchalcova@vsb.c www: htt://fast.vsb.c/mchalcova
VíceMODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY
MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky
VíceÚvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
VícePojem času ve finančním rozhodování podniku
Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Více9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost
Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,
VíceVícekanálové čekací systémy
Vícekaálové čekací systémy taice obsluhy sestává z ěkolika kaálů obsluhy, racujících aralelě a avzájem ezávisle. Vstuy i výstuy systému mají oissoovský charakter. Jedotky vstuující do systému obsadí ejrve
VíceExperimentální identifikace regulovaných soustav
Expermetálí etfkace reglovaých sostav Cílem je zhotoveí matematckého moel a záklaě formací získaých měřeím. Požívá se možství meto. Výběr metoy je ůležtý, protože a ěm závsí přesost áhraího moel. Záklaím
VíceNáhodná veličina-označení Parametry Obor platnosti Normální N(µ,σ) Střední hodnota µ Střední směr. odchylka σ. Střední hodnota µ
ředáša č 4 Teoretcé sojté áhodé velčy ožtí těchto áhodých velč je ro říady, dy velča může abývat lbovolých hodot v omezeém č eomezeém terval V techcé rax se jedá o os vlastostí solehlvost výrob (doba do
VícePřednáška č. 11 Analýza rozptylu při dvojném třídění
Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané
VícePRAVDĚPODOBNOST ... m n
RVDĚODONOST - matematická discilía, která se zabývá studiem zákoitostí, jimiž se řídí hromadé áhodé jevy - vytváří ravděodobostí modely, omocí ichž se saží ostihout rocesy, ovlivěé áhodou. Náhodé okusy:
VíceAPLIKOVANÁ STATISTIKA
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4
Vícec) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),
a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte
VíceTestování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
VíceKatedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava ENERGETIKA U ŘÍZENÝCH ELEKTRICKÝCH POHONŮ. 1.
Katedra obecé eletrotechiy Faulta eletrotechiy a iformatiy, VŠB - TU Ostrava EERGETIKA U ŘÍZEÝCH EEKTRICKÝCH POHOŮ Předmět : Rozvody eletricé eergie v dolech a lomech. Úvod: Světový tred z hledisa eletricé
Více, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
VícePro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
VíceDefinice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
VíceIlustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
VíceSměrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu
Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot
Více2 STEJNORODOST BETONU KONSTRUKCE
STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů
VíceVY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
VíceKomponenty výkonové elektrotechniky
Komoety výkoové elektrotechky Osovy ředášek:.. 3. 4. 5. 6. 7. 8. 9.... 3. Úvod do roblematky Výkoové dody Proudem řízeé součástky (výkoové trazstory, tyrstory) Moderí součástky tyrstorového tyu (GTO, IGCT,
VíceModel poptávky po železniční osobní dopravě Českých drah, a. s. na tuzemském přepravním trhu
Vědeckotechcký sorík ČD č. 3/0 Leka Zahradíková Model poptávky po železčí osoí dopravě Českých drah, a. s. a tuzemském přepravím trhu Klíčová slova: poptávka, osoí doprava, České dráhy, regresí aalýza,
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
Více2. Finanční rozhodování firmy (řízení investic a inovací)
2. Fiačí rozhodováí firmy (řízeí ivestic a iovací) - fiačí rozhodováí je podmožiou fiačího řízeí (domiatí) - kompoety = složky: výběr optimálí variaty zdrojů fiacováí užití získaých prostředků uvážeí vlivu
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
VíceI. Výpočet čisté současné hodnoty upravené
I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě
VíceGeodézie 3 (154GD3) Téma č. 9: Hodnocení a rozbory přesnosti výškových měření.
Geodéze 3 (54GD3) Téma č. 9: Úvod o měřeí obecě. V geodéz měříme především déky, úhy, a dáe také apř. čas, vekost síy tíže apod. Výsedek měřeí je charakterzová čísem, závsým též a vobě jedotek. Ze zkušeost
Více11. Popisná statistika
. Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př
VíceSOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek
SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN
VíceRegrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n
Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =
VíceNejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
Více8.2.10 Příklady z finanční matematiky I
8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do
VíceČasová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad
Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.
VíceZákladní vlastnosti polovodičů
Základí vlastosti olovodičů Volé osiče áboje - elektroy -e m, - díry +e m V termodyamické rovováze latí Kocetrace osičů je možo vyjádřit omocí Fermiho eergie W F dotace doory ty N dotace akcetory ty P
Více7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
VíceSekvenční logické obvody(lso)
Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách
VíceMěření závislostí. Statistická závislost číselných znaků
Měřeí závslostí Statstcká závslost číselých zaků - závslost dvou velč lze vádřt ako ech fukčí vztah vzorcem, taulkou hodot příslušé fukce eo grafck; - mez zak zkoumaých evů zšťueme estec příčé (kauzálí
VíceVYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Katedra statistiky a pravděpodobnosti STATISTIKA. VZORCE PRO 4ST201 a 4ST210
VYOKÁ ŠKOLA EKONOMICKÁ V RAZE FAKULA INFORMAIKY A AIIKY Kaedra sas a ravděodobos AIIKA VZORCE RO 4 a 4 verze 8 osledí aualzace:. 9. 8 K 8 osá sasa,,...,... ( ( (,, z +, ( z ( z + ( z+, z H H H G... R ma
Více4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ
4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu
VíceChyby přímých měření. Úvod
Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,
Více3. Decibelové veličiny v akustice, kmitočtová pásma
3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho
VícePetr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Více2,3 ČTYŘI STANDARDNÍ METODY I, ČTYŘI STANDARDNÍ METODY II
2,3 ČTYŘI STADARDÍ METODY I, ČTYŘI STADARDÍ METODY II 1.1.1 Statické metody a) ARR - Average Rate of Retur průměrý ročí čistý zisk (po zdaěí) ARR *100 % ( 20 ) ivestic do projektu V čitateli výrazu ( 20
VíceLABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:
VíceStatistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
VíceStatistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
VíceStatistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc
Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se
VíceStatistika - vícerozměrné metody
Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé
VíceSTATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
VíceCílem kapitoly je zvládnutí řešení determinantů čtvercových matic.
temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme
Více14. Korelace Teoretické základy korelace Způsoby měření závislostí pro různé typy dat
4. Korelace 4. Teoretcké základy korelace 4. Způsoby měřeí závslostí pro růzé typy dat Př prác se statstckým údaj se velm často setkáváme s daty, která jsou tvořea dvojcem, trojcem hodot. Složky takovýchto
Více1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
VíceStatistické zpracování dat
Bakoví sttut vysoká škola Praha Katedra IT Statstcké zpracováí dat Bakalářská práce Autor: Ja Culka Iformačí techologe, Maaţer projektů Vedoucí práce: Mgr. Olga Procházková Praha Červe, 00 Prohlášeí: Prohlašuj,
VíceANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC
ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,
VíceII. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP
Istituce i zazameaé operace jsou fiktiví. Ukázkové případy - sezam Případ Vykazující účetí Vykázaé Části I až XIII Straa jedotka (zkráceě až 3) A Půjčka od baky Město, v roce +1, T2 v roce +1, T7, T8,
VícePROJEKT PARKINSON KLUBU BRNO Život je pohyb a pohyb je život Význam a zaměření projektu. Hodnotící ukazatele projektu.
- 1 - - - - 3 - - 4 - - 5 - PROJEKT PARKINSON KLUBU BRNO Žvot je pohyb a pohyb je žvot - 015 Výzam a zaměřeí projektu Základí deou projektu je vzdorovat egatvím tělesým a psychckým projevům Parksoově emoc,
Více